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Preface

These linear algebra lecture notes are designed to be presented as twenty five,
fifty minute lectures suitable for sophomores likely to use the material for
applications but still requiring a solid foundation in this fundamental branch
of mathematics. The main idea of the course is to emphasize the concepts
of vector spaces and linear transformations as mathematical structures that
can be used to model the world around us. Once “persuaded” of this truth,
students learn explicit skills such as Gaussian elimination and diagonalization
in order that vectors and linear transformations become calculational tools,
rather than abstract mathematics.

In practical terms, the course aims to produce students who can perform
computations with large linear systems while at the same time understand
the concepts behind these techniques. Often-times when a problem can be re-
duced to one of linear algebra it is “solved”. These notes do not devote much
space to applications (there are already a plethora of textbooks with titles
involving some permutation of the words “linear”, “algebra” and “applica-
tions”). Instead, they attempt to explain the fundamental concepts carefully
enough that students will realize for their own selves when the particular
application they encounter in future studies is ripe for a solution via linear
algebra.

The notes are designed to be used in conjunction with a set of online
homework exercises which teach basic linear algebra skills. These are a set
of nine Webwork assignments which are collected weekly and available at

http://webwork.math.ucdavis.edu/

Webwork is an open source, online homework system which originated at
the University of Rochester. It can efficiently check whether a student has
answered an explicit, typically computation-based, problem correctly. The
problem sets chosen to accompany these notes could contribute roughly a
20% of a student’s grade, and ensure that basic computational skills are
mastered. Most students rapidly realize that it is best to print out the
Webwork assignments and solve them on paper before entering the answers
online. Those who do not tend to fare poorly on midterm examinations. We
have found that there tend to be relatively few questions from students in
office hours about the webwork assignments. Instead, by assigning 20% of the
grade to written assignments drawn from problems chosen randomly from the
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review exercises at the end of each lecture, the student’s focus was primarily
on understanding ideas. They range from simple tests of understanding of
the material in the lectures to more difficult problems, all of them require
thinking, rather than blind application of mathematical “recipes”. Office
hour questions reflected this and offered an excellent chance to give students
tips how to present written answers in a way that would convince the person
grading their work that they deserved full credit!

Each lecture concludes with references to the comprehensive online text-
book of Jim Hefferon:

http://joshua.smcvt.edu/linearalgebra/

and the notes are also hyperlinked to Wikipedia where students can rapidly
access further details and background material for many of the concepts.
There are also an array of useful commercially available texts such as

• “Introductory Linear Algebra, An Applied First Course”, B. Kolman
and D. Hill, Pearson 2001.

• “Algebra and Geometry”, D. Holten and J. Lloyd, CBRC, 1978.

• “Theory and Problems of Linear Algebra”, S. Lipschutz, McGraw-Hill
1987.

There are still many errors in the notes, as well as awkwardly explained
concepts. An army of 200 students have already found many of them. The
review exercises would provide a better survey of what linear algebra really
is if there were more “applied” questions. We welcome your contributions!

Andrew and Tom.

c©2009 by the authors. These lecture notes may be reproduced in their
entirety for non-commercial purposes.
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1 What is Linear Algebra?

In this course, we’ll learn about three main topics: Linear Systems, Vec-
tor Spaces, and Linear Transformations. Along the way we’ll learn about
matrices and how to manipulate them.

For now, we’ll illustrate some of the basic ideas of the course in the two
dimensional case. We’ll see everything carefully defined later and start with
some simple examples to get an idea of the things we’ll be working with.

Example Suppose I have a bunch of apples and oranges. Let x be the
number of apples I have, and y be the number of oranges I have. As everyone
knows, apples and oranges don’t mix, so if I want to keep track of the number
of apples and oranges I have, I should put them in a list. We’ll call this list
a vector, and write it like this: (x, y). The order here matters! I should
remember to always write the number of apples first and then the number
of oranges - otherwise if I see the vector (1, 2), I won’t know whether I have
two apples or two oranges.

This vector in the example is just a list of two numbers, so if we want
to, we can represent it with a point in the plane with the corresponding
coordinates, like so:

Apples

Oranges

(x, y)

In the plane, we can imagine each point as some combination of apples and
oranges (or parts thereof, for the points that don’t have integer coordinates).
Then each point corresponds to some vector. The collection of all such
vectors—all the points in our apple-orange plane—is an example of a vector
space.
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Example There are 27 pieces of fruit in a barrel, and twice as many oranges
as apples. How many apples and oranges are in the barrel?

How to solve this conundrum? We can re-write the question mathemati-
cally as follows:

x+ y = 27

y = 2x

This is an example of a Linear System. It’s a collection of equations in
which variables are multiplied by constants and summed, and no variables
are multiplied together: There are no powers of x or y greater than one, or
any places where x and y are multiplied together.

Notice that we can solve the system by manipulating the equations in-
volved. First, notice that the second equation is the same as −2x + y = 0.
Then if you subtract the second equation from the first, you get on the left
side x+ y − (−2x+ y) = 3x, and on the left side you get 27− 0 = 27. Then
3x = 27, so we learn that x = 9. Using the second equation, we then see
that y = 18. Then there are 9 apples and 18 oranges.

Let’s do it again, by working with the list of equations as an object in
itself. First we rewrite the equations tidily:

x+ y = 27

2x− y = 0

We can express this set of equations with a matrix as follows:(
1 2
2 −1

)(
x
y

)
=

(
27
0

)
The square list of numbers is an example of a matrix. We can multiply

the matrix by the vector to get back the linear system using the following
rule for multiplying matrices by vectors:(

a b
c d

)(
x
y

)
=

(
ax+ by
cx+ dy

)
The matrix is an example of a Linear Transformation, because it takes

one vector and turns it into another in a “linear” way.
Our next task is to solve linear linear systems, we’ll learn a general method

called Gaussian Elimination.
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Review Problems

1. Let M be a matrix and u and v vectors:

M =

(
a b
c d

)
, v =

(
x
y

)
, u =

(
w
z

)
.

