14. Properties of the Determinant

Last time we showed that the determinant of a matrix is non-zero if and
only if that matrix is invertible. We also showed that the determinant is a
multiplicative function, in the sense that det(M N) = det M det N. Now we
will devise some methods for calculating the determinant.

Recall that:

det M = Z Sgn(a)m};mmi(z) s mg(n)'

A minor of an n xn matrix M is any square matrix obtained from M by
deleting rows and columns. In particular, any entry m; of M is associated
to a minor obtained by deleting the ith row and jth column of M.

It is possible to write the determinant of a matrix in terms of the deter-
minants of its minors as follows:

det M = ngn(a)mi(l)mg@)...mg(n)

= m] Z sgn(&)mg(m .. m’;(n)

Here the symbols & refer to permutations of n — 1 objects. What we’re
doing here is collecting up all of the terms of the original sum that contain
the term mj1 for some fixed j. Each term in that collection is associated
to a permutation sending 1 — j. The rest of any such permutation maps
the set {2,...,n} — {1,...,5’,...,71}. We call this partial permutation
o= {0(2) a(n)}.

The last issue is that the permutation 6 may not have the same sign
as 0. From previous homework, we know that a permutation has the same
parity as its inversion number. Removing 1 — j from a permutation the
reduces the inversion number by the number of elements right of j that are
less than j. Since j comes first in the permutation [j o(2) ... O‘(TL)}, the
inversion number of & is reduced by j — 1. Then the sign of ¢ differs from
the sign of & if o sends 1 to an even number.



Graphically, to expand by minors we pick an entry mj1 of the first row,
then add (—1)7~! times the determinant of the matrix with row i and column
j deleted.

using expan-
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Example Let’s compute the determinant of M = | 4
7

sion by minors.

5 6 4 6 4 5
det M = 1det<8 9>—2det<7 9>+3det<7 8)

= 1(5-9-8-6)—2(4-9—7-6)+3(4-8—7-5)
=0

Then M~1 does not exist.

Example Sometimes the entries of a matrix allows us to simplify the cal-

1 2 3
culation of the determinant. Take N = |4 0 0. Then we can switch
7 8 9
the first and second rows of N to get:
1 2 3 4 0 0
det|4 0 O = —det|1 2 3
7 8 9 7 8 9
2 3
= 4det (8 9>

= -—16
Theorem. For any square matriz M, we have:
det MT = det M

Proof. By definition,

det M = Z Sgn(U)m};u)m?f(z) e mZ(n).



For any permutation o, there is a unique inverse permutation o~! that
undoes o. If o sends i — j, then ¢! sends j — i. In the two-line no-
tation for a permutation, this corresponds to just flipping the permutation
1 2 3
2 3 1|’

permutation and then putting the columns in order:
1 2 31 1 2 3
o = =

1 2 3 31 2
Since any permutation can be built up by transpositions, one can also
find the inverse of a permutation ¢ by undoing each of the transpositions
used to build up o; this shows that one can use the same number of trans-
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positions to build ¢ and o~!. In particular, sgno = sgno .
Then:

over. For example, if o = then we can find o' by flipping the

detM = ) sgn(o)m},(l)mim) S.ml

g

— Z sgn(a)mfil(l)mgil(m .. .mgil(")

g

— ngn(ail)mfl(l)mgﬂ@) ome ™

n
[

= Z sgn(o)m‘f(l)mg@) ..mZm

g

= det MT.

The last equality is due to the existence of a unique inverse permutation:
summing over permutations is the same as summing over all inverses of
permutations. ]

Example Because of this theorem, we can see that expansion by minors

1 2 3
also works over columns. Let M = |0 5 6|. Then det M = det ML =

0 8 9
5 8
1det<6 9>——3.

Determinant of the Inverse

Let M and N be n x n matrices.



We previously showed that
det(MN) = det M det N, and det I = 1.

Then 1 = det I = det(MM~!) = det M det M~!. As such we have:

Theorem.

Adjoint of a Matrix

A cofactor of M is obtained choosing any entry m; of M and then deleting
the i¢th row and jth column of M, taking the determinant of the resulting
matrix, and multiplying by(—1)"*7. This is written cofactor(m).

Definition For M = (m;) a square matrix, The adjoint matriz adj M is
given by: A
adj M = (cofactor(m}))T

2 0 10 1 2
; 1 1 det (1 1) —det <0 1) det (O 1)
adj|1 2 0 | =]—det <_11 _11> det (3 _11> —det <g _11>
01 ! 1 1 3 1 3 1
det(2 0) —det (1 0) det (1 9 )

Let’s multiply M adj M. For any matrix IV, the ¢, j entry of M N is given
by taking the dot product of the ith row of M and the jth column of N.

Notice that the dot product of the ¢th row of M and the ith column of
adj M is just the expansion by minors of det M in the ith row.

Further, notice that the dot product of the ith row of M and the jth
column of adj M with j # i is the same as expanding M by minors, but with
the jth row replaced by the ith row. Since the determinant of any matrix
with a row repeated is zero, then these dot products are zero as well.

Then:

Example

MadjM = (det M)I
Thus, when det M # 0, the adjoint gives an explicit formula for M 1.




Theorem.

_ 1 i
M 1:detM&dj*M

Example Continuing with the previous example,

3 -1 -1 2 0 2
adjft 2 0 ]=]-1 3 -1
0 1 1 1 -3 7

Now, multiply:

3 -1 -1\ (2 0 2 6 0 0
1 2 oll=1 3 —1| = o6 0
0 1 1 1 -3 7 00 6

3 1 —1\ " (2 0 2

=1 2 o = 221 3 41

0 1 1 611 3 7

This process for finding the inverse matrix is sometimes called Cramer’s
Rule.

Application: Volume of a Parallelpiped

Given three vectors u, v, w in R3, the parallelpiped determined by the three
vectors is the box whose edges are parallel to u, v, and w.

From calculus, we know that the volume of this object is |u -+ (v X w)|.
This is the same as expansion by minors of the matrix whose columns are
u, v, w. Then:

Volume = | det (u v w) |
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Review Questions

1. Let M = <a b). Show:
c d

1 1
det M = 5(me)2 — 5tr(M?)

Suppose M is a 3 x 3 matrix. Find and Verify a similar formular for
det M in terms of tr(M?3), (tr M)(tr(M?)), and (tr M)3.

2. Suppose M = LU is an LU decomposition. Explain how you would
efficiently compute det M in this case.

3. In computer science, the complexity of an algorithm is computed (roughly)
by counting the number of times a given operation is performed. Sup-
pose adding or subtracting any two numbers takes a seconds, and mul-
tiplying two numbers takes m seconds. Then, for example, computing
2.6 — 5 would take a + m seconds.

1. How many additions and multiplications does it take to compute
the determinant of a general 2 x 2 matrix?

i1. Write a formula for the number of additions and multiplications
it takes to compute the determinant of a general n X n matrix
using the definition of the determinant. Assume that finding (and
multiplying by) the sign of a permutation is free.

117. How many additions and multiplications does it take to compute
the determinant of a general 3 x 3 matrix using expansion by
minors? Assuming m = 2a, is this faster than computing the
determinant from the definition?



