14. Properties of the Determinant

Last time we showed that the determinant of a matrix is non-zero if and only if that matrix is invertible. We also showed that the determinant is a *multiplicative* function, in the sense that $\det(MN) = \det M \det N$. Now we will devise some methods for calculating the determinant.

Recall that:

$$\det M = \sum_{\sigma} \operatorname{sgn}(\sigma) m_{\sigma(1)}^{1} m_{\sigma(2)}^{2} \dots m_{\sigma(n)}^{n}.$$

A minor of an $n \times n$ matrix M is any square matrix obtained from M by deleting rows and columns. In particular, any entry m_j^i of M is associated to a minor obtained by deleting the ith row and jth column of M.

It is possible to write the determinant of a matrix in terms of the determinants of its minors as follows:

$$\begin{split} \det M &= \sum_{\sigma} \operatorname{sgn}(\sigma) m_{\sigma(1)}^1 m_{\sigma(2)}^2 \dots m_{\sigma(n)}^n \\ &= m_1^1 \sum_{\hat{\sigma}} \operatorname{sgn}(\hat{\sigma}) m_{\hat{\sigma}(2)}^2 \dots m_{\hat{\sigma}(n)}^n \\ &- m_2^1 \sum_{\hat{\sigma}} \operatorname{sgn}(\hat{\sigma}) m_{\hat{\sigma}(1)}^1 m_{\hat{\sigma}(3)}^3 \dots m_{\hat{\sigma}(n)}^n \\ &+ m_3^1 \sum_{\hat{\sigma}} \operatorname{sgn}(\hat{\sigma}) m_{\hat{\sigma}(1)}^1 \dots m_{\hat{\sigma}(n)}^n \pm \dots \end{split}$$

Here the symbols $\hat{\sigma}$ refer to permutations of n-1 objects. What we're doing here is collecting up all of the terms of the original sum that contain the term m_j^1 for some fixed j. Each term in that collection is associated to a permutation sending $1 \to j$. The rest of any such permutation maps the set $\{2, \ldots, n\} \to \{1, \ldots, \hat{j}, \ldots, n\}$. We call this partial permutation $\hat{\sigma} = \left[\sigma(2) \ldots \sigma(n)\right]$.

The last issue is that the permutation $\hat{\sigma}$ may not have the same sign as σ . From previous homework, we know that a permutation has the same parity as its inversion number. Removing $1 \to j$ from a permutation the reduces the inversion number by the number of elements right of j that are less than j. Since j comes first in the permutation $\begin{bmatrix} j & \sigma(2) & \dots & \sigma(n) \end{bmatrix}$, the inversion number of $\hat{\sigma}$ is reduced by j-1. Then the sign of σ differs from the sign of $\hat{\sigma}$ if σ sends 1 to an even number.

Graphically, to expand by minors we pick an entry m_j^1 of the first row, then add $(-1)^{j-1}$ times the determinant of the matrix with row i and column j deleted.

Example Let's compute the determinant of $M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ using expansion by minors.

$$\det M = 1 \det \begin{pmatrix} 5 & 6 \\ 8 & 9 \end{pmatrix} - 2 \det \begin{pmatrix} 4 & 6 \\ 7 & 9 \end{pmatrix} + 3 \det \begin{pmatrix} 4 & 5 \\ 7 & 8 \end{pmatrix}$$
$$= 1(5 \cdot 9 - 8 \cdot 6) - 2(4 \cdot 9 - 7 \cdot 6) + 3(4 \cdot 8 - 7 \cdot 5)$$
$$= 0$$

Then M^{-1} does not exist.

Example Sometimes the entries of a matrix allows us to simplify the calculation of the determinant. Take $N = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 0 & 0 \\ 7 & 8 & 9 \end{pmatrix}$. Then we can switch the first and second rows of N to get:

$$\det\begin{pmatrix} 1 & 2 & 3 \\ 4 & 0 & 0 \\ 7 & 8 & 9 \end{pmatrix} = -\det\begin{pmatrix} 4 & 0 & 0 \\ 1 & 2 & 3 \\ 7 & 8 & 9 \end{pmatrix}$$
$$= 4 \det\begin{pmatrix} 2 & 3 \\ 8 & 9 \end{pmatrix}$$
$$= -16$$

Theorem. For any square matrix M, we have:

$$\det M^T = \det M$$

Proof. By definition,

$$\det M = \sum_{\sigma} \operatorname{sgn}(\sigma) m_{\sigma(1)}^{1} m_{\sigma(2)}^{2} \dots m_{\sigma(n)}^{n}.$$

For any permutation σ , there is a unique inverse permutation σ^{-1} that undoes σ . If σ sends $i \to j$, then σ^{-1} sends $j \to i$. In the two-line notation for a permutation, this corresponds to just flipping the permutation over. For example, if $\sigma = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$, then we can find σ^{-1} by flipping the permutation and then putting the columns in order:

$$\sigma^{-1} = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$$

Since any permutation can be built up by transpositions, one can also find the inverse of a permutation σ by undoing each of the transpositions used to build up σ ; this shows that one can use the same number of transpositions to build σ and σ^{-1} . In particular, $\operatorname{sgn} \sigma = \operatorname{sgn} \sigma^{-1}$.

