7. Linear Transformations

Recall that the key properties of vector spaces are vector addition and scalar
multiplication. Now suppose we have two vector spaces V and W and a map
L between them:

L:V-—-W

Now, both V' and W have notions of vector addition and scalar multiplica-
tion. It would be ideal if the map L preserved these operations. In other
words, if adding vectors and then applying L were the same as applying L
to two vectors and then adding them. Likewise, it would be nice if, when
multiplying by a scalar, it didn’t matter whether we multiplied before or
after applying L. In formulas, this means that for any u,v € V and ¢ € R:

L(u+v) = L(u) + L(v)
L(cv) = cL(v)

Combining these two requirements into one equation, we get the defini-
tion of a linear function.

Definition A function L : V — W is linear if for all u,v € V and r,s € R
we have

L(ru+ sv) = rL(u) + sL(v)

Notice that on the left the addition and scalar multiplication occur in
V', while on the right the operations occur in W.

Example Take L : R? — R3 defined by:
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Then the two sides of the linearity requirement are equal, so L is a linear
transformation.

Remark We can write L using a matrix like so:

T T +y 1 10 T
Liy|l=|y+2z]=10 11 Y
z 0 0 00 z

We previously checked that matrix multiplication on vectors obeyed the
rule M (ru+ sv) = rMu+ sMv, so matrix multiplication is linear. As such,



our check on L was guaranteed to work. In fact, matrix multiplication on
vectors is a linear transformation.

Example Let V be the vector space of polynomials of finite degree with
standard addition and scalar multiplication.

V={a+ax+...+a,2"|n € Nyag; € R}

Let L : V — V be the derivative %. For p; and po polynomials, the
rules of differentiation tell us that

Thus, the derivative is a linear function from the set of polynomials to itself.
We can represent a polynomial as a semi-infinite vector, like so:
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One could then write the derivative as an infinite matrix:
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Foreshadowing Dimension. You probably have some intuitive notion of
what dimension means, though we haven’t actually defined the idea of di-
mension mathematically yet. Some of the examples of vector spaces we have
worked with have been finite dimensional. (For example, R™ will turn out
to have dimension n.) The polynomial example above is an example of an
infinite dimensional vector space.

Roughly speaking, dimension is the number of independent directions
available. To figure out dimension, I stand at the origin, and pick a direction.
If there are any vectors in my vector space that aren’t in that direction, then
I choose another direction that isn’t in the line determined by the direction I
chose. If there are any vectors in my vector space not in the plane determined
by the first two directions, then I choose one of them as my next direction.
In other words, I choose a collection of independent vectors in the vector
space. The size of a minimal set of independent vectors is the dimension of
the vector space.

For finite dimensional vector spaces, linear transformations can always
be represented by matrices. For that reason, we will start studying matrices
intensively in the next few lectures.
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Review Questions

1. Show that the pair of conditions:

L(u+v) = L(u) + L(v) (1)
L(cv) = cL(v) (2)

is equivalent to the single condition:

L(ru+ sv) =rL(u) + sL(v) (3)


http://en.wikipedia.org/wiki/Linear_transformation
http://en.wikipedia.org/wiki/Dimension_(linear_algebra)

Your answer should have two parts. Show that (1,2) = (3), and then
show that (3) = (1,2).

. Let P, be the space of degree n polynomials in the variable ¢. Suppose
L is a linear transformation from P» — Pj such that L(1) =4, L(t) =
3, and L(t?) =t — 1.

e Find L(1+t+ 2t%).

e Find L(a + bt + ct?).

e Find all values a, b, c such that L(a + bt + ct?) = 1 + 3t + 2¢3.

. Show that integration is a linear transformation on the vector space
of polynomials. What would a matrix for integration look like?



