
15. Eigenvalues, Eigenvectors

Matrix of a Linear Transformation Consider a linear transformation L :

R2 → R2. Suppose we know that L

(
1
0

)
=

(
a
c

)
and L

(
0
1

)
=

(
b
d

)
. Then

because of linearity, we can determine what L does to any vector

(
x
y

)
:

L

(
x
y

)
= L(x

(
1
0

)
+y

(
0
1

)
) = xL

(
1
0

)
+yL

(
0
1

)
= x

(
a
c

)
+y

(
b
d

)
=

(
ax+ by
cx+ dy

)
.

Now notice that for any vector

(
x
y

)
, we have

(
a b
c d

)(
x
y

)
=

(
ax+ by
cx+ dy

)
= L

(
x
y

)
.

Then the matrix

(
a b
c d

)
acts by matrix multiplication in the same way

that L does. Call this matrix the matrix of L in the “basis” {
(

1
0

)
,

(
0
1

)
}.

Since every linear function from R2 → R2 can be given a matrix in
this way, we see that every such linear function has a matrix in the basis

{
(

1
0

)
,

(
0
1

)
}. We will revisit this idea, and develop the notion of a ba-

sis further, and learn about how to make a matrix for an arbitrary linear
transformation Rn → Rm in an arbitrary basis.

Invariant Directions

Consider the linear transformation L such that L

(
1
0

)
=

(
−4
−10

)
and L

(
0
1

)
=(

3
7

)
, so that the matrix of L is

(
−4 3
−10 7

)
. Recall that a vector is a direc-

tion and a magnitude; L applied to

(
1
0

)
or

(
0
1

)
changes both the direction

and the magnitude of the vectors given to it.
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Notice that L

(
3
5

)
=

(
−4 · 3 + 3 · 5
−10 · 3 + 7 · 5

)
=

(
3
5

)
. Then L fixes both the

magnitude and direction of the vector v1 =

(
3
5

)
. Now, notice that any

vector with the same direction as v1 can be written as cv1 for some constant
c. Then L(cv1) = cL(v1) = cv1, so L fixes every vector pointing in the same
direction as v1.

Also notice that L

(
1
2

)
=

(
−4 · 1 + 3 · 2
−10 · 1 + 7 · 2

)
=

(
2
4

)
= 2

(
1
2

)
. Then L

fixes the direction of the vector v2 =

(
1
2

)
but stretches v2 by a factor of

2. Now notice that for any constant c, L(cv2) = cL(v2) = 2cv2. Then L
stretches every vector pointing in the same direction as v2 by a factor of 2.

In short, given a linear transformation L it is sometimes possible to find
a vector v 6= 0 and constant λ 6= 0 such that

L(v) = λv

We call the direction of the vector v an invariant direction. In fact, any
vector pointing in the same direction also satisfies the equation: L(cv) =
cL(v) = λcv. The vector v is called an eigenvector of L, and λ is an
eigenvalue. Since the direction is all we really care about here, then any
other vector cv (so long as c 6= 0) is an equally good choice of eigenvector.

Returning to our example of the linear transformation L with matrix(
−4 3
−10 7

)
, we have seen that L enjoys the property of having two invariant

directions, represented by eigenvectors v1 and v2 with eigenvalues 1 and 2,
respectively.

It would be very convenient if I could write any vector w as a linear
combination of v1 and v2. Suppose w = rv1 + sv2 for some constants r and
s. Then:

L(w) = L(rv1 + sv2) = rL(v1) + sL(v2) = rv1 + 2sv2.

Now L just multiplies the number r by 1 and the number s by 2. If we
could write this as a matrix, it would look like:(

1 0
0 2

)(
r
s

)
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This is much slicker than the usual scenario, in which L

(
a b
c d

)
=
(
a
)
x+by

cx+ dy.
Here, r and s give the coordinates of w in terms of the vectors v1 and

v2. In the previous example, we multiplied the vector by the matrix L and
came up with a complicated expression. In these coordinates, we can see
that L is a very simple diagonal matrix, whose diagonal entries are exactly
the eigenvalues of L.