(a) Propose a definition for u+ v.

(b) Check that your definition obeys Mv +Mu = M(u+ v).

2. Pablo is a nutritionist who knows that oranges always have twice as
much sugar as apples. When considering the sugar intake of schoolchil-
dren eating a barrel of fruit, the represents the barrel like so:

sugar

fruit

(s, f)

Find a linear transformation relating Pablo’s representation to the one
in the lecture. Write your answer as a matrix.

3. There are methods for solving linear systems other than Gauss’ method.
One often taught in high school is to solve one of the equations for a
variable, then substitute the resulting expression into other equations.
That step is repeated until there is an equation with only one vari-
able. From that, the first number in the solution is derived, and then
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back-substitution can be done. This method takes longer than Gauss’
method, since it involves more arithmetic operations, and is also more
likely to lead to errors. To illustrate how it can lead to wrong conclu-
sions, we will use the system

x+ 3y = 1
2x+ y =−3
2x+ 2y = 0

(a) Solve the first equation for x and substitute that expression into
the second equation. Find the resulting y.

(b) Again solve the first equation for x, but this time substitute that
expression into the third equation. Find this y.

What extra step must a user of this method take to avoid erroneously
concluding a system has a solution?
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2 Gaussian Elimination

2.1 Notation for Linear Systems

Last time we studied the linear system

x+ y = 27

2x− y = 0

and found that

x = 9

y = 18

We learned to write the linear system using a matrix and two vectors like so:(
1 2
2 −1

)(
x
y

)
=

(
27
0

)
Likewise, we can write the solution as:(

1 0
0 1

)(
x
y

)
=

(
9
18

)

The matrix I =

(
1 0
0 1

)
is called the Identity Matrix . You can check that

for any vector v, then Iv = v.
A useful shorthand for a linear system is an Augmented Matrix , which

looks like this for the linear system we’ve been dealing with:(
1 1 27
2 −1 0

)

We don’t bother writing the vector

(
x
y

)
, since it will show up in any

linear system we deal with. The solution to the linear system looks like this:(
1 0 9
0 1 18

)
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Here’s another example of an augmented matrix, for a linear system with
three equations and four unknowns: 1 3 2 0 9

6 2 0 −2 0
−1 0 1 1 3


And finally, here’s the general case. The number of equations in the linear

system is the number of rows r in the augmented matrix, and the number of
columns k in the matrix left of the vertical line is the number of unknowns.

a1
1 a1

1 . . . a1
1 b1

a2
1 a2

2 . . . a2
k b2

...
...

...
...

ar1 ar2 . . . ark br


Here’s the idea: Gaussian Elimination is a set of rules for taking a gen-

eral augmented matrix and turning it into a very simple augmented matrix
consisting of the identity matrix on the left and a bunch of numbers (the
solution) on the right.

Equivalence Relations for Linear Systems

It often happens that two mathematical objects will appear to be different but
in fact are exactly the same. The best-known example of this are fractions.
For example, the fractions 1

2
and 6

12
describe the same number. We could

certainly call the two fractions equivalent.
In our running example, we’ve noticed that the two augmented matrices(

1 1 27
2 −1 0

)
,

(
1 0 9
0 1 18

)
both contain the same information: x = 9, y = 18.

Generally, we say that two augmented matrices are (row) equivalent if
they have the same solutions. To denote this, we write:(

1 1 27
2 −1 0

)
∼
(

1 0 9
0 1 18

)

The symbol ∼ is read “is equivalent to”.
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A small excursion into the philosophy of mathematical notation: Suppose
I have a large pile of equivalent fractions, such as 2

4
, 27

54
, 100

200
, and so on. Most

people will agree that their favorite way to write the number represented by
all these different factors is 1

2
, in which the numerator and denominator are

relatively prime. We usually call this a reduced fraction. This is an example
of a canonical form, which is an extremely impressive way of saying “favorite
way of writing it down”. There’s a theorem telling us that every rational
number can be specified by a unique fraction whose numerator and denom-
inator are relatively prime. To say that again, but slower, every rational
number has a reduced fraction, and furthermore, that reduced fraction is
unique.

2.2 Reduced Row Echelon Form

Since there are many different augmented matrices that have the same set
of solutions, we should find a canonical form for writing our augmented
matrices. This canonical form is called Reduced Row Echelon Form, or RREF
for short. RREF looks like this in general:

1 ∗ 0 ∗ 0 . . . 0 b1

0 1 ∗ 0 . . . 0 b2

0 0 1 . . . 0 b3

...
... 0

...
1 bk

0 0 0 0 0
...

... 0
...

0 0 0 0 0


The first non-zero entry in each row is called the pivot . The asterisks

denote arbitrary content which could be several columns long. The following
properties describe the RREF.

1. In RREF, the pivot of any row is always 1.

2. The pivot of any given row is always to the right of the pivot of the
row above it.

3. The pivot is the only non-zero entry in its column.
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Example


1 0 7 0
0 1 3 0
0 0 0 1
0 0 0 0

 Here is a NON-Example, which breaks all three of

the rules:


1 0 3 0
0 0 2 0
0 1 0 1
0 0 0 1


The RREF is a very useful way to write linear systems: it makes it very easy
to write down the solutions to the system.

Example


1 0 7 0 4
0 1 3 0 1
0 0 0 1 2
0 0 0 0 0


When we write this augmented matrix as a system of linear equations, we
get the following:

x + 7z = 4

y + 3z = 1

w = 2

Solving from the bottom variables up, we see that w = 2 immediately. z is
not a pivot, so it is still undetermined. Set z = λ. Then y = 1 − 3λ and
z = 4− 7λ. More concisely:

x
y
z
w

 =


4
1
0
2

+ λ


−7
−3
1
0


So we can read off the solution set directly from the RREF.

Perhaps unsurprisingly in light of the previous discussion, we have a the-
orem:

Theorem 2.1. Every augmented matrix is row-equivalent to a unique aug-
mented matrix in reduced row echelon form.

