
5. Vectors in Space, n-Vectors

In vector calculus classes, you have undoubtedly encountered three dimen-
sional vectors. Now we will develop the notion of n-vectors and learn some
of their properties.

We begin by looking at the space Rn, which we can think of as the space
of points with n coordinates. We then specify an origin O, a favorite point
in Rn. Now given any other point p, we can draw a vector v from O to p.
Just as in R3, a vector has a magnitude and a direction.

If O has coordinates (o1, . . . , on) and p has coordinates (p1, . . . , pn), then

the components of the vector v are


p1 − o1
p2 − o2

...
pn − on

. This construction allows us

to put the origin anywhere that seems most convenient in Rn, not just at
the point with zero coordinates.

Most importantly, we can add vectors and multiply vectors by a scalar.

Definition Given two vectors, u =

u
1

...
un

 and v =

v
1

...
vn

 their sum u+v =

u
1 + v1

...
un + vn

. Given a scalar c, the scalar multiple cu =

cu
1

...
cun

.

A special vector is the zero vector connecting the origin to itself. All
of its components are zero. Notice that with respect to the usual notions
of Euclidean geometry, it is the only vector with zero magnitude, and the
only one which points in no particular direction. Thus, any single vector
determines a line, except the zero-vector. Any scalar multiple of a vector
lies in the line determined by that vector.

The line determined by a non-zero vector v through a point p can be

written as {p + tv|t ∈ R}. For example, {


1
2
3
4

 + t


1
0
0
0

 |t ∈ R} describes a

line in 4-dimensional space parallel to the x-axis.
Given two non-zero vectors, they will usually determine a plane, unless

both vectors are in the same line. In this case, one of the vectors can be
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realized as a scalar multiple of the other. The sum of u and v corresponds
to laying the two vectors head-to-tail and drawing the connecting vector. If
u and v determine a plane, then their sum lies in plane determined by u
and v.

The plane determined by two vectors u and v can be written as {p +

su+ tv|s, t ∈ R}. For example, {



3
1
4
1
5
9


+ s



1
0
0
0
0
0


+ t



0
1
0
0
0
0


|s, t ∈ R} describes

a plane in 6-dimensional space parallel to the xy-plane.
We can generalize the notion of a plane.

Definition A set of k vectors v1, . . . , vk in Rn with k ≤ n determines a
k-dimensional hyperplane, unless any of the vectors vi lives in the same
hyperplane determined by the other vectors. If the vectors do determine a
k-dimensional hyperplane, then any point in the hyperplane can be written
as:

{p+
k∑

i=1

λivi|λi ∈ R}

Directions and Magnitudes

Consider the Euclidean length of a vector: ||v|| =
√∑

i(vi)2. Using the Law
of Cosines, we can then figure out the angle between two vectors. Given two
vectors v and u that span a plane in Rn, we can then connect the ends of v
and u with the vector v − u. Then the Law of Cosines states that:

||v − u||2 = ||u||2 + ||v||2 − 2||u||||v|| cos θ

Then isolate cos θ:

||v − u||2 − ||u||2 + ||v||2 = (v1 − u1)2 + . . .+ (vn − un)2

−((u1)2 + . . .+ (un)2)
−((v1)2 + . . .+ (vn)2)

= −2u1v1 − . . .− 2unvn
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Thus,
||u||||v|| cos θ = −u1v1 − . . .− unvn

This motivates the definition of the dot product.

Definition The dot product of two vectors u =

u
1

...
un

 and v =

v
1

...
vn

 is

u v = u1v1 + . . .+ unvn.
The length of a vector ||v|| =

√
v v.

The angle θ between two vectors is determined by the formula u v =
||u||||v|| cos θ.

The dot product has some important properties:

1. The dot product is symmetric (so u v = v u),

2. Distributive (so that u (v + w) = u v + u w, and

3. Bilinear, which is to say, linear in both u and v. Thus u (cv + w) =
c(u v) + u w, and (cu+ w) v = cu v + w v.

There are many different useful ways to define lengths of vectors, though.
Notice in the definition above how we defined the dot product, and then all
the other definitions are dependent on the definition of the dot product. So
if we change the dot product, we change our notion of length and angle as
well. The definitions above provide the Euclidean length and angle between
two vectors. Instead of writing for other inner products, we usually write
〈u, v〉 for the inner product to avoid confusion.

Example Consider a four-dimensional space, with a special direction which
we will call ‘time.’ The Lorentzian inner product on R4 is given by 〈u, v〉 =
u1v1+u2v2+u3v3−u4v4. This is of extreme importance in Einstein’s theory
of special relativity.

As a result, the length of a vector with coordinates x, y, z and t is ||v|| =
x2 + y2 + z2 − t2.

In the Euclidean regime, one can derive the angle between two vectors
using the Law of Cosines. With other metrics, the notion of angle changes.

Theorem 0.1 (Cauchy-Schwartz Inequality). For vectors u and v with an
inner-product 〈, 〉, then

|〈u, v〉|
||u||||v||

<= 1
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Proof. This follows from the definition of the angle between two vectors and
the fact that cos θ ≤ 1.

Theorem 0.2 (Triangle Inequality). Given vectors u and v, we have:

||u+ v|| ≤ ||u||+ ||v||

Proof.

||u+ v||2 = (u+ v) (u+ v)
= u u+ 2u v + v v

= ||u||2 + ||v||2 + 2||u||||v|| cos θ
= (||u||+ ||v||)2 + 2||u||||v||(cos θ − 1)
≤ (||u||+ ||v||)2

Then the square of the left-hand side of the triangle inequality is ≤ the
right-hand side, and both sides are positive, so the result is true.
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Review Questions

1. (2) Find the angle between the diagonal of the unit square in R2 and
one of the coordinate axes.

(3) Find the angle between the diagonal of the unit cube in R3 and
one of the coordinate axes.

(n) Find the angle between the diagonal of the unit (hyper)-cube in
Rn and one of the coordinate axes.

(∞) What is the limit as n→∞ of the angle between the diagonal of
the unit (hyper)-cube in Rn and one of the coordinate axes?
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2. Consider the matrix M =

(
cos θ sin θ
− sin θ cos θ

)
and the vector X =

(
x
y

)
.

(a) Sketch X and MX in R2.

(b) Compute ||MX||
||X|| .

3. Suppose in R2 I measure the x direction in inches and the y direction in
miles. Approximately what is the real-world angle between the vectors(

0
1

)
and

(
1
1

)
? What is the angle between these two vectors according

to the dot-product? Give a definition for an inner product so that the
angles produced by the inner product are the actual angles between
vectors.

4. (Lorentzian Strangeness). For this problem, consider Rn with the
Lorentzian inner product and metric defined above.

(a) Find a non-zero vector in two-dimensional Lorentzian space-time
with zero length.

(b) Find and sketch the collection of all vectors in two-dimensional
Lorentzian space-time with zero length.

(c) Find and sketch the collection of all vectors in three-dimensional
Lorentzian space-time with zero length.
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