16. Eigenvalues, Eigenvectors II

Last time, we developed the idea of eigenvalues and eigenvectors in the case
of linear transformations R? — R2. In this Section, we will develop the idea
more generally.

Definition For a linear transformation L : V' — V, then A is an eigenvalue
of L with eigenvector v # Oy if

Lv = M.

This equation says that the direction of v is invariant (unchanged) un-
der L.

Let V be a finite-dimensional vector space (we’ll explain what it means
to be finite-dimensional in more detail later; for now, take this to mean R"),
and L:V — V.

Matrix of a Linear Transformation Any vector in R™ can be written as
a linear combination of the standard basis vectors {e;|i € {1,...,n}}. The
vector e; has a one in the ith position, and zeros everywhere else. Then
to find the matrix of any linear transformation L : R" — R", it suffices to
know what L(e;) is for every i.

For any matrix M, observe that Me; is equal to the ith column of M.
Then if the ith column of M equals L(e;) for every i, then Mv = L(v) for
every v € R™. Then the matrix representing L in the standard basis is just
the matrix whose ith column is L(e;).

Since we can represent L by a square matrix M, and find eigenvalues \;
and associated eigenvectors v; by solving the homogeneous system

(M — X\ I)v; = 0.
This system has non-zero solutions if and only if the matrix
M — N1
is singular, and so we require that
det(AI — M) =0.

The left hand side of this equation is a polynomial in the variable A
called the characteristic polynomial Ppr(X) of M. For an n x n matrix, the
characteristic polynomial has degree n. Then

PyN) = A"+ e



Notice that Pys(0) = det(—M) = (—1)" det M.

The fundamental theorem of algebra states that any polynomial can be
factored into a product of linear terms over C. Then there exists a collection
of n complex numbers \; (possibly with repetition) such that

PyA) =AM =A)A=A2)...(A=An),  Pu(Ai) =0

The eigenvalues \; of M are exactly the roots of Pys(A). These eigenval-
ues could be real or complex or zero, and they need not all be different.
The number of times that any given root \; appears in the collection of
eigenvalues is called its multiplicity.

Example Let L be the linear transformation L : R3 — R3 given by L(x,y,2) =
(2 +y— 2z, + 2y — z,—x — y + 2z). The matrix M representing L has
columns Le; for each i, so:

x 2 1 -1 x
gl 2|1 2 -1y
z -1 -1 2 z
Then the characteristic polynomial of L isF_-]
A—2 -1 1

Py(A\) = det| -1 X—2 1
1 1 A—2
= A=A =27 -1+ [-(A-2) -1+ [-(A-2) - 1]
= A=1%* \N-4)

Then L has eigenvalues A\; = 1 (with multiplicity 2), and Ay = 4 (with
multiplicity 1).

To find the eigenvectors associated to each eigenvalue, we solve the ho-

mogeneous system (M — \;I)X = 0 for each .

A =4: We set up the augmented matrix for the linear system:

-2 1 -1|0 1 -2 =110
1 -2 -1]0] ~ |0 -3 =30
-1 -1 =210 0 -3 =310

1 0 110

~ 10 1 10

0 0 0|0

Tt is often easier (and equivalent) to solve det(M — AI) = 0.



So we see that z = t, y = —t, and z = —t gives a formula for eigenvec-
tors in terms of the free parameter t. Any such eigenvector is of the
-1
form t | —1 |; thus L leaves a line through the origin invariant.
1

A =1: Again we set up an augmented matrix and find the solution set:

1 1 =110 11 -1|0
1 1 =110 ~ 00 010
-1 -1 1 |0 0 0 010

Then the solution set has two free parameters, s and ¢, such that z = ¢,

y=3s,and x = —s +t. Then L leaves invariant the set:
-1 1
{s| 1 |+¢t|[0]]s,teR}
0 1
This set is a plane through the origin. So the multiplicity two eigen-
-1 1
value has two independent eigenvectors, | 1 | and | O | that deter-
0 1
mine an invariant plane.
Eigenspaces
-1 1
In the previous example, we found two eigenvectors | 1 | and | 0| for L
0 1
-1 1 0
with eigenvalue 1. Notice that | 1 | + [ 0| = | 1| is also an eigenvector
0 1 1
-1 1
of L with eigenvalue 1. In fact, any linear combination r | 1 | +s| 0| of
0 1

these two eigenvectors will be another eigenvector with the same eigenvalue.
More generally, let {vy,vs,...} be eigenvectors of some linear transfor-
mation L with the same eigenvalue A. Then any linear combination of the



v; can be written ¢jv1 + covg + ... for some constants {cy, ca,...}. Then:

L(civy +cova+...) = c1Lvy 4+ coLlvg + ... by linearity of L
= 1AV + vy + ... since Lv; = Av;
= Mcavr + v +..0).

So every linear combination of the v; is an eigenvector of L with the
same eigenvalue \.

The space of all vectors with eigenvalue X is called an eigenspace. It
is, in fact, a vector space contained within the larger vector space V: It
contains Oy, since L0y = 0y = A0y, and is closed under addition and scalar
multiplication by the above calculation. All other vector space properties
are inherited from the fact that V itself is a vector space.

An eigenspace is an example of a subspace of V| a notion that we will
explore further next time.
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Review Questions

1. Explain why the characteristic polynomial of an n X n matrix has
degree n. Make your explanation easy to read by starting with some
simple examples, and then use properties of the determinant to give a
general explanation.

2. Compute the characteristic polynomial Pps(A) of the matrix M =

a b . . .
( d>' Now, since we can evaluate polynomials on square matrices,
c

4


http://en.wikipedia.org/wiki/Eigenvalue,_eigenvector_and_eigenspace
http://en.wikipedia.org/wiki/Characteristic_polynomial
http://en.wikipedia.org/wiki/Linear_map

we can plug M into its characteristic polynomial and find the ma-
trix Pys(M). What do you find from this computation? Investigate
whether something similar holds for n x n matrices.



