23. Kernel, Rank, Range

We now study linear transformations in more detail. First, we establish some important vocabulary.

The range of a linear transformation $f: V \to W$ is the set of vectors the linear transformation maps to. This set is also often called the *image* of f, written

$$\operatorname{ran}(f) = \operatorname{Im}(f) = L(V) = \{L(v) | v \in V\} \subset W.$$

The domain of a linear transformation is often called the *pre-image* of f. We can also talk about the pre-image of any subset of vectors $U \in W$:

$$L^{-1}(U) = \{ v \in V | L(v) \in U \} \subset V.$$

A linear transformation f is one-to-one if for any $x \neq y \in V$, $f(x) \neq f(y)$. In other words, different vector in V always map to different vectors in W. One-to-one transformations are also known as *injective* transformations. Notice that injectivity is a condition on the pre-image of f.

A linear transformation f is *onto* if for every $w \in W$, there exists an $x \in V$ such that f(x) = w. In other words, every vector in W is the image of some vector in V. An onto transformation is also known as an *surjective* transformation. Notice that surjectivity is a condition on the image of f.¹

Suppose $L: V \to W$ is not injective. Then we can find $v_1 \neq v_2$ such that $Lv_1 = Lv_2$. Then $v_1 - v_2 \neq 0$, but

$$L(v_1 - v_2) = 0.$$

Definition Let $L : V \to W$ be a linear transformation. The set of all vectors v such that $Lv = 0_W$ is called the *kernel of L*:

$$\ker L = \{ v \in V | Lv = 0 \}.$$

¹ The notions of one-to-one and onto can be generalized to arbitrary functions on sets. For example if g is a function from a set S to a set T, then g is one-to-one if different objects in S always map to different objects in T. For a linear transformation f, these sets S and T are then just vector spaces, and we require that f is a linear map; *i.e.* f respects the linear structure of the vector spaces.

The linear structure of sets of vectors lets us say much more about one-to-one and onto functions than one can say about functions on general sets. For example, we always know that a linear function sends 0_V to 0_W . Then we can show that a linear transformation is one-to-one if and only if 0_V is the only vector that is sent to 0_W : by looking at just one (very special) vector, we can figure out whether f is one-to-one. For arbitrary functions between arbitrary sets, things aren't nearly so convenient!

Theorem. A linear transformation L is injective if and only if ker $L = \{0_V\}$.

The proof of this theorem is an exercise.

Notice that if L has matrix M in some basis, then finding the kernel of L is equivalent to solving the homogeneous system

$$MX = 0$$

Example Let L(x, y) = (x + y, x + 2y, y). Is L one-to-one?

To see, we can solve the linear system:

$$\begin{pmatrix} 1 & 1 & | & 0 \\ 1 & 2 & | & 0 \\ 0 & 1 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix}$$

Then all solutions of MX = 0 are of the form x = y = 0. In other words, ker L = 0, and so L is injective.

Theorem. Let $L: V \to W$. Then ker L is a subspace of V.

Proof. Notice that if L(v) = 0 and L(u) = 0, then for any constants c, d, L(cu+dv) = 0. Then by the subspace theorem, the kernel of L is a subspace of V.

This theorem has a nice interpretation in terms of the eigenspaces of L. Suppose L has a zero eigenvalue. Then the associated eigenspace consists of all vectors v such that Lv = 0v = 0; in other words, the 0-eigenspace of L is exactly the kernel of L.

Returning to the previous example, let L(x, y) = (x + y, x + 2y, y). L is clearly not surjective, since L sends \mathbb{R}^2 to a plane in \mathbb{R}^3 .

Notice that if x = L(v) and y = L(u), then for any constants c, d then cx + dy = L(cx + du). Then the subspace theorem strikes again, and we have the following theorem.

Theorem. Let $L: V \to W$. Then the image L(V) is a subspace of W.

To find a basis of the the image of L, we can start with a basis $S = \{v_1, \ldots, v_n\}$ for V, and conclude that

$$L(V) = \operatorname{span} L(S) = \operatorname{span} \{v_1, \dots, v_n\}.$$

However, the set $\{v_1, \ldots, v_n\}$ may not be linearly independent, so we solve

$$c^1 L(v_1) + \ldots + c^n L(v_n) = 0$$

By finding relations amongst L(S), we can discard vectors until a basis is arrived at. The size of this basis is the dimension of the image of L, which is known as the *rank* of L.

Definition The *rank* of a linear transformation L is the dimension of its image, written rank L.

The *nullity* of a linear transformation is the dimension of the kernel, written L.

