
14. Properties of the Determinant

Last time we showed that the determinant of a matrix is non-zero if and
only if that matrix is invertible. We also showed that the determinant is a
multiplicative function, in the sense that det(MN) = detM detN . Now we
will devise some methods for calculating the determinant.

Recall that:

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) . . .m

n
σ(n).

A minor of an n×n matrix M is any square matrix obtained from M by
deleting rows and columns. In particular, any entry mi

j of M is associated
to a minor obtained by deleting the ith row and jth column of M .

It is possible to write the determinant of a matrix in terms of the deter-
minants of its minors as follows:

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) . . .m

n
σ(n)

= m1
1

∑
σ̂

sgn(σ̂)m2
σ̂(2) . . .m

n
σ̂(n)

−m1
2

∑
σ̂

sgn(σ̂)m1
σ̂(1)m

3
σ̂(3) . . .m

n
σ̂(n)

+m1
3

∑
σ̂

sgn(σ̂)m1
σ̂(1) . . .m

n
σ̂(n) ± . . .

Here the symbols σ̂ refer to permutations of n− 1 objects. What we’re
doing here is collecting up all of the terms of the original sum that contain
the term m1

j for some fixed j. Each term in that collection is associated
to a permutation sending 1 → j. The rest of any such permutation maps
the set {2, . . . , n} → {1, . . . , ĵ, . . . , n}. We call this partial permutation
σ̂ =

[
σ(2) . . . σ(n)

]
.

The last issue is that the permutation σ̂ may not have the same sign
as σ. From previous homework, we know that a permutation has the same
parity as its inversion number. Removing 1 → j from a permutation the
reduces the inversion number by the number of elements right of j that are
less than j. Since j comes first in the permutation

[
j σ(2) . . . σ(n)

]
, the

inversion number of σ̂ is reduced by j − 1. Then the sign of σ differs from
the sign of σ̂ if σ sends 1 to an even number.
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Graphically, to expand by minors we pick an entry m1
j of the first row,

then add (−1)j−1 times the determinant of the matrix with row i and column
j deleted.

Example Let’s compute the determinant of M =

1 2 3
4 5 6
7 8 9

 using expan-

sion by minors.

detM = 1 det

(
5 6
8 9

)
− 2 det

(
4 6
7 9

)
+ 3 det

(
4 5
7 8

)
= 1(5 · 9− 8 · 6)− 2(4 · 9− 7 · 6) + 3(4 · 8− 7 · 5)
= 0

Then M−1 does not exist.

Example Sometimes the entries of a matrix allows us to simplify the cal-

culation of the determinant. Take N =

1 2 3
4 0 0
7 8 9

. Then we can switch

the first and second rows of N to get:

det

1 2 3
4 0 0
7 8 9

 = −det

4 0 0
1 2 3
7 8 9


= 4 det

(
2 3
8 9

)
= −16

Theorem. For any square matrix M , we have:

detMT = detM

Proof. By definition,

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) . . .m

n
σ(n).
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For any permutation σ, there is a unique inverse permutation σ−1 that
undoes σ. If σ sends i → j, then σ−1 sends j → i. In the two-line no-
tation for a permutation, this corresponds to just flipping the permutation

over. For example, if σ =

[
1 2 3
2 3 1

]
, then we can find σ−1 by flipping the

permutation and then putting the columns in order:

σ−1 =

[
2 3 1
1 2 3

]
=

[
1 2 3
3 1 2

]

Since any permutation can be built up by transpositions, one can also
find the inverse of a permutation σ by undoing each of the transpositions
used to build up σ; this shows that one can use the same number of trans-
positions to build σ and σ−1. In particular, sgnσ = sgnσ−1.

Then:

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) . . .m

n
σ(n)

=
∑
σ

sgn(σ)mσ−1(1)
1 m

σ−1(2)
2 . . .mσ−1(n)

n

=
∑
σ

sgn(σ−1)mσ−1(1)
1 m

σ−1(2)
2 . . .mσ−1(n)

n

=
∑
σ

sgn(σ)mσ(1)
1 m

σ(2)
2 . . .mσ(n)

n

= detMT .

