
16. Subspaces and Spanning Sets

It is time to study vector spaces more carefully and answer some fundamental
questions.

1. Subspaces: When is a subset of a vector space itself a vector space?
(This is the notion of a subspace.)

2. Linear Independence: Given a collection of vectors, is there a way to
tell whether they are independent, or if one is a linear combination of
the others?

3. Dimension: Is there a consistent definition of how “big” a vector space
is?

4. Basis: How do we label vectors? Can we write any vector as a sum of
some basic set of vectors? How do we change our point of view from
vectors labeled one way to vectors labeled in another way?

Let’s start at the top.

Subspaces

Definition We say that a subset U of a vector space V is a subspace of V
if U is a vector space under the inherited addition and scalar multiplication
operations of V .

Example Consider a plane P in R3 through the origin:

ax+ by + cz = 0

This plane can be expressed as the homogeneous system
(
a b c

)xy
z

 = 0,

MX = 0. If X1 and X2 are both solutions to MX = 0, then, by linearity
of matrix multiplication, so is µX1 + νX2:

M(µX1 + νX2) = µMX1 + νMX2 = 0

So P is closed under addition and scalar multiplication. Additionally, P
contains the origin (which can be derived from the above by setting µ =
ν = 0). All other vector space requirements hold for P because they hold
for all vectors in R3.
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Lemma. Let U be a non-empty subset of a vector space V . Then U is a
subspace if and only if µu1+νu2 ∈ U for arbitrary u1, u2 in U , and arbitrary
constants µ, ν.

Proof. The proof is left as an exercise to the reader.

Building Subspaces

Consider the set

U = {

1
0
0

 ,
0

1
0

} ⊂ R3.

Since U is only two vectors, it is clear that U is not a vector space. For
example, the 0-vector is not in U , nor is U closed under vector addition.

But we know that any two vector define a plane. In this case, the vectors
in U define the xy-plane in R3. We can consider the xy-plane as the set of
all vectors that arise as a linear combination of the two vectors in U . Call
this set of all linear combinations the span of U :

span(U) = {x

1
0
0

+ y

0
1
0

 |x, y ∈ R}.

Any vector in the xy-plane is of the formxy
0

 = x

1
0
0

+ y

0
1
0

 = span(U).

Definition Let V be a vector space and S = {s1, s2, . . .} ⊂ V a subset of
V . Then that span of S is the set:

span(U) = {r1s1 + r2s2 + . . . |ri ∈ R}.

(Should we only allow finite sums for linear combinations?)

Example Let V = R3 and X ⊂ V be the x-axis. Let P =

0
1
0

, and set

S = X ∪ P .
The elements of span(S) are linear combinations of vectors in the x-axis

and the vector P .

2



Since the sum of any number of vectors along the x-axis is still a vector
in the x-acis, then the elements of S are all of the form:x0

0

+ y

0
1
0

 =

xy
0

 .
Then span(S) is the xy-plane, which is a vector space.

(’spanning set’=set of vectors whose span is a subspace, or the actual
subspace?)

Lemma. For any subset S ⊂ V , span(S) is a subspace of V .

Proof. We need to show that span(S) is a vector space.
It suffices to show that span(S) is closed under linear combinations. Let

u, v ∈ span(S) and λ, µ be constants. By the definition of span(S), there
are constants ci and di such that:

u = c1s1 + c2s2 + . . .

v = d1s1 + d2s2 + . . .

⇒ λu+ µv = λ(c1s1 + c2s2 + . . .) + µ(d1s1 + d2s2 + . . .)
= (λc1 + µd1)s1 + (λc2 + µd2)s2 + . . .

This last sum is a linear combination of elements of S, and is thus in span(S).
Then span(S) is closed under linear combinations, and is thus a subspace of
V .

Note that this proof consisted of little more than just writing out the
definitions.

Example For which values of a does

span{

1
0
a

 ,
 1

2
−3

 ,
a1

0

} = R3?

Given an arbitrary vector

xy
z

 in R3, we need to find constants r1, r2, r3

such that

r1

1
0
a

+ r2

 1
2
−3

+ r3

a1
0

 =

xy
z

 .
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We can write this as a linear system in the unknowns r1, r2, r3 as follows:1 1 a
0 2 1
a −3 0


r1r2
r3

 =

xy
z

 .

If the matrix M =

1 1 a
0 2 1
a −3 0

 is invertible, then we can find a solution

M−1

xy
z

 =

r1r2
r3

 for any vector

xy
z

 ∈ R3.

Then we should choose a so that M is invertible.

detM = −2a2 + 3 + a = −(2a− 3)(a+ 1).

Then the span is R3 if and only if a 6= −1, 3
2 .
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Review Questions

1. Suppose that V is a vector space and that U ⊂ V is a subset of V .
Show that

µu1 + νu2 ∈ U for all u1, u2 ∈ U, µ, ν ∈ R

implies that U is a subspace of V . (In other words, check all the vector
space requirements for U .)

2. Let P3[x] be the vector space of degree 3 polynomials in the variable
x. Check whether

x− x3 ∈ span{x2, 2x+ x2, x+ x3}
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3. Let U and W be subspaces of V . Are:

i. U ∪W
ii. U ∩W

also subspaces? Explain why or why not. Draw examples in R3.
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