Next time, we’ll prove it.
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Review Problems

1. Show that this pair of augmented matrices are row equivalent, assuming
ad− bc 6= 0.(
a b x
c d y

)
∼
(

1 0 dx−by
ad−bc

0 1 ay−cx
ad−bc

)

2. Consider the augmented matrix:

(
2 −1 3
−6 3 1

)
Give a geometric reason that the associated system of equations has

no solution. Given a general augmented matrix

(
a b x
c d y

)
, can you

find a condition on the numbers a, b, c and d that create the geometric
condition you found?

3. List as many operations on augmented matrices that preserve row
equivalence as you can. Explain your answers. Give examples of oper-
ations that break row equivalence.

4. Row equivalence of matrices is an example of an equivalence relation.
A relation ∼ on a set of objects U is an equivalence relation if the
following three properties are satisfied:

• Reflexive: For any x ∈ U , we have x ∼ x.

• Symmetric: For any x, y ∈ U , if x ∼ y then y ∼ x.

• Transitive: For any x, y and z ∈ U , if x ∼ y and y ∼ z then x ∼ z.

(a) Consider the real numbers with the relation ≥. Is this an equiva-
lence relation? Why or why not?

(b) Consider the set of Euclidean triangles with the relation of simi-
larity. (Recall that two triangles are similar if all of their angles
are equal.) Is this an equivalence relation? Why or why not?
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(c) Show that row equivalence of augmented matrices is an equiva-
lence relation.
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3 Elementary Row Operations

Our goal is to begin with an arbitrary matrix and apply operations that
respect row equivalence until we have a matrix in Reduced Row Echelon
Form (RREF). The three elementary row operations are:

• (Row Swap) Exchange any two rows.

• (Scalar Multiplication) Multiply any row by a constant.

• (Row Sum) Add a multiple of one row to another row.

Why do these preserve the linear system in question? Swapping rows is
just changing the order of the equations begin considered, which certainly
should not alter the solutions. Scalar multiplication is just multiplying the
equation by the same number on both sides, which does not change the solu-
tion(s) of the equation. Likewise, if two equations share a common solution,
adding one to the other preserves the solution.

There is a very simple process for row reducing a matrix, working col-
umn by column. This process is called Gauss–Jordan elimination or simply
Gaussian elimination.

1. If all entries in a given column are zero, then the associated variable is
undetermined; make a note of the undetermined variable(s) and then
ignore all such columns.

2. Swap rows so that the first entry in the first column is non-zero.

3. Multiply the first row by λ so that the pivot is 1.

4. Add multiples of the first row to each other row so that the first entry
of every other row is zero.

5. Now ignore the first row and first column and repeat steps 1-5 until
the matrix is in RREF.

Example
3x3 = 9

x1 +5x2 −2x3 = 2
1
3
x1 +2x2 = 3

16



First we write the system as an augmented matrix:

0 0 3 9
1 5 −2 2
1
3

2 0 3

 R1↔R2∼


1
3

2 0 3
1 5 −2 2
0 0 3 9


3R1∼

1 6 0 9
1 5 −2 2
0 0 3 9


R2=R2−R1∼

1 6 0 9
0 −1 −2 −7
0 0 3 9


−R2∼

1 6 0 9
0 1 2 7
0 0 3 9


R1=R1−6R2∼

1 0 −12 −33
0 1 2 7
0 0 3 9


1
3
R3∼

1 0 −12 −33
0 1 2 7
0 0 1 3


R1=R1+12R3∼

1 0 0 3
0 1 2 7
0 0 1 3


R2=R2−2R3∼

1 0 0 3
0 1 0 1
0 0 1 3



Now we’re in RREF and can see that the solution to the system is given by
x1 = 1, x2 = 3, and x3 = 1; it happens to be a unique solution. Notice that
we kept track of the steps we were taking; this is important for checking your
work!
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Example 
1 0 −1 2 −1
1 1 1 −1 2
0 −1 −2 3 −3
5 2 −1 4 1



R2−R1;R4−5R2∼


1 0 −1 2 −1
0 1 2 −3 3
0 −1 −2 3 −3
0 2 4 −6 6



R3+R2;R4−2R3∼


1 0 −1 2 −1
0 1 2 −3 3
0 0 0 0 0
0 0 0 0 0



Here the variables x3 and x4 are undetermined; the solution is not unique.
Set x3 = λ and x4 = µ where λ and µ are arbitrary real numbers. Then we
can write x1 and x2 in terms of λ and µ as follows:

x1 = λ− 2µ− 1

x2 = −2λ+ 3µ+ 3

We can write the solution set with vectors like so:
x1

x2

x3

x4

 =


−1
3
0
0

+ λ


1
−2
1
0

+ µ


−2
3
0
1


This is our preferred form for writing the set of solutions for a linear system
with many solutions.

Uniqueness of Gauss-Jordan Elimination

Theorem 3.1. Gauss-Jordan Elimination produces a unique augmented ma-
trix in RREF.
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Proof. Suppose Alice and Bob compute the RREF for a linear system but get
different results, A and B. Working from the left, discard all columns except
for the pivots and the first column in which A and B differ. By the exercise,
removing columns does not affect row equivalence. Call the new, smaller,

matrices Â and B̂. The new matrices should look this: Â =

(
IN a
0 0

)
and

B̂ =

(
IN b
0 0

)
, where IN is an N×N identity matrix and a and b are vectors.

Now if Â and B̂ have the same solution, then we must have a = b. But
this is a contradiction! Then A = B.

References

Hefferon, Chapter One, Section 1.1 and 1.2
Wikipedia, Row Echelon Form
Wikipedia, Elementary Matrix Operations

Review Problems

1. Explain why row equivalence is not affected by removing columns. Is
row equivalence affected by removing rows? Prove or give a counter-
example.

2. (Gaussian Elimination) Another method for solving linear systems is
to use row operations to bring the augmented matrix to row-echelon
form. In row echelon form, the pivots are not necessarily set to one,
and we only require that all entries left of the pivots are zero, not
necessarily entries above a pivot. Provide a counterexample to show
that row-echelon form is not unique.

