21. Orthonormal Bases

The canonical/standard basis

\[e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \ldots, \quad e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \]

has many useful properties.

- Each of the standard basis vectors has unit length:

\[||e_i|| = \sqrt{e_i \cdot e_i} = \sqrt{e_i^T e_i} = 1. \]

- The standard basis vectors are orthogonal (in other words, at right angles or perpendicular).

\[e_i \cdot e_j = e_i^T e_j = 0 \text{ when } i \neq j \]

This is summarized by

\[e_i^T e_j = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}, \]

where \(\delta_{ij} \) is the Kronecker delta. Notice that the Kronecker delta gives the entries of the identity matrix.

Given column vectors \(v \) and \(w \), we have seen that the dot product \(v \cdot w \) is the same as the matrix multiplication \(v^T w \). This is the inner product on \(\mathbb{R}^n \). We can also form the outer product \(vw^T \), which gives a square matrix.
The outer product on the standard basis vectors is interesting. Set

\[\Pi_1 = e_1 e_1^T \]

\[= \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \]

\[\cdots \]

\[\Pi_n = e_n e_n^T \]

\[= \begin{pmatrix} 0 & 0 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \]

In short, \(\Pi_i \) is the diagonal square matrix with a 1 in the \(i \)th diagonal position and zeros everywhere else. \(^1\)

Notice that \(\Pi_i \Pi_j = e_i e_i^T e_j e_j^T = e_i \delta_{ij} e_j^T \). Then:

\[\Pi_i \Pi_j = \begin{cases}
\Pi_i & i = j \\
0 & i \neq j
\end{cases} \]

Moreover, for a diagonal matrix \(D \) with diagonal entries \(\lambda_1, \ldots, \lambda_n \), we can write

\[D = \lambda_1 \Pi_1 + \ldots + \lambda_n \Pi_n. \]

Other bases that share these properties should behave in many of the same ways as the standard basis. As such, we will study:

\(^1\)This is reminiscent of an older notation, where vectors are written in juxtaposition. This is called a "dyadic tensor," and is still used in some applications.
• **Orthogonal bases** \(\{v_1, \ldots, v_n\} \):

\[v_i \cdot v_j = 0 \text{ if } i \neq j \]

In other words, all vectors in the basis are perpendicular.

• **Orthonormal bases** \(\{u_1, \ldots, u_n\} \):

\[u_i \cdot u_j = \delta_{ij}. \]

In addition to being orthogonal, each vector has unit length.

Suppose \(T = \{u_1, \ldots, u_n\} \) is an orthonormal basis for \(\mathbb{R}^n \). Since \(T \) is a basis, we can write any vector \(v \) uniquely as a linear combination of the vectors in \(T \):

\[v = c^1 u_1 + \ldots + c^n u_n. \]

Since \(T \) is orthonormal, there is a very easy way to find the coefficients of this linear combination. By taking the dot product of \(v \) with any of the vectors in \(T \), we get:

\[
\begin{align*}
v \cdot u_i &= c^1 u_1 \cdot u_i + \ldots + c^i u_i \cdot u_i + \ldots + c^n u_n \cdot u_i \\
&= c^i \cdot 0 + \ldots + c^i \cdot 1 + \ldots + c^n \cdot 0 \\
&= c^i, \\
\Rightarrow c^i &= v \cdot u_i \\
\Rightarrow v &= (v \cdot u_1) u_1 + \ldots + (v \cdot u_n) u_n \\
&= \sum_i (v \cdot u_i) u_i.
\end{align*}
\]

This proves the theorem:

Theorem. For an orthonormal basis \(\{u_1, \ldots, u_n\} \), any vector \(v \) can be expressed

\[v = \sum_i (v \cdot u_i) u_i. \]

Relating Orthonormal Bases

Suppose \(T = \{u_1, \ldots, u_n\} \) and \(R = \{w_1, \ldots, w_n\} \) are two orthonormal bases for \(\mathbb{R}^n \). Then:
\[w_1 = (w_1 \cdot u_1)u_1 + \ldots + (w_1 \cdot u_n)u_n \]
\[\vdots \]
\[w_n = (w_n \cdot u_1)u_1 + \ldots + (w_n \cdot u_n)u_n \]
\[\Rightarrow w_i = \sum_j u_j (u_j \cdot w_i) \]

As such, the matrix for the change of basis from \(T \) to \(R \) is given by
\[P = (P_i^j) = (u_j \cdot w_i). \]

Consider the product \(PP^T \) in this case.
\[
(PP^T)^k_j = \sum_i (u_j \cdot w_i)(w_i \cdot u_k)
\]
\[
= \sum_i (u_j^T w_i)(w_i^T u_k)
\]
\[
= u_j^T \left[\sum_i (w_i w_i^T) \right] u_k
\]
\[
= u_j^T I_n u_k \quad \text{(\#)}
\]
\[
= u_j^T u_k = \delta_{jk}.
\]

In the equality (\#) is explained below. So assuming (\#) holds, we have shown that \(PP^T = I_n \), which implies that
\[P^T = P^{-1}. \]

The equality in the line (\#) says that \(\sum_i w_i w_i^T = I_n \). To see this, we examine \((\sum_i w_i w_i^T) v \) for an arbitrary vector \(v \). We can find constants \(c^j \) such that \(v = \sum_j c^j w_j \), so that:
\[
(\sum_i w_i w_i^T)v = (\sum_i w_i w_i^T)(\sum_j c^j w_j)
\]
\[
= \sum_j c^j \sum_i w_i w_i^T w_j
\]
\[
= \sum_j c^j \sum_i w_i \delta_{ij}
\]
\[
= \sum_j c^j w_j \text{ since all terms with } i \neq j \text{ vanish}
\]
\[
= v.
\]
Then as a linear transformation, $\sum_i w_i w_i^T = I_n$ fixes every vector, and thus must be the identity I_n.

