
16. Eigenvalues, Eigenvectors II

Last time, we developed the idea of eigenvalues and eigenvectors in the case
of linear transformations R2 → R2. In this Section, we will develop the idea
more generally.

Definition For a linear transformation L : V → V , then λ is an eigenvalue
of L with eigenvector v 6= 0V if

Lv = λv.

This equation says that the direction of v is invariant (unchanged) un-
der L.

Let V be a finite-dimensional vector space (we’ll explain what it means
to be finite-dimensional in more detail later; for now, take this to mean Rn),
and L : V → V .

Matrix of a Linear Transformation Any vector in Rn can be written as
a linear combination of the standard basis vectors {ei|i ∈ {1, . . . , n}}. The
vector ei has a one in the ith position, and zeros everywhere else. Then
to find the matrix of any linear transformation L : Rn → Rn, it suffices to
know what L(ei) is for every i.

For any matrix M , observe that Mei is equal to the ith column of M .
Then if the ith column of M equals L(ei) for every i, then Mv = L(v) for
every v ∈ Rn. Then the matrix representing L in the standard basis is just
the matrix whose ith column is L(ei).

Since we can represent L by a square matrix M , and find eigenvalues λi

and associated eigenvectors vi by solving the homogeneous system

(M − λiI)vi = 0.

This system has non-zero solutions if and only if the matrix

M − λiI

is singular, and so we require that

det(λI −M) = 0.

The left hand side of this equation is a polynomial in the variable λ
called the characteristic polynomial PM (λ) of M . For an n× n matrix, the
characteristic polynomial has degree n. Then

PM (λ) = λn + c1λ
n−1 + . . .+ cn.
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Notice that PM (0) = det(−M) = (−1)n detM .
The fundamental theorem of algebra states that any polynomial can be

factored into a product of linear terms over C. Then there exists a collection
of n complex numbers λi (possibly with repetition) such that

PM (λ) = (λ− λ1)(λ− λ2) . . . (λ− λn), PM (λi) = 0

The eigenvalues λi of M are exactly the roots of PM (λ). These eigenval-
ues could be real or complex or zero, and they need not all be different.
The number of times that any given root λi appears in the collection of
eigenvalues is called its multiplicity.

Example Let L be the linear transformation L : R3 → R3 given by L(x, y, z) =
(2x + y − z, x + 2y − z,−x − y + 2z). The matrix M representing L has
columns Lei for each i, so:xy

z

 L7→

 2 1 −1
1 2 −1
−1 −1 2


xy
z

 .
Then the characteristic polynomial of L is1

PM (λ) = det

λ− 2 −1 1
−1 λ− 2 1
1 1 λ− 2


= (λ− 2)[(λ− 2)2 − 1] + [−(λ− 2)− 1] + [−(λ− 2)− 1]
= (λ− 1)2(λ− 4)

Then L has eigenvalues λ1 = 1 (with multiplicity 2), and λ2 = 4 (with
multiplicity 1).

To find the eigenvectors associated to each eigenvalue, we solve the ho-
mogeneous system (M − λiI)X = 0 for each i.

λ = 4: We set up the augmented matrix for the linear system:−2 1 −1 0
1 −2 −1 0
−1 −1 −2 0

 ∼

1 −2 −1 0
0 −3 −3 0
0 −3 −3 0


∼

1 0 1 0
0 1 1 0
0 0 0 0

 .
1It is often easier (and equivalent) to solve det(M − λI) = 0.
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So we see that z = t, y = −t, and z = −t gives a formula for eigenvec-
tors in terms of the free parameter t. Any such eigenvector is of the

form t

−1
−1
1

; thus L leaves a line through the origin invariant.

λ = 1: Again we set up an augmented matrix and find the solution set: 1 1 −1 0
1 1 −1 0
−1 −1 1 0

 ∼

1 1 −1 0
0 0 0 0
0 0 0 0

 .
Then the solution set has two free parameters, s and t, such that z = t,
y = s, and x = −s+ t. Then L leaves invariant the set:

{s

−1
1
0

+ t

1
0
1

 |s, t ∈ R}.

This set is a plane through the origin. So the multiplicity two eigen-

value has two independent eigenvectors,

−1
1
0

 and

1
0
1

 that deter-

mine an invariant plane.

Eigenspaces

In the previous example, we found two eigenvectors

−1
1
0

 and

1
0
1

 for L

with eigenvalue 1. Notice that

−1
1
0

+

1
0
1

 =

0
1
1

 is also an eigenvector

of L with eigenvalue 1. In fact, any linear combination r

−1
1
0

+ s

1
0
1

 of

these two eigenvectors will be another eigenvector with the same eigenvalue.
More generally, let {v1, v2, . . .} be eigenvectors of some linear transfor-

mation L with the same eigenvalue λ. Then any linear combination of the
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vi can be written c1v1 + c2v2 + . . . for some constants {c1, c2, . . .}. Then:

L(c1v1 + c2v2 + . . .) = c1Lv1 + c2Lv2 + . . . by linearity of L
= c1λv1 + c2λv2 + . . . since Lvi = λvi

= λ(c1v1 + c2v2 + . . .).

So every linear combination of the vi is an eigenvector of L with the
same eigenvalue λ.

The space of all vectors with eigenvalue λ is called an eigenspace. It
is, in fact, a vector space contained within the larger vector space V : It
contains 0V , since L0V = 0V = λ0V , and is closed under addition and scalar
multiplication by the above calculation. All other vector space properties
are inherited from the fact that V itself is a vector space.

An eigenspace is an example of a subspace of V , a notion that we will
explore further next time.
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Review Questions

1. Explain why the characteristic polynomial of an n × n matrix has
degree n. Make your explanation easy to read by starting with some
simple examples, and then use properties of the determinant to give a
general explanation.

2. Compute the characteristic polynomial PM (λ) of the matrix M =(
a b
c d

)
. Now, since we can evaluate polynomials on square matrices,
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we can plug M into its characteristic polynomial and find the ma-
trix PM (M). What do you find from this computation? Investigate
whether something similar holds for n× n matrices.
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