
25. Least Squares

Consider the linear system L(x) = v, where L : U
linear=⇒ W , and v ∈ W

is given. As we have seen, this system may have no solutions, a unique
solution, or a space of solutions. But if v is not in the range of L then there
will never be any solutions for L(x) = v.

However, for many applications we do not need a exact solution of the
system; instead, we try to find the best approximation possible. To do this,
we try to find x that minimizes ||L(x)− v||.

“My work always tried to unite the Truth with the Beautiful, but when
I had to choose one or the other, I usually chose the Beautiful.” – Herman
Weyl.

This method has many applications, such as when trying to fit a (perhaps
linear) function to a ‘noisy’ set of observations. For example, suppose we
measured the position of a bicycle on a racetrack once every five seconds.
Our observations won’t be exact, but so long as the observations are right
on average, we can figure out a best-possible linear function of position of
the bicycle in terms of time.

Suppose M is the matrix for L in some bases for U and W , and v and
x are given by column vectors V and X in these bases. Then we need to
approximate

MX − V ∼ 0

Note that if dim U = n and dim W = m then M can be represented by
an m×n matrix. We can write W = L(U)⊕L(U)⊥. Then we can uniquely
write V = V ‖ + V ⊥, with V ‖ ∈ L(U) and V ⊥ ∈ L(U)⊥.

Then we should solve L(u) = V ‖. In components, V ⊥ is just V −MX,
and is the part we will eventually wish to minimize.

In terms of M , recall that L(V ) is spanned by the columns of M . (In
the natural basis, the columns of M are Me1, . . ., Men.) Then v⊥ must be
perpendicular to the columns of M . i.e., MT (V −MX) = 0, or

MT MX = MT V.

Solutions X to MT MX = MT V are called least squares solutions to
MX = V .

Notice that any solution X to MX = V is a least squares solution.
However, the converse is often false. In fact, the equation MX = V may
have no solutions at all, but still have least squares solutions to MT MX =
MT V .
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Observe that since M is an m× n matrix, then MT is an n×m matrix.
Then MT M is an n×n matrix, and is symmetric, since (MT M)T = MT M .
Then, for any vector X, we can evaluate XT MT MX to obtain a num-
ber. This is a very nice number, though! It is just the length |MX|2 =
(MX)T (MX) = XT MT MX.

Now suppose that ker L = {0}, so that the only solution to MX = 0 is
X = 0; in particular, M is invertible. But if M is invertible, then so is MT M ,
since (MT M)−1 = M−1M−T . Then the only solution to MT MX = 0 is
X = 0.

In this case, the least squares solution (the X that solves MT MX = MV
is unique, and is equal to

X = (MT M)−1MT V.

In a nutshell, this is the least square method.

• Compute MT M and MT V .

• Solve (MT M)X = MT V by Gaussian elimination.

Example Captain Conundrum falls off of the leaning tower of Pisa and
makes three rather shaky measurements of his velocity at three different
times.

t m
s

1 11
2 19
3 31

Having taken some calculus, he believes that his data are best approxi-
mated by a straight line

v = at + b.

Then we should find a and b to best fit the data.

11 = a · 1 + b

19 = a · 2 + b

31 = a · 3 + b.

As a system of linear equations, this becomes:1 1
2 1
3 1

(a
b

)
?=

11
19
31

 .
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There is likely no actual straightline solution, so instead solve MT MX =
MV . (

1 2 3
1 1 1

)1 1
2 1
3 1

(a
b

)
=

(
1 2 3
1 1 1

)11
19
31

 .

This simplifies to the system:(
14 6 142
6 3 61

)
∼
(

1 0 10
0 1 1

3

)
.

Then the least-squares fit is the line

v = 10t +
1
3
.
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Review Questions

1. Let L : U → V be a linear transformation. Suppose v ∈ L(U) and you
have found a vector ups that obeys L(ups) = v.

Explain why you need to compute ker L to describe the solution space
of the linear system L(u) = v.

2. Suppose that M is an m×n matrix with trivial kernel. Show that for
any vectors u and v in Rm:

• uT MT Mv = vT MT Mu

• vT MT Mv ≥ 0.

• If vT MT Mv = 0, then v = 0.

(Hint: Think about the dot product in Rn.)
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