Then:

$$\begin{split} \det M &=& \sum_{\sigma} \operatorname{sgn}(\sigma) m_{\sigma(1)}^1 m_{\sigma(2)}^2 \dots m_{\sigma(n)}^n \\ &=& \sum_{\sigma} \operatorname{sgn}(\sigma) m_1^{\sigma^{-1}(1)} m_2^{\sigma^{-1}(2)} \dots m_n^{\sigma^{-1}(n)} \\ &=& \sum_{\sigma} \operatorname{sgn}(\sigma^{-1}) m_1^{\sigma^{-1}(1)} m_2^{\sigma^{-1}(2)} \dots m_n^{\sigma^{-1}(n)} \\ &=& \sum_{\sigma} \operatorname{sgn}(\sigma) m_1^{\sigma(1)} m_2^{\sigma(2)} \dots m_n^{\sigma(n)} \\ &=& \det M^T. \end{split}$$

The last equality is due to the existence of a unique inverse permutation: summing over permutations is the same as summing over all inverses of permutations. \Box

Example Because of this theorem, we can see that expansion by minors also works over columns. Let $M = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 5 & 6 \\ 0 & 8 & 9 \end{pmatrix}$. Then $\det M = \det M^T = 1 \det \begin{pmatrix} 5 & 8 \\ 6 & 9 \end{pmatrix} = -3$.

Determinant of the Inverse

Let M and N be $n \times n$ matrices.

We previously showed that

$$det(MN) = det M det N$$
, and $det I = 1$.

Then $1 = \det I = \det(MM^{-1}) = \det M \det M^{-1}$. As such we have:

Theorem.

$$\det M^{-1} = \frac{1}{\det M}$$

Adjoint of a Matrix

A cofactor of M is obtained choosing any entry m_j^i of M and then deleting the ith row and jth column of M, taking the determinant of the resulting matrix, and multiplying by $(-1)^{i+j}$. This is written cofactor (m_i^i) .

Definition For $M=(m^i_j)$ a square matrix, The *adjoint matrix* adj M is given by:

$$\operatorname{adj} M = (\operatorname{cofactor}(m_i^i))^T$$

Example

$$\operatorname{adj} \begin{pmatrix} 3 & -1 & -1 \\ 1 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} \det \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} & -\det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \det \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \\ -\det \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} & \det \begin{pmatrix} 3 & -1 \\ 0 & 1 \end{pmatrix} & -\det \begin{pmatrix} 3 & -1 \\ 0 & 1 \end{pmatrix} \\ \det \begin{pmatrix} -1 & -1 \\ 2 & 0 \end{pmatrix} & -\det \begin{pmatrix} 3 & -1 \\ 1 & 0 \end{pmatrix} & \det \begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix} \end{pmatrix}^{T}$$

Let's multiply M adj M. For any matrix N, the i, j entry of MN is given by taking the dot product of the ith row of M and the jth column of N.

Notice that the dot product of the ith row of M and the ith column of adj M is just the expansion by minors of det M in the ith row.

Further, notice that the dot product of the *i*th row of M and the *j*th column of adj M with $j \neq i$ is the same as expanding M by minors, but with the *j*th row replaced by the *i*th row. Since the determinant of any matrix with a row repeated is zero, then these dot products are zero as well.

Then:

$$M \operatorname{adj} M = (\det M)I$$

Thus, when det $M \neq 0$, the adjoint gives an explicit formula for M^{-1} .

Theorem.

$$M^{-1} = \frac{1}{\det M} \operatorname{adj} M$$

Example Continuing with the previous example,

$$\operatorname{adj} \begin{pmatrix} 3 & -1 & -1 \\ 1 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 2 \\ -1 & 3 & -1 \\ 1 & -3 & 7 \end{pmatrix}.$$

Now, multiply:

$$\begin{pmatrix} 3 & -1 & -1 \\ 1 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 2 \\ -1 & 3 & -1 \\ 1 & -3 & 7 \end{pmatrix} = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} 3 & -1 & -1 \\ 1 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}^{-1} = \frac{1}{6} \begin{pmatrix} 2 & 0 & 2 \\ -1 & 3 & -1 \\ 1 & -3 & 7 \end{pmatrix}$$

This process for finding the inverse matrix is sometimes called Cramer's Rule.

Application: Volume of a Parallelpiped

Given three vectors u, v, w in \mathbb{R}^3 , the parallelpiped determined by the three vectors is the box whose edges are parallel to u, v, and w.

From calculus, we know that the volume of this object is $|u \cdot (v \times w)|$. This is the same as expansion by minors of the matrix whose columns are u, v, w. Then:

$$Volume = |\det \begin{pmatrix} u & v & w \end{pmatrix}|$$

References

Hefferon, Chapter Four, Section I.1 and I.3 Wikipedia:

- Determinant
- Elementary Matrix
- Cramer's Rule

Review Questions

1. Let $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Show:

$$\det M = \frac{1}{2} (\operatorname{tr} M)^2 - \frac{1}{2} \operatorname{tr} (M^2)$$

Suppose M is a 3×3 matrix. Find and Verify a similar formular for det M in terms of $\operatorname{tr}(M^3)$, $(\operatorname{tr} M)(\operatorname{tr}(M^2))$, and $(\operatorname{tr} M)^3$.

- 2. Suppose M = LU is an LU decomposition. Explain how you would efficiently compute det M in this case.
- 3. In computer science, the *complexity* of an algorithm is computed (roughly) by counting the number of times a given operation is performed. Suppose adding or subtracting any two numbers takes a seconds, and multiplying two numbers takes m seconds. Then, for example, computing $2 \cdot 6 5$ would take a + m seconds.
 - i. How many additions and multiplications does it take to compute the determinant of a general 2×2 matrix?
 - ii. Write a formula for the number of additions and multiplications it takes to compute the determinant of a general $n \times n$ matrix using the definition of the determinant. Assume that finding (and multiplying by) the sign of a permutation is free.
 - iii. How many additions and multiplications does it take to compute the determinant of a general 3×3 matrix using expansion by minors? Assuming m = 2a, is this faster than computing the determinant from the definition?