
6. Vector Spaces

Thus far we have thought of vectors as lists of numbers in Rn. As it turns out,
the idea of a vector can be much more general. In the spirit of generalization,
then, we will define vectors based on their most important properties. Once
complete, our new definition of vectors will include vectors in Rn, but will
also cover many other extremely useful notions of vectors.

Two key properties of vectors is that they can be added together and
multiplied by scalars. So we make the following definition.

Definition A vector space (over R) is a set V with two operations + and ·
satisfying the following properties for all u, v ∈ V and c, d ∈ R:

(+i) (Additive Closure) u+ v ∈ R. (Adding two vectors gives a vector.)

(+ii) (Additive Commutativity) u + v = v + u. (Order of addition doesn’t
matter.)

(+iii) (Additive Associativity) (u + v) + w = u + (v + w) (Order of adding
many vectors doesn’t matter.)

(+iv) (Zero) There is a special vector 0V ∈ V such that u+ 0V = u for all u
in V .

(+v) (Additive Inverse) For every u ∈ v there exists w ∈ V such that
u+ w = 0V .

(· i) (Closure) c · v ∈ V . (Scalar times a vector is a vector.)

(· ii) (Distributivity) (c+d)·v = c·v+d·v. (Scalar multiplication distributes
over addition of scalars.)

(· iii) (Distributivity) c·(u+v) = c·u+c·v. (Scalar multiplication distributes
over addition of vectors.)

(· iv) (Associativity) (cd) · v = c · (d · v).

(· v) (Unity) 1 · v = v for all v ∈ V .

Remark Don’t confuse the scalar product · with the dot product . The
scalar product is a function that takes a vector and a number and returns
a vector. (In notation, this can be written · : R × V → V .) On the other
hand, the dot product takes two vectors and returns a number. (In notation:

: V × V → R.)
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Once the properties of a vector space have been verified, we’ll just write
scalar multiplication with juxtaposition cv = c·v, though, to avoid confusing
the notation.

Remark It isn’t hard to devise strange rules for addition or scalar multi-
plication that break some or all of the rules listed above.

One can also find many interesting vector spaces, such as the following.

Example
V = {f |f : N→ R}

Here the vector space is the set of functions that take in a natural number
n and return a real number. The addition is just addition of functions:
(f1+f2)(n) = f1(n)+f2(n). Scalar multiplication is just as simple: c·f(n) =
cf(n).

We can think of these functions as infinite column vectors: f(0) is the
first entry, f(1) is the second entry, and so on. Then for example the function
f(n) = n3 would look like this:

f(n) =



0
1
8
27
...
n3

...


Alternatively, V is the space of sequences: f = {f1, f2, . . . , fn, . . .}.
Let’s check some axioms.

(+i) (Additive Closure) f1(n)+f2(n) is indeed a function N→ R, since the
sum of two real numbers is a real number.

(+iv) (Zero) We need to propose a zero vector. The constant zero function
g(n) = 0 works because then f(n) + g(n) = f(n) + 0 = f(n).

The other axioms that should be checked come down to properties of the
real numbers.

Vector Spaces Over Other Fields Above, we defined vector spaces over
the real numbers. One can actually define vector spaces over any field. A
field is a collection of numbers satisfying a number of properties.
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One other example of a field is the complex numbers, C = {x + iy|i2 =
−1, x, y ∈ R}. 1 In quantum physics, vector spaces over C describe all
possible states a system of particles can have.

For example,

V = {
(
λ
µ

)
: λ, µ ∈ C}

describes states of an electron, where

(
1
0

)
describes spin “up” and

(
0
1

)

describes spin “down.” Other states, like

(
i
−i

)
are permissible, since the

base field is the complex numbers.
Another useful field is the rational numbers Q. This is field is important

in computer algebra: a real number given by an infinite string of numbers
after the decimal point can’t be stored by a computer. So instead rational
approximations are used. Since the rationals are a field, the mathematics of
vector spaces still apply to this special case.

There are many other examples of fields, including fields with only
finitely many numbers. One example of this is the field Z2 which only
has elements {0, 1}. Multiplication is defined normally, and addition is the
usual addition, but with 1 + 1 = 0.

In this class, we will work mainly over the Real numbers and the Complex
numbers. The full story of fields is typically covered in a class on abstract
algebra or Galois theory.
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1 Complex numbers are extremely useful because of a special property that they enjoy:

every polynomial over the complex numbers factors into a product of linear polynomials.
For example, the polynomial x2 + 1 doesn’t factor over the real numbers, but over the
complex numbers it factors into (x + i)(x − i). This property ends up having very far-
reaching consequences: often in mathematics problems that are very difficult when working
over the real numbers become relatively simple when working over the complex numbers.
One example of this phenomenon occurs when diagonalizing matrices, which we will learn
about later in the term.
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1. Check that V = {
(
x
y

)
: x, y ∈ R} = R2 with the usual addition and

scalar multiplication is a vector space.

2. Consider the set of convergent sequences, with the same addition and
scalar multiplication that we defined for the space of sequences:

V = {f |f : N→ R, lim
n→∞

f ∈ R}

Is this still a vector space? Explain why or why not.

3. Let V = {
(
x
y

)
: x, y ∈ R} = R2.

Propose as many rules for addition and scalar multiplication as you
can that satisfy some of the vector space conditions while breaking
some others.

4. Consider the set of 2× 4 matrices:

V = {
(
a b c d
e f g h

)
|a, b, c, d, e, f, g, h ∈ C}

Propose definitions for addition and scalar multiplication in V . Iden-
tify the zero vector in V , and check that every matrix has an additive
inverse.

5. Let PR
3 be the set of polynomials with real coefficients of degree three

or less.

• Propose a definition of addition and scalar multiplication to make
PR

3 a vector space.

• Identify the zero vector, and find the additive inverse for the
vector −3− 2x+ x2.

• Show that PR
3 is not a vector space over C. Propose a small

change to the definition of PR
3 to make it a vector space over C.
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