20. Diagonalization

Let V and W be vector spaces, with bases $S = \{e_1, \ldots, e_n\}$ and $T = \{f_1, \ldots, f_m\}$ respectively. Since these are bases, there exist constants v^i and w^j such that any vectors $v \in V$ and $w \in W$ can be written as:

$$v = v^1 e_1 + v^2 e_2 + \dots + v^n e_n$$

 $w = w^1 f_1 + w^2 f_2 + \dots + w^m f_m$

We call the coefficients v^1, \ldots, v^n the *components* of v in the basis $\{e_1, \ldots, e_n\}$.

Example Consider the basis $S = \{1 - t, 1 + t\}$ for the vector space $P_1(t)$. The vector v = 2t has components $v^1 = -1, v^2 = 1$, because

$$v = -1(1-t) + 1(1+t).$$

We may consider these components as vectors in \mathbb{R}^n and \mathbb{R}^m :

$$\begin{pmatrix} v^1 \\ \vdots \\ v^n \end{pmatrix} \in \mathbb{R}^n, \qquad \begin{pmatrix} w^1 \\ \vdots \\ w^m \end{pmatrix} \in \mathbb{R}^m.$$

Now suppose we have a linear transformation $L:V\to W$. Then we can expect to write L as an $m\times n$ matrix, turning an n-dimensional vector of coefficients corresponding to v into an m-dimensional vector of coefficients for w.

Using linearity, we write:

$$L(v) = L(v^{1}e_{1} + v^{2}e_{2} + \dots + v^{n}e_{n})$$

= $v^{1}L(e_{1}) + v^{2}L(e_{2}) + \dots + v^{n}L(e_{n}).$

This is a vector in W. Let's compute its components in W.

We know that for each e_j , $L(e_j)$ is a vector in W, and can thus be written uniquely as a linear combination of vectors in the basis T. Then we can find coefficients M_j^i such that:

$$L(e_j) = f_1 M_j^1 + \ldots + f_m M_j^m = \sum_{i=1}^m f_i M_j^i.$$

We've written the M_j^i on the right side of the f's to agree with our previous notation for matrix multiplication. We have an "up-hill rule" where the

matching indices for the multiplied objects run up and to the left, like so: $f_i M_i^i$.

Now M_j^i is the *i*th component of $L(e_j)$. Regarding the coefficients M_j^i as a matrix, we can see that the *j*th column of M is the coefficients of $L(e_j)$ in the basis T.

Then we can write:

$$L(v) = L(v^{1}e_{1} + v^{2}e_{2} + \dots + v^{n}e_{n})$$

$$= v^{1}L(e_{1}) + v^{2}L(e_{2}) + \dots + v^{n}L(e_{n})$$

$$= \sum_{i=1}^{m} v^{j}L(e_{j})$$

$$= \sum_{i=1}^{m} v^{j}(M_{j}^{1}f_{1} + \dots + M_{j}^{m}f_{m})$$

$$= \sum_{i=1}^{m} f_{i}[\sum_{j=1}^{n} M_{j}^{i}v^{j}].$$

The last equality is the definition of matrix multiplication. Thus:

$$\begin{pmatrix} v^1 \\ \vdots \\ v^n \end{pmatrix} \stackrel{L}{\mapsto} \begin{pmatrix} M_1^1 & \dots & M_n^1 \\ \vdots & & \vdots \\ M_1^m & \dots & M_n^m \end{pmatrix} \begin{pmatrix} v^1 \\ \vdots \\ v^n \end{pmatrix},$$

and $M = (M_j^i)$ is called the matrix of L. Notice that this matrix depends on a *choice* of bases for V and W.

Example Let $L: P_1(t) \mapsto P_1(t)$, such that L(a+bt) = (a+b)t. Since $V = P_1(t) = W$, let's choose the same basis for V and W. We'll choose the basis $\{1-t, 1+t\}$ for this example.

Thus:

$$L(1-t) = (1-1)t = 0 = (1-t) \cdot 0 + (1+t) \cdot 0 = ((1-t) (1+t)) \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$L(1+t) = (1+1)t = 2t (1-t) \cdot 1 + (1+t) \cdot 1 = ((1-t) (1+t)) \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\Rightarrow M = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

Now suppose we are lucky, and we have $L: V \mapsto V$, and the basis $\{v_1, \ldots, v_n\}$ is a set of linearly independent eigenvectors for L, with eigenvalues $\lambda_1, \ldots, \lambda_n$. Then:

$$L(v_1) = \lambda_1 v_1$$

$$L(v_2) = \lambda_2 v_2$$

$$\vdots$$

$$L(v_n) = \lambda_n v_n$$

As a result, the matrix of L is:

$$M = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix},$$

where all entries off of the diagonal are zero.