Once a system is in row echelon form, it can be solved by “back substi-
tution.” Write the following row echelon matrix as a system of equa-
tions, then solve the system using back-substitution.

2 3 1 6
0 1 1 2
0 0 3 3


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3. Explain why the linear system has no solutions:

1 0 3 1
0 1 2 4
0 0 0 6


For which values of k does the system below have a solution?

x −3y = 6
x +3z =−3

2x+ky +(3− k)z = 1

20



4 Solution Sets for Systems of Linear Equa-

tions

For a system of equations with r equations and k unknowns, one can have a
number of different outcomes. For the sake of visualization, consider the case
of r equations in three variables. Geometrically, then, each of our equations
is the equation of a plane in three-dimensional space. To find solutions to
the system of equations, we look for the common intersection of the planes
(if an intersection exists). Here we have five different possibilities:

1. No solutions. Some of the equations are contradictory, so no solutions
exist.

2. Unique Solution. The planes have a unique point of intersection.

3. Line. The planes intersect in a common line; any point on that line
then gives a solution to the system of equations.

4. Plane. Perhaps you only had one equation to begin with, or else all
of the equations coincide geometrically. In this case, you have a plane
of solutions, with two free parameters.

5. All of R3. If you start with no information, then any point in R3 is a
solution. There are three free parameters.

In general, for systems of equations with k unknowns, there are k + 2
possible outcomes, corresponding to the number of free parameters in the
solutions set, plus the possibility of no solutions. These types of “solution
sets” are hard to visualize, but luckily “hyperplanes” behave like planes in
R3 in many ways.

4.1 Non-Leading Variables

Variables that are not a pivot in the reduced row echelon form of a linear
system are free. Se set them equal to arbitrary parameters µ1, µ2, . . ..

Example

1 0 1 −1 1
0 1 −1 1 −1
0 0 0 0 0

 Here, x1 and x2 are the pivot variables and

x3 and x4 are non-leading variables, and thus free. The solutions are then of
the form x3 = µ1, x4 = µ2, x2 = 1 + µ1 − µ2, x1 = 1− µ1 + µ2.
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The preferred way to write a solution set is with set notation. Let S be
the set of solutions to the system. Then:

S = {


x1

x2

x3

x4

 =


1
1
0
0

+ µ1


1
−1
0
1

+ µ2


−1
1
1
0

}
It’s worth noting that if we knew how to multiply matrices of any size, we
could write the previous system as MX = V , where

M =

1 0 1 −1
0 1 −1 1
0 0 0 0

 , X =


x1

x2

x3

x4

 , V =

 1
−1
0


Given two vectors we can add them term-by-term:

a1

a2

a3

...
ar

+



b1

b2

b3

...
br

 =



a1 + b1

a2 + b2

a3 + b3

...
ar + br


We can also multiply a vector by a scalar, like so:

λ



a1

a2

a3

...
ar

 =



λa1

λa2

λa3

...
λar


Then yet another way to write the solution set for the example is:

X = X0 + µ1Y1 + µ2Y2

where

X0 =


1
1
0
0

 , Y1 =


1
−1
0
1

 , Y2 =


−1
1
1
0


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Definition Let X and Y by vectors and α and β be scalars. A function f
is linear if

f(αX + βY ) = αf(X) + βf(Y )

This is called the linearity property for matrix multiplication.

Soon we’ll show that matrix multiplication is linear. Then we will know that:

M(αX + βY ) = αMX + βMY

Then the two equations MX = V and X = X0 + µ1Y1 + µ2Y2 together say
that:

MX0 + µ1MY1 + µ2MY2 = V

for any µ1, µ2 ∈ R. Choosing µ1 = µ2 = 0, we obtain

MX0 = V .

Here, X0 is an example of what is called a particular solution to the system.
Given the particular solution to the system, we can then deduce that

µ1MY1 + µ2MY2 = 0. Setting µ1 = 0, µ2 = 1, and recalling the particular
solution MX0 = V , we obtain

MY1 = 0 .

Likewise, setting µ1 = 1, µ2 = 0, we obtain

MY2 = 0 .

Here Y1 and Y2 are examples of what are called homogeneous solutions to
the system. They do not solve the original equation MX = V , but instead
its associated homogeneous system of equations MY = 0.

Example Consider the linear system with the augmented matrix we’ve been
working with.

x +z −w = 1

y −z +w = 1

Recall that the system has the following solution set:
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S = {


x1

x2

x3

x4

 =


1
1
0
0

+ µ1


1
−1
0
1

+ µ2


−1
1
1
0

}

Then MX0 = V says that


x1

x2

x3

x4

 =


1
1
0
0

 solves the original system of equa-

tions, which is certainly true, but this is not the only solution.

MY1 = 0 says that


x1

x2

x3

x4

 =


1
−1
0
1

 solves the homogeneous system.

MY2 = 0 says that


x1

x2

x3

x4

 =


−1
1
1
0

 solves the homogeneous system.

Notice how adding any multiple of a homogeneous solution to the particular
solution yields another particular solution.

Definition Let M a matrix and V a vector. Given the linear system MX =
V , we call X0 a particular solution if MX0 = V . We call Y a homogeneous
solution if MY = 0. The linear system

MX = 0

is called the (associated) homogeneous system.

If X0 is a particular solution, then the general solution to the system is:

S = {X0 + Y : MY = 0}
In other words, the general solution = particular + homogeneous.

References

Hefferon, Chapter One, Section I.2
Wikipedia, Systems of Linear Equations
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Review Questions

1. Write down examples of augmented matrices corresponding to each
of the five types of solution sets for systems of equations with three
unknowns.

2. Let

M =


a1

1 a1
2 . . . a1

k

a2
1 a2

2 . . . a2
k

...
...

...
ar1 ar2 . . . ark

 , X =


x1

x2

. . .
xk


Propose a rule for MX so that MX = 0 is equivalent to the linear
system:

a1
1x

1 +a1
2x

2 . . .+a1
kx

k = 0
a2

1x
1 +a2

2x
2 . . .+a2

kx
k = 0

...
...