Theorem (Dimension Formula). Let $L : V \to W$ be a linear transformation, with V a finite-dimensional vector space². Then:

$$\dim V = \dim \ker V + \dim L(V)$$
$$= L + \operatorname{rank} L.$$

Proof. Pick a basis for V:

 $\{v_1,\ldots,v_p,u_1,\ldots,u_q\},\$

where v_1, \ldots, v_p is also a basis for ker L. This can always be done, for example, by finding a basis for the 0-eigenspace of L. Then $p = \dim \ker L$ and $p + q = \dim V$. Then we need to show that $q = \operatorname{rank} L$. To accomplish this, we show that $\{L(u_1), \ldots, L(u_q)\}$ is a basis for L(V).

To see that $\{L(u_1), \ldots, L(u_q)\}$ spans L(V), consider any vector w in L(V) and find constants c^i, d^j such that:

$$w = L(c^{1}v_{1} + \ldots + c^{p}v_{p} + d^{1}u_{1} + \ldots + d^{q}u_{q})$$

= $c^{1}L(v_{1}) + \ldots + c^{p}L(v_{p}) + d^{1}L(u_{1}) + \ldots + d^{q}L(u_{q})$
= $d^{1}L(u_{1}) + \ldots + d^{q}L(u_{q})$ since $L(v_{i}) = 0$,

 $\Rightarrow L(V) = \operatorname{span}\{L(u_1), \dots, L(u_q)\}.$

Now we show that $\{L(u_1), \ldots, L(u_q)\}$ is linearly independent. We argue by contradiction: Suppose there exist constants c^j (not all zero) such that

$$0 = d^{1}L(u_{1}) + \ldots + d^{q}L(u_{q}) = L(d^{1}u_{1} + \ldots + d^{q}u_{q}).$$

²The formula still makes sense for infinite dimensional vector spaces, such as the space of all polynomials, but the notion of a basis for an infinite dimensional space is more sticky than in the finite-dimensional case. Furthermore, the dimension formula for infinite dimensional vector spaces isn't useful for computing the rank of a linear transformation, since an equation like $\infty = 3 + x$ cannot be solved for x. As such, the proof presented assumes a finite basis for V.

But since the u^j are linearly independent, then $d^1u_1 + \ldots + d^qu_q \neq 0$, and so $d^1u_1 + \ldots + d^qu_q$ is in the kernel of L. But then $d^1u_1 + \ldots + d^qu_q$ must be in the span of $\{v_1, \ldots, v_p\}$, since this was a basis for the kernel. This contradicts the assumption that $\{v_1, \ldots, v_p, u_1, \ldots, u_q\}$ was a basis for V, so we are done. \Box

References

• Hefferon, Chapter Three, Section II.2: Rangespace and Nullspace (Recall that 'homomorphism' is is used instead of 'linear transformation' in Hefferon.)

Wikipedia:

- Rank
- Dimension Theorem
- Kernel of a Linear Operator

Review Questions

- 1. Let $L: V \to W$ be a linear transformation. Prove that ker $L = \{0_V\}$ if and only if L is one-to-one.
- 2. Let $\{v_1, \ldots, v_n\}$ be a basis for V. Explain why

$$L(V) = \operatorname{span}\{L(v_1), \dots, L(v_n)\}.$$

3. Suppose $L : \mathbb{R}^4 \to \mathbb{R}^4$ whose matrix M in the standard basis is row equivalent to the following matrix:

$$\begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Explain why the first three columns of the original matrix M form a basis for L(V).

Find and describe and algorithm (*i.e.* a general procedure) for finding a basis for L(V) when $L : \mathbb{R}^n \to \mathbb{R}^m$.

Finally, provide an example of the use of your algorithm.

4. Claim: If $\{v_1, \ldots, v_n\}$ is a basis for ker L, where $L: V \to W$, then it is always possible to extend this set to a basis for V.

Choose a simple yet non-trivial linear transformation with a non-trivial kernel and verify the above claim for the transformation you choose.

5. Let $P_n(x)$ be the space of polynomials in x of degree less than or equal to n, and consider the derivative operator $\frac{d}{dx}$. Find the dimension of the kernel and image of $\frac{d}{dx}$.

Now, consider $P_2(x, y)$, the space of degree two polynomials in x and y. (Recall that xy is degree two, and x^2y is degree three, for example.) Let $L = \frac{d}{dx} + \frac{d}{dy}$. (For example, $L(xy) = \frac{d}{dx}(xy) + \frac{d}{dy}(xy) = y + x$.) Find a basis for the kernel of L. Verify the dimension formula in this case.