We call the $n \times n$ matrix of a linear transformation $L: V \mapsto V$ diagonalizable if there exists a collection of n linearly independent eigenvectors for L. In other words, L is diagonalizable if there exists a basis for V of eigenvectors for L.

In a basis of eigenvectors, the matrix of a linear transformation is diagonal.

On the other hand, if an $n \times n$ matrix M is diagonal, then the standard basis vectors e_i are already a set of n linearly independent eigenvectors for M.

Change of Basis

Suppose we have two bases $S = \{v_1, \ldots, v_n\}$ and $T = \{u_1, \ldots, u_n\}$ for a vector space V. Then we may write each v_i uniquely as a linear combination of the u_i :

$$v_i = \sum_j u_j P_j^i.$$

Here, the P_j^i are constants, which we can regard as a matrix $P = (P_j^i)$. P must have an inverse, since we can also write each u_j uniquely as a linear

combination of the v_i :

$$u_j = \sum_k v_k Q_j^k.$$

Then we can write:

$$v_i = \sum_k \sum_j v_k Q_j^k P_i^j.$$

But $\sum_{j} v_k Q_j^k P_i^j$ is the i, j entry of the product matrix QP. Since the only expression for v_i in the basis S is v_i itself, then QP fixes each v_i . As a result, each v_i is an eigenvector for QP with eigenvalues 1, so QP is the identity.

The matrix P is then called a *change of basis* matrix.

Changing basis changes the matrix of a linear transformation. To wit, suppose $L: V \mapsto V$ has matrix $M = (M_i^i)$ in the basis $T = \{u_1, \dots, u_n\}$, so

$$L(u_i) = \sum_k M_i^k u_k.$$

Now, suppose that $S = \{v_1, \ldots, v_n\}$ is a basis of eigenvectors for L, with eigenvalues $\lambda_1, \ldots, \lambda_n$. Then

$$L(v_i) = \lambda_i v_i = \sum_k v_k D_i^k$$

where D is the diagonal matrix whose diagonal entries D_k^k are the eigenvalues λ_k . Let P be the change of basis matrix from the basis T to the basis S. Then:

$$L(v_i) = L(\sum_{j} u_j P_i^j) = \sum_{j} L(u_j) P_i^j = \sum_{j} \sum_{k} u_k M_j^k P_i^j.$$

Meanwhile, we have:

$$L(v_i) = \sum_k v_k D_i^k = \sum_k \sum_j u_j P_k^j D_i^k.$$

In other words, we see that

$$MP = PD$$
 or $D = P^{-1}MP$.

We can summarize as follows:

- Change of basis multiplies vectors by the change of basis matrix P, to give vectors in the new basis.
- To get the matrix of a linear transformation in the new basis, we conjugate the matrix of L by the change of basis matrix: $M \to P^{-1}MP$.

If for two matrices N and M there exists an invertible matrix P such that $M = P^{-1}NP$, then we say that M and N are similar. Then the above discussion shows that diagonalizable matrices are similar to diagonal matrices.

References

• Hefferon, Chapter Three, Section V: Change of Basis

Wikipedia:

- Change of Basis
- Diagonalizable Matrix
- Similar Matrix

Review Questions

- 1. Show that similarity of matrices is an *equivalence relation*. (The definition of an equivalence relation is given in Section 2, in the fourth review problem.)
- 2. When is the 2×2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ diagonalizable? Include examples in your answer.
- 3. Let $P_n(t)$ be the vector space of degree n polynomials, and $\frac{d}{dt}: P_n(t) \mapsto P_{n-1}(t)$ be the derivative operator. Find the matrix of $\frac{d}{dt}$ in the bases $\{1, t, \ldots, t^n\}$ for $P_n(t)$ and $\{1, t, \ldots, t^{n-1}\}$ for $P_{n-1}(t)$.
- 4. When writing a matrix for a linear transformation, we have seen that the choice of basis matters. In fact, even the order of the basis matters!
 - Write all possible reorderings of the standard basis $\{e_1, e_2, e_3\}$ for \mathbb{R}^3 .
 - Write each change of basis matrix between the standard basis $\{e_1, e_2, e_3\}$ and each of its reorderings. What can you observe about these change of basis matrices? (Note: These matrices are known as *permutation matrices*.)

• Given the linear transformation L(x,y,z)=(2y-z,3x,2z+x+y), write the matrix M for L in the standard basis, and two other reorderings of the standard basis. Can you make any observations about the resulting matrices?