## 15. Eigenvalues, Eigenvectors

Matrix of a Linear Transformation Consider a linear transformation  $L: \mathbb{R}^2 \to \mathbb{R}^2$ . Suppose we know that  $L \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ c \end{pmatrix}$  and  $L \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} b \\ d \end{pmatrix}$ . Then because of linearity, we can determine what L does to any vector  $\begin{pmatrix} x \\ y \end{pmatrix}$ :

$$L\begin{pmatrix}x\\y\end{pmatrix}=L(x\begin{pmatrix}1\\0\end{pmatrix}+y\begin{pmatrix}0\\1\end{pmatrix})=xL\begin{pmatrix}1\\0\end{pmatrix}+yL\begin{pmatrix}0\\1\end{pmatrix}=x\begin{pmatrix}a\\c\end{pmatrix}+y\begin{pmatrix}b\\d\end{pmatrix}=\begin{pmatrix}ax+by\\cx+dy\end{pmatrix}.$$

Now notice that for any vector  $\begin{pmatrix} x \\ y \end{pmatrix}$ , we have

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix} = L \begin{pmatrix} x \\ y \end{pmatrix}.$$

Then the matrix  $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$  acts by matrix multiplication in the same way

that L does. Call this matrix the matrix of L in the "basis"  $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ .

Since every linear function from  $\mathbb{R}^2 \to \mathbb{R}^2$  can be given a matrix in this way, we see that every such linear function has a matrix in the basis  $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ . We will revisit this idea, and develop the notion of a basis further, and learn about how to make a matrix for an arbitrary linear transformation  $\mathbb{R}^n \to \mathbb{R}^m$  in an arbitrary basis.

## **Invariant Directions**

Consider the linear transformation L such that  $L \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -4 \\ -10 \end{pmatrix}$  and  $L \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 7 \end{pmatrix}$ , so that the matrix of L is  $\begin{pmatrix} -4 & 3 \\ -10 & 7 \end{pmatrix}$ . Recall that a vector is a direction and a magnitude; L applied to  $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$  or  $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$  changes both the direction and the magnitude of the vectors given to it.

Notice that  $L\begin{pmatrix} 3 \\ 5 \end{pmatrix} = \begin{pmatrix} -4 \cdot 3 + 3 \cdot 5 \\ -10 \cdot 3 + 7 \cdot 5 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$ . Then L fixes both the magnitude and direction of the vector  $v_1 = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$ . Now, notice that any vector with the same direction as  $v_1$  can be written as  $cv_1$  for some constant c. Then  $L(cv_1) = cL(v_1) = cv_1$ , so L fixes every vector pointing in the same direction as  $v_1$ .

Also notice that  $L \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -4 \cdot 1 + 3 \cdot 2 \\ -10 \cdot 1 + 7 \cdot 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ . Then L

fixes the direction of the vector  $v_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$  but stretches  $v_2$  by a factor of 2. Now notice that for any constant c,  $L(cv_2) = cL(v_2) = 2cv_2$ . Then L

stretches every vector pointing in the same direction as  $v_2$  by a factor of 2. In short, given a linear transformation L it is sometimes possible to find a vector  $v \neq 0$  and constant  $\lambda \neq 0$  such that

$$L(v) = \lambda v$$

We call the direction of the vector v an invariant direction. In fact, any vector pointing in the same direction also satisfies the equation:  $L(cv) = cL(v) = \lambda cv$ . The vector v is called an eigenvector of L, and  $\lambda$  is an eigenvalue. Since the direction is all we really care about here, then any other vector cv (so long as  $c \neq 0$ ) is an equally good choice of eigenvector.

Returning to our example of the linear transformation L with matrix  $\begin{pmatrix} -4 & 3 \\ -10 & 7 \end{pmatrix}$ , we have seen that L enjoys the property of having two invariant directions, represented by eigenvectors  $v_1$  and  $v_2$  with eigenvalues 1 and 2, respectively.

It would be very convenient if I could write any vector w as a linear combination of  $v_1$  and  $v_2$ . Suppose  $w = rv_1 + sv_2$  for some constants r and s. Then:

$$L(w) = L(rv_1 + sv_2) = rL(v_1) + sL(v_2) = rv_1 + 2sv_2.$$

Now L just multiplies the number r by 1 and the number s by 2. If we could write this as a matrix, it would look like:

$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} r \\ s \end{pmatrix}$$

This is much slicker than the usual scenario, in which  $L\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a \end{pmatrix} x + by$  cx + dy.

Here, r and s give the coordinates of w in terms of the vectors  $v_1$  and  $v_2$ . In the previous example, we multiplied the vector by the matrix L and came up with a complicated expression. In these coordinates, we can see that L is a very simple diagonal matrix, whose diagonal entries are exactly the eigenvalues of L.

This process is called *diagonalization*, and it can make complicated linear systems much easier to analyze.

Now that we've seen what eigenvalues and eigenvectors are, there are a number of questions that need to be answered.