...
...

ar1x
1 +ar2x

2 . . .+arkx
k = 0

Does your rule for multiplying a matrix times a vector obey the linearity
property? Prove it!

3. The standard basis vector ei is a column vector with a one in the ith
row, and zeroes everywhere else. Using the rule for multiplying a matrix
times a vector in the last problem, find a simple rule for multiplying
Mei, where M is the general matrix defined in the last problem.
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5 Vectors in Space, n-Vectors

In vector calculus classes, you encountered three dimensional vectors. Now
we will develop the notion of n-vectors and learn some of their properties.

We begin by looking at the space Rn, which we can think of as the space
of points with n coordinates. We then specify an origin O, a favorite point
in Rn. Now given any other point P , we can draw a vector v from O to P .
Just as in R3, a vector has a magnitude and a direction.

If O has coordinates (o1, . . . , on) and p has coordinates (p1, . . . , pn), then

the components of the vector v are


p1 − o1

p2 − o2

...
pn − on

. This construction allows us

to put the origin anywhere that seems most convenient in Rn, not just at the
point with zero coordinates1.

Most importantly, we can add vectors and multiply vectors by a scalar.

Definition Given two vectors, u =


u1

...
un

 and v =


v1

...
vn

 their sum

u+ v =


u1 + v1

...
un + vn

 .

Given a scalar c, the scalar multiple

cu =


cu1

...
cun

 .

A special vector is the zero vector connecting the origin to itself. All
of its components are zero. Notice that with respect to the usual notions
of Euclidean geometry, it is the only vector with zero magnitude, and the
only one which points in no particular direction. Thus, any single vector

1Do not be confused by our use of a superscript to label components of a vector. Here
v2 denotes the second component of a vector v, rather than a number v squared!
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determines a line, except the zero-vector. Any scalar multiple of a non-zero
vector lies in the line determined by that vector.

The line determined by a non-zero vector v through a point P can be

written as {P + tv|t ∈ R}. For example, {


1
2
3
4

 + t


1
0
0
0

 |t ∈ R} describes a

line in 4-dimensional space parallel to the x-axis.
Given two non-zero vectors, they will usually determine a plane, unless

both vectors are in the same line. In this case, one of the vectors can be
realized as a scalar multiple of the other. The sum of u and v corresponds to
laying the two vectors head-to-tail and drawing the connecting vector. If u
and v determine a plane, then their sum lies in plane determined by u and v.

The plane determined by two vectors u and v can be written as

{P + su+ tv|s, t ∈ R} .

Example 



3
1
4
1
5
9


+ s



1
0
0
0
0
0


+ t



0
1
0
0
0
0


|s, t ∈ R


describes a plane in 6-dimensional space parallel to the xy-plane.

We can generalize the notion of a plane:

Definition A set of k vectors v1, . . . , vk in Rn with k ≤ n determines a
k-dimensional hyperplane, unless any of the vectors vi lives in the same hy-
perplane determined by the other vectors. If the vectors do determine a
k-dimensional hyperplane, then any point in the hyperplane can be written
as:

{P +
k∑
i=1

λivi|λi ∈ R}
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5.1 Directions and Magnitudes

Consider the Euclidean length of a vector:

||v|| =
√

(v1)2 + (v2)2 + · · · (vn)2 =

√√√√ n∑
i=1

(vi)2 .

Using the Law of Cosines, we can then figure out the angle between two
vectors. Given two vectors v and u that span a plane in Rn, we can then
connect the ends of v and u with the vector v− u. Then the Law of Cosines
states that:

||v − u||2 = ||u||2 + ||v||2 − 2||u|| ||v|| cos θ

Then isolate cos θ:

||v − u||2 − ||u||2 − ||v||2 = (v1 − u1)2 + . . .+ (vn − un)2

−((u1)2 + . . .+ (un)2)

−((v1)2 + . . .+ (vn)2)

= −2u1v1 − . . .− 2unvn

Thus,
||u|| ||v|| cos θ = u1v1 + . . .+ unvn .

This motivates the definition of the dot product.

Definition The dot product of two vectors u =


u1

...
un

 and v =


v1

...
vn

 is

u v = u1v1 + . . .+ unvn .

The length of a vector
||v|| =

√
v v .

The angle θ between two vectors is determined by the formula

u v = ||u||||v|| cos θ .

The dot product has some important properties:
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1. The dot product is symmetric, so

u v = v u ,

2. Distributive so
u (v + w) = u v + u w ,

3. Bilinear, which is to say, linear in both u and v. Thus

u (cv + dw) = c u v + d u w ,

and
(cu+ dw) v = c u v + dw v .

There are, in fact, many different useful ways to define lengths of vectors.
Notice in the definition above how we defined the dot product, and then all
the other definitions are dependent on the definition of the dot product. So
if we change our idea of the dot product, we change our notion of length
and angle as well. The dot product provide the Euclidean length and angle
between two vectors.

Other definitions of length and angle arise from bilinear forms, which
have all of the properties listed above. Instead of writing for other bilinear
forms, we usually write 〈u, v〉 to avoid confusion.

Example Consider a four-dimensional space, with a special direction which
we will call “time”. The Lorentzian inner product on R4 is given by 〈u, v〉 =
u1v1 + u2v2 + u3v3− u4v4. This is of central importance in Einstein’s theory
of special relativity.

As a result, the “length” of a vector with coordinates x, y, z and t is
||v|| = x2 + y2 + z2 − t2.

Theorem 5.1 (Cauchy-Schwartz Inequality). For vectors u and v with an
inner-product 〈 , 〉,

|〈u, v〉|
||u||||v||

≤ 1

Proof. This follows from the definition of the angle between two vectors and
the fact that cos θ ≤ 1.
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Theorem 5.2 (Triangle Inequality). Given vectors u and v, we have:

||u+ v|| ≤ ||u||+ ||v||

Proof.

||u+ v||2 = (u+ v) (u+ v)

= u u+ 2u v + v v

= ||u||2 + ||v||2 + 2 ||u|| ||v|| cos θ

= (||u||+ ||v||)2 + 2 ||u|| ||v||(cos θ − 1)

≤ (||u||+ ||v||)2

Then the square of the left-hand side of the triangle inequality is ≤ the
right-hand side, and both sides are positive, so the result is true.

