
9. Properties of Matrices

Block Matrices

It is often convenient to partition a matrix M into smaller matrices called
blocks, like so:

M =


1 2 3 1
4 5 6 0
7 8 9 1
0 1 2 0

 =

(
A B
C D

)

Here A =

1 2 3
4 5 6
7 8 9

, B =

1
0
1

, C =
(
0 1 2

)
, D = (0).

• The blocks of a block matrix must fit together to form a rectangle. So(
B A
D C

)
makes sense, but

(
C B
D A

)
does not.

• There are many ways to cut up an n × n matrix into blocks. Often
context or the entries of the matrix will suggest a useful way to divide
the matrix into blocks. For example, if there are large blocks of zeros
in a matrix, or blocks that look like an identity matrix, it can be useful
to partition the matrix accordingly.

• Matrix operations on block matrices can be carried out by treating
the blocks as matrix entries. In the example above,

M2 =

(
A B
C D

)(
A B
C D

)

=

(
A2 +BC AB +BD
CA+DC CB +D2

)
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Computing the individual blocks, we get:

A2 +BC =

 30 37 44
66 81 96
102 127 152


AB +BD =

 4
10
16


CA+DC =

18
21
24


CB +D2 = (2)

Assembling these pieces into a block matrix gives:
30 37 44 4
66 81 96 10
102 127 152 16
4 10 16 2


This is exactly M2.

The Algebra of Square Matrices

Not every pair of matrices can be multiplied. When multiplying two matri-
ces, the number of rows in the left matrix must equal the number of columns
in the right. For an r × k matrix M and an s × l matrix N , then we must
have k = s.

This is not a problem for square matrices of the same size, though.
Two n × n matrices can be multiplied in either order. For a single matrix
M ∈ Mn

n , we can form M2 = MM , M3 = MMM , and so on, and define
M0 = In, the identity matrix.

As a result, any polynomial equation can be evaluated on a matrix.

Example Let f(x) = x− 2x2 + 3x3.

Let M =

(
1 t
0 1

)
. Then:

M2 =

(
1 2t
0 1

)
,M3 =

(
1 3t
0 1

)
, . . .
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Then:

f(M) =

(
1 t
0 1

)
− 2

(
1 2t
0 1

)
+ 3

(
1 3t
0 1

)

=

(
2 6t
0 2

)

Suppose f(x) is any function defined by a convergent Taylor Series:

f(x) = f(0) + f ′(0)x+
1
2!
f ′′(0)x2 + . . .

Then we can define the matrix function by just plugging in M :

f(M) = f(0) + f ′(0)M +
1
2!
f ′′(0)M2 + . . .

There are additional techniques to determine the convergence of Taylor Se-
ries of matrices, based on the fact that the convergence problem is simple for
diagonal matrices. It also turns out that exp(M) = 1+M+ 1

2M
2+ 1

3!M
3+. . .

always converges.

Matrix multiplication does not commute. For generic n × n square
matrices M and N , then MN 6= NM . For example:(

1 1
0 1

)(
1 0
1 1

)
=

(
2 1
1 1

)

On the other hand: (
1 0
1 1

)(
1 1
0 1

)
=

(
1 1
1 2

)
Since n × n matrices are linear transformations Rn → Rn, we can see

that the order of successive linear transformations matters. For two linear
transformations K and L taking Rn → Rn, and v ∈ Rn, then in general
K(L(v)) 6= L(K(v))!

Finding matrices such that MN = NM is an important problem in
mathematics.

Trace

Matrices contain a great deal of information, so finding ways to extract
essential information is useful.
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Definition The trace of a square matrice M = (mi
j) is the sum of its

diagonal entries.

trM =
n∑

i=1

mi
i

Example

tr

2 7 6
9 5 1
4 3 8

 = 2 + 5 + 8 = 15

While matrix multiplication does not commute, the trace of a product
of matrices does not depend on the order of multiplication:

tr(MN) = tr(
∑

l

M i
lN

l
j)

=
∑

i

∑
l

M i
lN

l
i

=
∑

l

∑
i

N l
iM

i
l

= tr(
∑

i

N l
iM

i
l )

= tr(NM).

Thus, tr(MN) = tr(NM) for any square matrices M and N .
In the previous example,

M =

(
1 1
0 1

)
, N =

(
1 0
1 1

)
.

MN =

(
2 1
1 1

)
6= NM =

(
1 1
1 2

)
.

However, tr(MN) = 2 + 1 = 3 = 1 + 2 = tr(NM).
Another useful property of the trace is that:

trM = trMT

This is true because the trace only uses the diagonal entries, which are fixed

by the transpose. For example: tr

(
1 1
2 3

)
= 4 = tr

(
1 2
1 3

)
= tr

(
1 2
1 3

)T

Finally, trace is a linear transformation from matrices to the real num-
bers. This is easy to check.
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Linear Systems Redux Recall that we can view a linear system as a ma-
trix equation

MX = V,

with M an r×k matrix of coefficients, x a k×1 matrix of unknowns, and V
an r × 1 matrix of constants. If M is a square matrix, then the number of
equations (r) is the same as the number of unknowns (k), so we have hope
of finding a single solution.

Above we discussed functions of matrices. An extremely useful function
would be f(M) = 1

M , where M 1
M = I. If we could compute 1

M , then we
would multiply both sides of the equation MX = V by 1

M to obtain the
solution immediately: X = 1

M V .
Clearly, if the linear system has no solution, then there can be no hope of

finding 1
M , since if it existed we could find a solution. On the other hand, if

the system has more than one solution, it also seems unlikely that 1
M would

exist, since X = 1
M V yields only a single solution.

Therefore 1
M only sometimes exists. It is called the inverse of M , and is

usually written M−1.
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Review Questions

1. Let A =

(
1 2 0
3 −1 4

)
. Find AAT and ATA. What can you say about

matrices MMT and MTM in general? Explain.

2. Compute exp(A) for the following matrices:

• A =

(
λ 0
0 λ

)

• A =

(
1 λ
0 1

)
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• A =

(
0 λ
0 0

)

3. Suppose ad− bc 6= 0, and let M =

(
a b
c d

)
.

(a) Find a matrix M−1 such that MM−1 = I.

(b) Explain why your result explains what you found in a previous
homework exercise.

(c) Compute M−1M .

4. Let M =



1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 0 2 1 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 3 1
0 0 0 0 0 0 0 3


. Divide M into named blocks,

and then multiply blocks to compute M2.
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