- How do we find eigenvectors and their eigenvalues?
- How many eigenvalues and (independent) eigenvectors does a given linear transformation have?
- When can a linear transformation be diagonalized?

We'll start by trying to find the eigenvectors for a linear transformation.

**Example** Let  $L: \mathbb{R}^2 \to \mathbb{R}^2$  such that L(x,y) = (2x + 2y, 16x + 6y). First, we can find the matrix of L:

$$\begin{pmatrix} x \\ y \end{pmatrix} \stackrel{L}{\mapsto} \begin{pmatrix} 2 & 2 \\ 16 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

We want to find an invariant direction  $v = \begin{pmatrix} x \\ y \end{pmatrix}$  such that

$$L(v) = \lambda v$$

or, in matrix notation,

$$\begin{pmatrix} 2 & 2 \\ 16 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} 2 & 2 \\ 16 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} 2 - \lambda & 2 \\ 16 & 6 - \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

This is a homogeneous system, so it only has solutions when the matrix  $\begin{pmatrix} 2-\lambda & 2\\ 16 & 6-\lambda \end{pmatrix}$  is singular. In other words,

$$\det \begin{pmatrix} 2 - \lambda & 2 \\ 16 & 6 - \lambda \end{pmatrix} = 0$$

$$\Leftrightarrow (2 - \lambda)(6 - \lambda) - 32 = 0$$

$$\Leftrightarrow \lambda^2 - 8\lambda - 20 = 0$$

$$\Leftrightarrow (\lambda - 10)(\lambda + 2) = 0$$

For any square  $n \times n$  matrix M, the polynomial in  $\lambda$  given by  $\det(\lambda I - M) = (-1)^n \det(M - \lambda I)$  is called the *characteristic polynomial* of M, and its roots are the eigenvalues of M.

In this case, we see that L has two eigenvalues,  $\lambda_1 = 10$  and  $\lambda_2 = -2$ . To find the eigenvectors, we need to deal with these two cases separately.

To do so, we solve the linear system  $\begin{pmatrix} 2-\lambda & 2\\ 16 & 6-\lambda \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$  with the particular eigenvalue  $\lambda$  plugged in to the matrix.

 $\lambda = 10$ : We solve the linear system

$$\begin{pmatrix} -8 & 2\\ 16 & -4 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}.$$

Both equations say that y = 4x, so any vector  $\begin{pmatrix} x \\ 4x \end{pmatrix}$  will do. Since we only need the direction of the eigenvector, we can pick a value for x. Setting x = 1 is convenient, and gives the eigenvector  $v_1 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ .

 $\lambda = -2$ : We solve the linear system

$$\begin{pmatrix} 4 & 2 \\ 16 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Here again both equations agree, because we chose  $\lambda$  to make the system singular. We see that y = -2x works, so we can choose  $v_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ .

In short, our process was the following:

- Find the characteristic polynomial of the matrix M for L, given by  $\det(\lambda I M)$ .
- Find the roots of the characteristic polynomial; these are the eigenvalues of L.
- For each eigenvalue  $\lambda_i$ , solve the linear system  $(\lambda_i I M)x = 0$  to obtain an eigenvector x associated to  $\lambda_i$ .

## References

- Hefferon, Chapter Three, Section III.1: Representing Linear Maps with Matrices
- Hefferon, Chapter Five, Section II.3: Eigenvalues and Eigenvectors

Wikipedia:

- Eigen\*
- Characteristic Polynomial
- Linear Transformations (and matrices thereof)

## **Review Questions**

- 1. Consider  $L: \mathbb{R}^2 \to \mathbb{R}^2$  with  $L(x,y) = (x\cos\theta + y\sin\theta, -x\sin\theta + y\cos\theta)$ .
  - i. Write the matrix of L on the basis  $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ ,  $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ .
  - ii. When  $\theta \neq 0$ , explain how L acts on the plane. Draw a picture.
  - iii. Do you expect L to have invariant directions?
  - iv. Try to find eigenvalues for L by solving the equation

$$L(v) = \lambda v$$
.

v. Does L have real eigenvalues? If not, are there complex eigenvalues for L, assuming that  $i = \sqrt{-1}$  exists?

- 2. Let  $M = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$ . Find all eigenvalues of M. Does M have two independent eigenvectors? Can M be diagonalized?
- 3. Let L be the linear transformation  $L: \mathbb{R}^3 \to \mathbb{R}^3$  given by L(x, y, z) = (x+y, y+z, x+z). Let  $e_i$  be the vector with a one in the *i*th position and zeros in all other positions.
  - i. Find  $Le_i$  for each i.
  - $ii. \mbox{ Given a matrix } M = \begin{pmatrix} m_1^1 & m_2^1 & m_3^1 \\ m_1^2 & m_2^2 & m_3^2 \\ m_1^3 & m_2^3 & m_3^3 \end{pmatrix}, \mbox{ what can you say about } Me_i \mbox{ for each } i?$
  - iii. Find a  $3 \times 3$  matrix M representing L. Choose three non-trivial vectors pointing in different directions and show that Mv = Lv for each of your choices.