References

Hefferon: Chapter One.II
Relevant Wikipedia Articles:

• Dot Product

• Inner Product Space

• Minkoski Metric

Review Questions

1. (2) Find the angle between the diagonal of the unit square in R2 and
one of the coordinate axes.

(3) Find the angle between the diagonal of the unit cube in R3 and
one of the coordinate axes.

(n) Find the angle between the diagonal of the unit (hyper)-cube in
Rn and one of the coordinate axes.

(∞) What is the limit as n→∞ of the angle between the diagonal of
the unit (hyper)-cube in Rn and one of the coordinate axes?
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2. Consider the matrix M =

(
cos θ sin θ
− sin θ cos θ

)
and the vector X =

(
x
y

)
.

(a) Sketch X and MX in R2.

(b) Compute ||MX||
||X|| .

3. Suppose in R2 I measure the x direction in inches and the y direction in
miles. Approximately what is the real-world angle between the vectors(

0
1

)
and

(
1
1

)
? What is the angle between these two vectors according

to the dot-product? Give a definition for an inner product so that the
angles produced by the inner product are the actual angles between
vectors.

4. (Lorentzian Strangeness). For this problem, consider Rn with the
Lorentzian inner product and metric defined above.

(a) Find a non-zero vector in two-dimensional Lorentzian space-time
with zero length.

(b) Find and sketch the collection of all vectors in two-dimensional
Lorentzian space-time with zero length.

(c) Find and sketch the collection of all vectors in three-dimensional
Lorentzian space-time with zero length.
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6 Vector Spaces

Thus far we have thought of vectors as lists of numbers in Rn. As it turns out,
the idea of a vector can be much more general. In the spirit of generalization,
then, we will define vectors based on their most important properties. Once
complete, our new definition of vectors will include vectors in Rn, but will
also cover many other extremely useful notions of vectors. We do this in the
hope of creating a mathematical structure applicable to a wide range of real
worl problems.

The two key properties of vectors are that they can be added together
and multiplied by scalars. So we make the following definition.

Definition A vector space (over R) is a set V with two operations + and ·
satisfying the following properties for all u, v ∈ V and c, d ∈ R:

(+i) (Additive Closure) u+ v ∈ R. (Adding two vectors gives a vector.)

(+ii) (Additive Commutativity) u + v = v + u. (Order of addition doesn’t
matter.)

(+iii) (Additive Associativity) (u + v) + w = u + (v + w) (Order of adding
many vectors doesn’t matter.)

(+iv) (Zero) There is a special vector 0V ∈ V such that u+ 0V = u for all u
in V .

(+v) (Additive Inverse) For every u ∈ v there exists w ∈ V such that u+w =
0V .

(· i) (Multiplicative Closure) c · v ∈ V . (Scalar times a vector is a vector.)

(· ii) (Distributivity) (c+d)·v = c·v+d·v. (Scalar multiplication distributes
over addition of scalars.)

(· iii) (Distributivity) c·(u+v) = c·u+c·v. (Scalar multiplication distributes
over addition of vectors.)

(· iv) (Associativity) (cd) · v = c · (d · v).

(· v) (Unity) 1 · v = v for all v ∈ V .
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Remark Don’t confuse the scalar product · with the dot product . The
scalar product is a function that takes a vector and a number and returns
a vector. (In notation, this can be written · : R × V → V .) On the other
hand, the dot product takes two vectors and returns a number. (In notation:

: V × V → R.)
Once the properties of a vector space have been verified, we’ll just write

scalar multiplication with juxtaposition cv = c ·v, though, to avoid confusing
the notation.

Remark It isn’t hard to devise strange rules for addition or scalar multipli-
cation that break some or all of the rules listed above.

One can also find many interesting vector spaces, such as the following.

Example
V = {f |f : N→ R}

Here the vector space is the set of functions that take in a natural number n
and return a real number. The addition is just addition of functions: (f1 +
f2)(n) = f1(n) + f2(n). Scalar multiplication is just as simple: c · f(n) =
cf(n).

We can think of these functions as infinite column vectors: f(0) is the
first entry, f(1) is the second entry, and so on. Then for example the function
f(n) = n3 would look like this:

f(n) =



0
1
8
27
...
n3

...


Alternatively, V is the space of sequences: f = {f1, f2, . . . , fn, . . .}.

Let’s check some axioms.

(+i) (Additive Closure) f1(n) + f2(n) is indeed a function N→ R, since the
sum of two real numbers is a real number.

(+iv) (Zero) We need to propose a zero vector. The constant zero function
g(n) = 0 works because then f(n) + g(n) = f(n) + 0 = f(n).
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The other axioms that should be checked come down to properties of the
real numbers.

Example Another very important example of a vector space is the space of
all differentiable functions:

{f |f : R→ R,
d

dx
f exists}.

The addition is point-wise (f+g)(x) = f(x)+g(x), as is scalar multiplication
c · f(x) = cf(x).

From calculus, we know that the sum of any two differentiable functions is
differentiable, since the derivative distributes over addition. A scalar multiple
of a function is also differentiable, since the derivative commutes with scalar
multiplication ( d

dx
cf = c d

dx
f). The zero function is just the function such that

0(x) = 0 for every x. The rest of the vector space properties are inherited
from addition and scalar multiplication in R.

In fact, the set of functions with at least k derivatives is always a vector
space, as is the space of functions with infinitely many derivatives.

Vector Spaces Over Other Fields Above, we defined vector spaces over
the real numbers. One can actually define vector spaces over any field. A
field is a collection of “numbers” satisfying a number of properties.

One other example of a field is the complex numbers, C = {x + iy|i2 =
−1, x, y ∈ R}. In quantum physics, vector spaces over C describe all possible
states a system of particles can have.

