23. Kernel, Rank, Range

We now study linear transformations in more detail. First, we establish
some important vocabulary.

The range of a linear transformation \(f : V \to W \) is the set of vectors the
linear transformation maps to. This set is also often called the image of \(f \),
written

\[
\text{ran}(f) = \text{Im}(f) = L(V) = \{L(v) | v \in V \} \subset W.
\]

The domain of a linear transformation is often called the pre-image of \(f \).
We can also talk about the pre-image of any subset of vectors \(U \in W \):

\[
L^{-1}(U) = \{v \in V | L(v) \in U \} \subset V.
\]

A linear transformation \(f \) is one-to-one if for any \(x \neq y \in V, f(x) \neq f(y) \). In other words, different vector in \(V \) always map to different vectors in \(W \). One-to-one transformations are also known as injective transformations.
Notice that injectivity is a condition on the pre-image of \(f \).

A linear transformation \(f \) is onto if for every \(w \in W \), there exists an
\(x \in V \) such that \(f(x) = w \). In other words, every vector in \(W \) is the image
of some vector in \(V \). An onto transformation is also known as a surjective
transformation. Notice that surjectivity is a condition on the image of \(f \).

Suppose \(L : V \to W \) is not injective. Then we can find \(v_1 \neq v_2 \) such
that \(Lv_1 = Lv_2 \). Then \(v_1 - v_2 \neq 0 \), but

\[
L(v_1 - v_2) = 0.
\]

Definition Let \(L : V \to W \) be a linear transformation. The set of all
vectors \(v \) such that \(Lv = 0_W \) is called the kernel of \(L \):

\[
\ker L = \{v \in V | L(v) = 0 \}.
\]

1 The notions of one-to-one and onto can be generalized to arbitrary functions on sets.
For example if \(g \) is a function from a set \(S \) to a set \(T \), then \(g \) is one-to-one if different
objects in \(S \) always map to different objects in \(T \). For a linear transformation \(f \), these
sets \(S \) and \(T \) are then just vector spaces, and we require that \(f \) is a linear map; i.e. \(f \)
respects the linear structure of the vector spaces.

The linear structure of sets of vectors lets us say much more about one-to-one and onto
functions than one can say about functions on general sets. For example, we always know
that a linear function sends \(0_V \) to \(0_W \). Then we can show that a linear transformation is
one-to-one if and only if \(0_V \) is the only vector that is sent to \(0_W \): by looking at just one
(very special) vector, we can figure out whether \(f \) is one-to-one. For arbitrary functions
between arbitrary sets, things aren’t nearly so convenient!
Theorem. A linear transformation \(L \) is injective if and only if \(\ker L = \{0_V\} \).

The proof of this theorem is an exercise.

Notice that if \(L \) has matrix \(M \) in some basis, then finding the kernel of \(L \) is equivalent to solving the homogeneous system

\[
MX = 0.
\]

Example Let \(L(x, y) = (x + y, x + 2y, y) \). Is \(L \) one-to-one?

To see, we can solve the linear system:

\[
\begin{pmatrix}
1 & 1 & 0 \\
1 & 2 & 0 \\
0 & 1 & 0
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}.
\]

Then all solutions of \(MX = 0 \) are of the form \(x = y = 0 \). In other words, \(\ker L = 0 \), and so \(L \) is injective.

Theorem. Let \(L : V \to W \). Then \(\ker L \) is a subspace of \(V \).

Proof. Notice that if \(L(v) = 0 \) and \(L(u) = 0 \), then for any constants \(c, d \),
\[
L(cu + dv) = 0.
\]

Then by the subspace theorem, the kernel of \(L \) is a subspace of \(V \).

This theorem has a nice interpretation in terms of the eigenspaces of \(L \). Suppose \(L \) has a zero eigenvalue. Then the associated eigenspace consists of all vectors \(v \) such that \(Lv = 0v = 0 \); in other words, the 0-eigenspace of \(L \) is exactly the kernel of \(L \).

Returning to the previous example, let \(L(x, y) = (x + y, x + 2y, y) \). \(L \) is clearly not surjective, since \(L \) sends \(\mathbb{R}^2 \) to a plane in \(\mathbb{R}^3 \).

Notice that if \(x = L(v) \) and \(y = L(u) \), then for any constants \(c, d \) then
\[
 cx + dy = L(cx + du).
\]

Then the subspace theorem strikes again, and we have the following theorem.

Theorem. Let \(L : V \to W \). Then the image \(L(V) \) is a subspace of \(W \).

To find a basis of the the image of \(L \), we can start with a basis \(S = \{v_1, \ldots, v_n\} \) for \(V \), and conclude that

\[
L(V) = \text{span} L(S) = \text{span}\{v_1, \ldots, v_n\}.
\]

However, the set \(\{v_1, \ldots, v_n\} \) may not be linearly independent, so we solve
\[
c^1 L(v_1) + \ldots + c^n L(v_n) = 0.
\]
By finding relations amongst \(L(S) \), we can discard vectors until a basis is arrived at. The size of this basis is the dimension of the image of \(L \), which is known as the rank of \(L \).