This process is called diagonalization, and it can make complicated linear
systems much easier to analyze.

Now that we’ve seen what eigenvalues and eigenvectors are, there are a
number of questions that need to be answered.

• How do we find eigenvectors and their eigenvalues?

• How many eigenvalues and (independent) eigenvectors does a given
linear transformation have?

• When can a linear transformation be diagonalized?

We’ll start by trying to find the eigenvectors for a linear transformation.

Example Let L : R2 → R2 such that L(x, y) = (2x+ 2y, 16x+ 6y). First,
we can find the matrix of L:(

x
y

)
L7→
(

2 2
16 6

)(
x
y

)
.

We want to find an invariant direction v =

(
x
y

)
such that

L(v) = λv

or, in matrix notation, (
2 2
16 6

)(
x
y

)
= λ

(
x
y

)

⇔
(

2 2
16 6

)(
x
y

)
=

(
λ 0
0 λ

)(
x
y

)

⇔
(

2− λ 2
16 6− λ

)(
x
y

)
=

(
0
0

)
.
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This is a homogeneous system, so it only has solutions when the matrix(
2− λ 2

16 6− λ

)
is singular. In other words,

det

(
2− λ 2

16 6− λ

)
= 0

⇔ (2− λ)(6− λ)− 32 = 0
⇔ λ2 − 8λ− 20 = 0

⇔ (λ− 10)(λ+ 2) = 0

For any square n× n matrix M , the polynomial in λ given by det(λI −
M) = (−1)n det(M − λI) is called the characteristic polynomial of M , and
its roots are the eigenvalues of M .

In this case, we see that L has two eigenvalues, λ1 = 10 and λ2 = −2.
To find the eigenvectors, we need to deal with these two cases separately.

To do so, we solve the linear system

(
2− λ 2

16 6− λ

)(
x
y

)
=

(
0
0

)
with

the particular eigenvalue λ plugged in to the matrix.

λ = 10: We solve the linear system(
−8 2
16 −4

)(
x
y

)
=

(
0
0

)
.

Both equations say that y = 4x, so any vector

(
x
4x

)
will do. Since we

only need the direction of the eigenvector, we can pick a value for x.

Setting x = 1 is convenient, and gives the eigenvector v1 =

(
1
4

)
.

λ = −2: We solve the linear system(
4 2
16 4

)(
x
y

)
=

(
0
0

)
.

Here again both equations agree, because we chose λ to make the
system singular. We see that y = −2x works, so we can choose v2 =(

1
−2

)
.

In short, our process was the following:
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• Find the characteristic polynomial of the matrix M for L, given by
det(λI −M).

• Find the roots of the characteristic polynomial; these are the eigenval-
ues of L.

• For each eigenvalue λi, solve the linear system (λiI − M)x = 0 to
obtain an eigenvector x associated to λi.
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Review Questions

1. Consider L : R2 → R2 with L(x, y) = (x cos θ + y sin θ,−x sin θ +
y cos θ).

i. Write the matrix of L on the basis

(
1
0

)
,

(
0
1

)
.

ii. When θ 6= 0, explain how L acts on the plane. Draw a picture.

iii. Do you expect L to have invariant directions?

iv. Try to find eigenvalues for L by solving the equation

L(v) = λv.

v. Does L have real eigenvalues? If not, are there complex eigenval-
ues for L, assuming that i =

√
−1 exists?
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2. Let M =

(
2 1
0 2

)
. Find all eigenvalues of M . Does M have two

independent eigenvectors? Can M be diagonalized?

3. Let L be the linear transformation L : R3 → R3 given by L(x, y, z) =
(x+ y, y+ z, x+ z). Let ei be the vector with a one in the ith position
and zeros in all other positions.

i. Find Lei for each i.

ii. Given a matrix M =

m1
1 m1

2 m1
3

m2
1 m2

2 m2
3

m3
1 m3

2 m3
3

, what can you say about

Mei for each i?

iii. Find a 3× 3 matrix M representing L. Choose three non-trivial
vectors pointing in different directions and show that Mv = Lv
for each of your choices.
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