For example,

V = {
(
λ
µ

)
: λ, µ ∈ C}

describes states of an electron, where

(
1
0

)
describes spin “up” and

(
0
1

)

describes spin “down”. Other states, like

(
i
−i

)
are permissible, since the

base field is the complex numbers.
Complex numbers are extremely useful because of a special property that

they enjoy: every polynomial over the complex numbers factors into a prod-
uct of linear polynomials. For example, the polynomial x2 + 1 doesn’t fac-
tor over the real numbers, but over the complex numbers it factors into
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(x+ i)(x− i). This property ends up having very far-reaching consequences:
often in mathematics problems that are very difficult when working over the
real numbers become relatively simple when working over the complex num-
bers. One example of this phenomenon occurs when diagonalizing matrices,
which we will learn about later in the course.

Another useful field is the rational numbers Q. This is field is important
in computer algebra: a real number given by an infinite string of numbers
after the decimal point can’t be stored by a computer. So instead rational
approximations are used. Since the rationals are a field, the mathematics of
vector spaces still apply to this special case.

There are many other examples of fields, including fields with only finitely
many numbers. One example of this is the field Z2 which only has elements
{0, 1}. Multiplication is defined normally, and addition is the usual addition,
but with 1 + 1 = 0. This particular field has important applications in
computer science: Modern computers actually use Z2 arithmetic for every
operation.

In fact, for every prime number p, the set Zp = {0, 1, . . . , p − 1} forms
a field. The addition and multiplication are obtained by using the usual
operations over the integers, and then dividing by p and taking the remainder.
For example, in Z5, we have 4 + 3 = 2, and 4 · 4 = 1. Such fields are very
important in computer science, cryptography, and number theory.

In this class, we will work mainly over the Real numbers and the Complex
numbers, and occasionally work over Z2. The full story of fields is typically
covered in a class on abstract algebra or Galois theory.

References
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Wikipedia:
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• Spin 1
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1. Check that V = {
(
x
y

)
: x, y ∈ R} = R2 with the usual addition and

scalar multiplication is a vector space.
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2. Consider the set of convergent sequences, with the same addition and
scalar multiplication that we defined for the space of sequences:

V = {f |f : N→ R, lim
n→∞

f ∈ R}

Is this still a vector space? Explain why or why not.

3. Let V = {
(
x
y

)
: x, y ∈ R} = R2.

Propose as many rules for addition and scalar multiplication as you can
that satisfy some of the vector space conditions while breaking some
others.

4. Consider the set of 2× 4 matrices:

V = {
(
a b c d
e f g h

)
|a, b, c, d, e, f, g, h ∈ C}

Propose definitions for addition and scalar multiplication in V . Identify
the zero vector in V , and check that every matrix has an additive
inverse.

5. Let PR
3 be the set of polynomials with real coefficients of degree three

or less.

• Propose a definition of addition and scalar multiplication to make
PR

3 a vector space.

• Identify the zero vector, and find the additive inverse for the vector
−3− 2x+ x2.

• Show that PR
3 is not a vector space over C. Propose a small change

to the definition of PR
3 to make it a vector space over C.
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7 Linear Transformations

Recall that the key properties of vector spaces are vector addition and scalar
multiplication. Now suppose we have two vector spaces V and W and a map
L between them:

L : V → W

Now, both V andW have notions of vector addition and scalar multiplication.
It would be ideal if the map L preserved these operations. In other words,
if adding vectors and then applying L were the same as applying L to two
vectors and then adding them. Likewise, it would be nice if, when multiplying
by a scalar, it didn’t matter whether we multiplied before or after applying L.
In formulas, this means that for any u, v ∈ V and c ∈ R:

L(u+ v) = L(u) + L(v)

L(cv) = cL(v)

Combining these two requirements into one equation, we get the definition
of a linear function or linear transformation.

Definition A function L : V → W is linear if for all u, v ∈ V and r, s ∈ R
we have

L(ru+ sv) = rL(u) + sL(v)

Notice that on the left the addition and scalar multiplication occur in V ,
while on the right the operations occur in W . This is often called the linearity
property of a linear transformation.

Example Take L : R3 → R3 defined by:

L

xy
z

 =

x+ y
y + z

0



Call u =

xy
z

 , v =

ab
c

. Now check linearity.

37



L(ru+ sv) = L(r

xy
z

+ s

ab
c

)

= L(

rxry
rz

+

sasb
sc

)

= L

rx+ sa
ry + sb
rz + sx



=

rx+ sa+ ry + sb
ry + sb+ rz + sx

0


On the other hand,

rL(u) + sL(v) = rL

xy
z

+ sL

ab
c



= r

x+ y
y + z

0

+ s

a+ b
b+ c

0



=

rx+ ry
ry + rz

0

+

sa+ sb
sb+ sc

0



=

rx+ sa+ ry + sb
ry + sb+ rz + sx

0


Then the two sides of the linearity requirement are equal, so L is a linear
transformation.

Remark We can write L using a matrix like so:

L

xy
z

 =

x+ y
y + z

0

 =

1 1 0
0 1 1
0 0 0


xy
z


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We previously checked that matrix multiplication on vectors obeyed the rule
M(ru + sv) = rMu + sMv, so matrix multiplication is linear. As such, our
check on L was guaranteed to work. In fact, matrix multiplication on vectors
is a linear transformation.

Example Let V be the vector space of polynomials of finite degree with
standard addition and scalar multiplication.

V = {a0 + a1x+ . . .+ anx
n|n ∈ N, ai ∈ R}

Let L : V → V be the derivative d
dx

. For p1 and p2 polynomials, the rules of
differentiation tell us that

d

dx
(rp1 + sp2) = r

dp1

dx
+ s

dp2

dx
Thus, the derivative is a linear function from the set of polynomials to itself.

We can represent a polynomial as a semi-infinite vector, like so:

a0 + a1x+ . . .+ anx
n ←→



a0

a1
...
an
0
0
...


Then we have:

d

dx
(a0 + a1x+ . . .+ anx

n) = a1 + 2a2x+ . . .+ nanx
n−1 ←→



a1

2a2
...

nan
0
0
...