Definition The rank of a linear transformation \(L \) is the dimension of its image, written \(\text{rank } L \).

The nullity of a linear transformation is the dimension of the kernel, written \(\text{nullity } L \).

Theorem (Dimension Formula). Let \(L : V \rightarrow W \) be a linear transformation, with \(V \) a finite-dimensional vector space. Then:

\[
\text{dim } V = \text{dim ker } V + \text{dim } L(V) = L + \text{rank } L.
\]

Proof. Pick a basis for \(V \):

\[\{v_1, \ldots, v_p, u_1, \ldots, u_q\}, \]

where \(v_1, \ldots, v_p \) is also a basis for \(\text{ker } L \). This can always be done, for example, by finding a basis for the 0-eigenspace of \(L \). Then \(p = \text{dim ker } L \) and \(p + q = \text{dim } V \). Then we need to show that \(q = \text{rank } L \). To accomplish this, we show that \(\{L(u_1), \ldots, L(u_q)\} \) is a basis for \(L(V) \).

To see that \(\{L(u_1), \ldots, L(u_q)\} \) spans \(L(V) \), consider any vector \(w \) in \(L(V) \) and find constants \(c^i, d^j \) such that:

\[
w = L(c^1v_1 + \ldots + c^pv_p + d^1u_1 + \ldots + d^qu_q)
\]
\[
= c^1L(v_1) + \ldots + c^pL(v_p) + d^1L(u_1) + \ldots + d^qL(u_q)
\]
\[
= d^1L(u_1) + \ldots + d^qL(u_q) \quad \text{since } L(v_i) = 0,
\]

\[\Rightarrow L(V) = \text{span}\{L(u_1), \ldots, L(u_q)\}. \]

Now we show that \(\{L(u_1), \ldots, L(u_q)\} \) is linearly independent. We argue by contradiction: Suppose there exist constants \(c^j \) (not all zero) such that:

\[
0 = d^1L(u_1) + \ldots + d^qL(u_q) = L(d^1u_1 + \ldots + d^qu_q).
\]

\[\text{2The formula still makes sense for infinite dimensional vector spaces, such as the space of all polynomials, but the notion of a basis for an infinite dimensional space is more sticky than in the finite-dimensional case. Furthermore, the dimension formula for infinite dimensional vector spaces isn’t useful for computing the rank of a linear transformation, since an equation like } \infty = 3 + x \text{ cannot be solved for } x. \] As such, the proof presented assumes a finite basis for \(V \).
But since the u^j are linearly independent, then $d^1u_1 + \ldots + d^q u_q \neq 0$, and so $d^1u_1 + \ldots + d^q u_q$ is in the kernel of L. But then $d^1u_1 + \ldots + d^q u_q$ must be in the span of $\{v_1, \ldots, v_p\}$, since this was a basis for the kernel. This contradicts the assumption that $\{v_1, \ldots, v_p, u_1, \ldots, u_q\}$ was a basis for V, so we are done.

References

- Hefferon, Chapter Three, Section II.2: Rangespace and Nullspace (Recall that ‘homomorphism’ is is used instead of ‘linear transformation’ in Hefferon.)

Wikipedia:

- Rank
- Dimension Theorem
- Kernel of a Linear Operator

Review Questions

1. Let $L : V \to W$ be a linear transformation. Prove that $\ker L = \{0_V\}$ if and only if L is one-to-one.

2. Let $\{v_1, \ldots, v_n\}$ be a basis for V. Explain why

$$L(V) = \operatorname{span}\{L(v_1), \ldots, L(v_n)\}.$$

3. Suppose $L : \mathbb{R}^4 \to \mathbb{R}^4$ whose matrix M in the standard basis is row equivalent to the following matrix:

$$
\begin{pmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{pmatrix}.
$$

Explain why the first three columns of of the original matrix M form a basis for $L(V)$.

Find and describe an algorithm (i.e. a general procedure) for finding a basis for $L(V)$ when $L : \mathbb{R}^n \to \mathbb{R}^m$.

Finally, provide an example of the use of your algorithm.
4. Claim: If \(\{v_1, \ldots, v_n\} \) is a basis for \(\ker L \), where \(L : V \to W \), then it is always possible to extend this set to a basis for \(V \).

Choose a simple yet non-trivial linear transformation with a non-trivial kernel and verify the above claim for the transformation you choose.

5. Let \(P_n(x) \) be the space of polynomials in \(x \) of degree less than or equal to \(n \), and consider the derivative operator \(\frac{d}{dx} \). Find the dimension of the kernel and image of \(\frac{d}{dx} \).

Now, consider \(P_2(x, y) \), the space of degree two polynomials in \(x \) and \(y \). (Recall that \(xy \) is degree two, and \(x^2y \) is degree three, for example.)

Let \(L = \frac{d}{dx} + \frac{d}{dy} \). (For example, \(L(xy) = \frac{d}{dx}(xy) + \frac{d}{dy}(xy) = y + x \).)

Find a basis for the kernel of \(L \). Verify the dimension formula in this case.