
23. Kernel, Rank, Range

We now study linear transformations in more detail. First, we establish
some important vocabulary.

The range of a linear transformation f : V →W is the set of vectors the
linear transformation maps to. This set is also often called the image of f ,
written

ran(f) = Im(f) = L(V ) = {L(v)|v ∈ V } ⊂W.

The domain of a linear transformation is often called the pre-image of f .
We can also talk about the pre-image of any subset of vectors U ∈W :

L−1(U) = {v ∈ V |L(v) ∈ U} ⊂ V.

A linear transformation f is one-to-one if for any x 6= y ∈ V , f(x) 6=
f(y). In other words, different vector in V always map to different vectors in
W . One-to-one transformations are also known as injective transformations.
Notice that injectivity is a condition on the pre-image of f .

A linear transformation f is onto if for every w ∈ W , there exists an
x ∈ V such that f(x) = w. In other words, every vector in W is the image
of some vector in V . An onto transformation is also known as an surjective
transformation. Notice that surjectivity is a condition on the image of f . 1

Suppose L : V → W is not injective. Then we can find v1 6= v2 such
that Lv1 = Lv2. Then v1 − v2 6= 0, but

L(v1 − v2) = 0.

Definition Let L : V → W be a linear transformation. The set of all
vectors v such that Lv = 0W is called the kernel of L:

ker L = {v ∈ V |Lv = 0}.
1 The notions of one-to-one and onto can be generalized to arbitrary functions on sets.

For example if g is a function from a set S to a set T , then g is one-to-one if different
objects in S always map to different objects in T . For a linear transformation f , these
sets S and T are then just vector spaces, and we require that f is a linear map; i.e. f
respects the linear structure of the vector spaces.

The linear structure of sets of vectors lets us say much more about one-to-one and onto
functions than one can say about functions on general sets. For example, we always know
that a linear function sends 0V to 0W . Then we can show that a linear transformation is
one-to-one if and only if 0V is the only vector that is sent to 0W : by looking at just one
(very special) vector, we can figure out whether f is one-to-one. For arbitrary functions
between arbitrary sets, things aren’t nearly so convenient!
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Theorem. A linear transformation L is injective if and only if ker L =
{0V }.

The proof of this theorem is an exercise.
Notice that if L has matrix M in some basis, then finding the kernel of

L is equivalent to solving the homogeneous system

MX = 0.

Example Let L(x, y) = (x + y, x + 2y, y). Is L one-to-one?
To see, we can solve the linear system:1 1 0

1 2 0
0 1 0

 ∼
1 0 0

0 1 0
0 0 0

 .

Then all solutions of MX = 0 are of the form x = y = 0. In other words,
ker L = 0, and so L is injective.

Theorem. Let L : V →W . Then ker L is a subspace of V .

Proof. Notice that if L(v) = 0 and L(u) = 0, then for any constants c, d,
L(cu+dv) = 0. Then by the subspace theorem, the kernel of L is a subspace
of V .

This theorem has a nice interpretation in terms of the eigenspaces of L.
Suppose L has a zero eigenvalue. Then the associated eigenspace consists
of all vectors v such that Lv = 0v = 0; in other words, the 0-eigenspace of
L is exactly the kernel of L.

Returning to the previous example, let L(x, y) = (x + y, x + 2y, y). L is
clearly not surjective, since L sends R2 to a plane in R3.

Notice that if x = L(v) and y = L(u), then for any constants c, d then
cx + dy = L(cx + du). Then the subspace theorem strikes again, and we
have the following theorem.

Theorem. Let L : V →W . Then the image L(V ) is a subspace of W .

To find a basis of the the image of L, we can start with a basis S =
{v1, . . . , vn} for V , and conclude that

L(V ) = span L(S) = span{v1, . . . , vn}.

However, the set {v1, . . . , vn} may not be linearly independent, so we solve

c1L(v1) + . . . + cnL(vn) = 0.
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By finding relations amongst L(S), we can discard vectors until a basis is
arrived at. The size of this basis is the dimension of the image of L, which
is known as the rank of L.

Definition The rank of a linear transformation L is the dimension of its
image, written rank L.

The nullity of a linear transformation is the dimension of the kernel,
written L.

Theorem (Dimension Formula). Let L : V →W be a linear transformation,
with V a finite-dimensional vector space2. Then:

dim V = dim ker V + dim L(V )
= L + rank L.

Proof. Pick a basis for V :

{v1, . . . , vp, u1, . . . , uq},

where v1, . . . , vp is also a basis for ker L. This can always be done, for
example, by finding a basis for the 0-eigenspace of L. Then p = dim ker L
and p + q = dim V . Then we need to show that q = rank L. To accomplish
this, we show that {L(u1), . . . , L(uq)} is a basis for L(V ).

To see that {L(u1), . . . , L(uq)} spans L(V ), consider any vector w in
L(V ) and find constants ci, dj such that:

w = L(c1v1 + . . . + cpvp + d1u1 + . . . + dquq)
= c1L(v1) + . . . + cpL(vp) + d1L(u1) + . . . + dqL(uq)
= d1L(u1) + . . . + dqL(uq) since L(vi) = 0,

⇒ L(V ) = span{L(u1), . . . , L(uq)}.

Now we show that {L(u1), . . . , L(uq)} is linearly independent. We argue
by contradiction: Suppose there exist constants cj (not all zero) such that

0 = d1L(u1) + . . . + dqL(uq)
= L(d1u1 + . . . + dquq).

2The formula still makes sense for infinite dimensional vector spaces, such as the space
of all polynomials, but the notion of a basis for an infinite dimensional space is more
sticky than in the finite-dimensional case. Furthermore, the dimension formula for infinite
dimensional vector spaces isn’t useful for computing the rank of a linear transformation,
since an equation like ∞ = 3 + x cannot be solved for x. As such, the proof presented
assumes a finite basis for V .
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But since the uj are linearly independent, then d1u1 + . . . + dquq 6= 0, and
so d1u1 + . . . + dquq is in the kernel of L. But then d1u1 + . . . + dquq must
be in the span of {v1, . . . , vp}, since this was a basis for the kernel. This
contradicts the assumption that {v1, . . . , vp, u1, . . . , uq} was a basis for V ,
so we are done.
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Review Questions

1. Let L : V → W be a linear transformation. Prove that ker L = {0V }
if and only if L is one-to-one.

2. Let {v1, . . . , vn} be a basis for V . Explain why

L(V ) = span{L(v1), . . . , L(vn)}.

3. Suppose L : R4 → R4 whose matrix M in the standard basis is row
equivalent to the folowing matrix:1 0 0 −1

0 1 0 1
0 0 1 1

 .

Explain why the first three columns of of the original matrix M form
a basis for L(V ).
Find and describe and algorithm (i.e. a general procedure) for finding
a basis for L(V ) when L : Rn → Rm.
Finally, provide an example of the use of your algorithm.
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4. Claim: If {v1, . . . , vn} is a basis for ker L, where L : V → W , then it
is always possible to extend this set to a basis for V .

Choose a simple yet non-trivial linear transformation with a non-trivial
kernel and verify the above claim for the transformation you choose.

5. Let Pn(x) be the space of polynomials in x of degree less than or equal
to n, and consider the derivative operator d

dx . Find the dimension of
the kernel and image of d

dx .

Now, consider P2(x, y), the space of degree two polynomials in x and
y. (Recall that xy is degree two, and x2y is degree three, for example.)
Let L = d

dx + d
dy . (For example, L(xy) = d

dx(xy) + d
dy (xy) = y + x.)

Find a basis for the kernel of L. Verify the dimension formula in this
case.
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