The last equality is due to the existence of a unique inverse permutation:
summing over permutations is the same as summing over all inverses of
permutations.

Example Because of this theorem, we can see that expansion by minors

also works over columns. Let M =

1 2 3
0 5 6
0 8 9

. Then detM = detMT =

1 det

(
5 8
6 9

)
= −3.

Determinant of the Inverse

Let M and N be n× n matrices.
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We previously showed that

det(MN) = detM detN , and det I = 1.

Then 1 = det I = det(MM−1) = detM detM−1. As such we have:

Theorem.
detM−1 =

1
detM

Adjoint of a Matrix

A cofactor of M is obtained choosing any entry mi
j of M and then deleting

the ith row and jth column of M , taking the determinant of the resulting
matrix, and multiplying by(−1)i+j . This is written cofactor(mi

j).

Definition For M = (mi
j) a square matrix, The adjoint matrix adjM is

given by:
adjM = (cofactor(mi

j))
T

Example

adj

3 −1 −1
1 2 0
0 1 1

 =



det

(
2 0
1 1

)
−det

(
1 0
0 1

)
det

(
1 2
0 1

)

−det

(
−1 −1
1 1

)
det

(
3 −1
0 1

)
−det

(
3 −1
0 1

)

det

(
−1 −1
2 0

)
−det

(
3 −1
1 0

)
det

(
3 −1
1 2

)



T

Let’s multiply M adjM . For any matrix N , the i, j entry of MN is given
by taking the dot product of the ith row of M and the jth column of N .

Notice that the dot product of the ith row of M and the ith column of
adjM is just the expansion by minors of detM in the ith row.

Further, notice that the dot product of the ith row of M and the jth
column of adjM with j 6= i is the same as expanding M by minors, but with
the jth row replaced by the ith row. Since the determinant of any matrix
with a row repeated is zero, then these dot products are zero as well.

Then:
M adjM = (detM)I

Thus, when detM 6= 0, the adjoint gives an explicit formula for M−1.
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Theorem.
M−1 =

1
detM

adjM

Example Continuing with the previous example,

adj

3 −1 −1
1 2 0
0 1 1

 =

 2 0 2
−1 3 −1
1 −3 7

 .
Now, multiply:

3 −1 −1
1 2 0
0 1 1


 2 0 2
−1 3 −1
1 −3 7

 =

6 0 0
0 6 0
0 0 6



⇒

3 −1 −1
1 2 0
0 1 1


−1

=
1
6

 2 0 2
−1 3 −1
1 −3 7


This process for finding the inverse matrix is sometimes called Cramer’s

Rule.

Application: Volume of a Parallelpiped

Given three vectors u, v, w in R3, the parallelpiped determined by the three
vectors is the box whose edges are parallel to u, v, and w.

From calculus, we know that the volume of this object is |u (v × w)|.
This is the same as expansion by minors of the matrix whose columns are
u, v, w. Then:

Volume = |det
(
u v w

)
|
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Review Questions

1. Let M =

(
a b
c d

)
. Show:

detM =
1
2

(trM)2 − 1
2

tr(M2)

Suppose M is a 3 × 3 matrix. Find and Verify a similar formular for
detM in terms of tr(M3), (trM)(tr(M2)), and (trM)3.

2. Suppose M = LU is an LU decomposition. Explain how you would
efficiently compute detM in this case.

3. In computer science, the complexity of an algorithm is computed (roughly)
by counting the number of times a given operation is performed. Sup-
pose adding or subtracting any two numbers takes a seconds, and mul-
tiplying two numbers takes m seconds. Then, for example, computing
2 · 6− 5 would take a+m seconds.

i. How many additions and multiplications does it take to compute
the determinant of a general 2× 2 matrix?

ii. Write a formula for the number of additions and multiplications
it takes to compute the determinant of a general n × n matrix
using the definition of the determinant. Assume that finding (and
multiplying by) the sign of a permutation is free.

iii. How many additions and multiplications does it take to compute
the determinant of a general 3 × 3 matrix using expansion by
minors? Assuming m = 2a, is this faster than computing the
determinant from the definition?
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