Definition A matrix P is **orthogonal** if $P^{-1} = P^T$.

Then to summarize,

Theorem. A change of basis matrix P relating two orthonormal bases is an orthogonal matrix. i.e. $P^{-1} = P^T$.

Example Consider \mathbb{R}^3 with the orthonormal basis

$$S = \left\{ u_1 = \begin{pmatrix} \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{-1}{\sqrt{6}} \end{pmatrix}, u_2 = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix}, u_3 = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix} \right\}.$$

Let R be the standard basis $\{e_1, e_2, e_3\}$. Since we are changing from the standard basis to a new basis, then the columns of the change of basis matrix are exactly the images of the standard basis vectors. Then the change of basis matrix from R to S is given by:

$$P = (P^j_i) = (e_ju_i) = \begin{pmatrix} e_1 \cdot u_1 & e_1 \cdot u_2 & e_1 \cdot u_3 \\ e_2 \cdot u_1 & e_2 \cdot u_2 & e_2 \cdot u_3 \\ e_3 \cdot u_1 & e_3 \cdot u_2 & e_3 \cdot u_3 \end{pmatrix} = \begin{pmatrix} \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{3}} \\ \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{pmatrix}. $$

From our theorem, we observe that:

$$P^{-1} = P^T = \begin{pmatrix} u_1^T \\ u_2^T \\ u_3^T \end{pmatrix} = \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{3}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix}. $$
We can check that \(P^T P = I_n \) by a lengthy computation, or more simply, notice that

\[
(P^T P)_{ij} = \begin{pmatrix} u_1^T \\ u_2^T \\ u_3^T \end{pmatrix} \begin{pmatrix} u_1 & u_2 & u_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
\]

We are using orthonormality of the \(u_i \) for the matrix multiplication above.

Orthonormal Change of Basis and Diagonal Matrices. Suppose \(D \) is a diagonal matrix, and we use an orthogonal matrix \(P \) to change to a new basis. Then the matrix \(M \) of \(D \) in the new basis is:

\[
M = PDP^{-1} = PDP^T.
\]

Now we calculate the transpose of \(M \).

\[
M^T = (PD\!P^T)^T = (PD^T)^T = PD^T P = PDP^T = M
\]

So we see the matrix \(PDP^T \) is symmetric!

References

- Hefferon, Chapter Three, Section V: Change of Basis

Wikipedia:

- [Orthogonal Matrix](#)
- [Diagonalizable Matrix](#)
- [Similar Matrix](#)
Review Questions

1. Let \(D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \).

 i. Write \(D \) in terms of the vectors \(e_1 \) and \(e_2 \), and their transposes.

 ii. Suppose \(P = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is invertible. Show that \(D \) is similar to

 \[M = \frac{1}{ad - bc} \begin{pmatrix} \lambda_1 ad - \lambda_2 bc & (\lambda_1 - \lambda_2) bd \\ (\lambda_1 - \lambda_2) ac & -\lambda_1 bc + \lambda_2 ad \end{pmatrix} \].

 iii. Suppose the vectors \(\begin{pmatrix} a & b \end{pmatrix} \) and \(\begin{pmatrix} c & d \end{pmatrix} \) are orthogonal. What can you say about \(M \) in this case?

2. Suppose \(S = \{v_1, \ldots, v_n\} \) is an orthogonal (not orthonormal) basis for \(\mathbb{R}^n \). Then we can write any vector \(v \) as \(v = \sum_i c^i v_i \) for some constants \(c^i \). Find a formula for the constants \(c^i \) in terms of \(v \) and the vectors in \(S \).

3. Let \(u, v \) be independent vectors in \(\mathbb{R}^3 \), and \(P = \text{span}\{u, v\} \) be the plane spanned by \(u \) and \(v \).

 i. Is the vector \(v^\perp = v - \frac{\langle v, u \rangle}{\langle u, u \rangle} u \) in the plane \(P \)?

 ii. What is the angle between \(v^\perp \) and \(u \)?

 iii. Given your solution to the above, how can you find a third vector perpendicular to both \(u \) and \(v^\perp \)?

 iv. Construct an orthonormal basis for \(\mathbb{R}^3 \) from \(u \) and \(v \).

 v. Test your abstract formulae starting with

 \[u = \begin{pmatrix} 1 & 2 & 0 \end{pmatrix} \text{ and } v = \begin{pmatrix} 0 & 1 & 1 \end{pmatrix} \].