One could then write the derivative as an infinite matrix:

d

dx
←→


0 1 0 0 . . .
0 0 2 0 . . .
0 0 0 3 . . .
...

...


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Foreshadowing Dimension. You probably have some intuitive notion of
what dimension means, though we haven’t actually defined the idea of di-
mension mathematically yet. Some of the examples of vector spaces we have
worked with have been finite dimensional. (For example, Rn will turn out
to have dimension n.) The polynomial example above is an example of an
infinite dimensional vector space.

Roughly speaking, dimension is the number of independent directions
available. To figure out dimension, I stand at the origin, and pick a direction.
If there are any vectors in my vector space that aren’t in that direction, then
I choose another direction that isn’t in the line determined by the direction I
chose. If there are any vectors in my vector space not in the plane determined
by the first two directions, then I choose one of them as my next direction.
In other words, I choose a collection of independent vectors in the vector
space. The size of a minimal set of independent vectors is the dimension of
the vector space.

For finite dimensional vector spaces, linear transformations can always
be represented by matrices. For that reason, we will start studying matrices
intensively in the next few lectures.

References

Hefferon, Chapter Three, Section II. (Note that Hefferon uses the term ho-
momorphism for a linear map. ‘Homomorphism’ is a very general term which
in mathematics means ‘Structure-preserving map.’ A linear map preserves
the linear structure of a vector space, and is thus a type of homomorphism.)

Wikipedia:

• Linear Transformation

• Dimension

Review Questions

1. Show that the pair of conditions:

L(u+ v) = L(u) + L(v)

L(cv) = cL(v)
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is equivalent to the single condition:

L(ru+ sv) = rL(u) + sL(v)

Your answer should have two parts. Show that (1, 2) ⇒ (3), and then
show that (3)⇒ (1, 2).

2. Let Pn be the space of degree n polynomials in the variable t. Suppose L
is a linear transformation from P2 → P3 such that L(1) = 4, L(t) = t3,
and L(t2) = t− 1.

• Find L(1 + t+ 2t2).

• Find L(a+ bt+ ct2).

• Find all values a, b, c such that L(a+ bt+ ct2) = 1 + 3t+ 2t3.

3. Show that integration is a linear transformation on the vector space of
polynomials. What would a matrix for integration look like?
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8 Matrices

Definition An r × k matrix M = (mi
j) for i = 1, . . . , r; j = 1, . . . , k is a

rectangular array of real (or complex) numbers:

M =


m1

1 m1
2 . . . m1

k

m2
1 m2

2 . . . m2
k

...
...

...
mr

1 mr
2 . . . mr

k


The numbers mi

j are called entries . The superscript indexes the row of
the matrix and the subscript indexes the column of the matrix in which mi

j

appears.

It is often useful to consider matrices whose entries are more general than
the real numbers, so we allow that possibility.

An r × 1 matrix v = (vr1) = (vr) is called a column vector , written

v =


v1

v2

...
vr

 .

A 1× k matrix is (perhaps unsurprisingly) called a row vector .
Matrices are a very useful and efficient way to store information:

Example In computer graphics, you may have encountered image files with
a .gif extension. These files are actually just matrices: at the start of the file
the size of the matrix is given, and then each entry of the matrix is a number
indicating the color of a particular pixel in the image.

The resulting matrix then has its rows shuffled a bit: by listing, say, every
eighth row, then a web browser downloading the file can start displaying an
incomplete version of the picture before the download is complete.

Finally, a compression algorithm is applied to the matrix to reduce the
size of the file.

Example Graphs occur in many applications, ranging from telephone net-
works to airline routes. In the subject of graph theory , a graph is just a
collection of vertices and some edges connecting vertices. A matrix can be
used to indicate how many edges attach one vertex to another.
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For example, the graph pictured above would have the following matrix,
where mi

j indicates the number of edges between the vertices labeled i and j:

M =


1 2 1 1
2 0 1 0
1 1 0 1
1 0 1 3


This is an example of a symmetric matrix, since mi

j = mj
i .

The space of r × k matrices M r
k is a vector space with the addition and

scalar multiplication defined as follows:

M +N = (mi
j) + (nij) = (mi

j + nij)

rM = r(mi
j) = (rmi

j)

In other words, addition just adds corresponding entries in two matrices, and
scalar multiplication multiplies every entry. Notice that Mn

1 = Rn is just the
vector space of column vectors.

Recall that r×k matrices can be used to represent linear transformations
Rk → Rr via

MV = (
k∑
j=1

mi
jv
j) .

Here we multiply an r×k matrix by a k×1 vector to produce a r×1 vector.
Likewise, we can use matrices N = (nij) to represent linear transforma-

tions
M s

k
N−→M r

k
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via (L(M)il) = (
∑k
j=1 n

i
jm

j
l ). This rule obeys linearity.

Notice that in order for the multiplication to make sense, the columns
and rows must match. For an r× k matrix M and an s×m matrix N , then
to make the product MN we must have k = s. Likewise, for the product
NM , it is required that m = r. A common shorthand for keeping track of
the sizes of the matrices involved in a given product is:

(r × k)× (k ×m) = (r ×m)

Example Multiplying a (3× 1) matrix and a (1× 2) matrix yields a (3× 2)
matrix. 1

3
2

(2 3
)

=

1 · 2 1 · 3
3 · 2 3 · 3
2 · 2 2 · 3

 =

2 3
6 9
4 6


Matrix Terminology The entries mi

i are called diagonal, and the set {m1
1,

m2
2, . . .} is called the diagonal of the matrix .

Any r × r matrix is called a square matrix . A square matrix that is zero
for all non-diagonal entries is called a diagonal matrix.

The r × r diagonal matrix with all diagonal entries equal to 1 is called
the identity matrix , Ir, or just 1. The identity matrix is spacial because

IrM = MIk = M

for all M of size r × k.

In the matrix given by the product of matrices above, the diagonal entries
are 2 and 9. An example of a diagonal matrix is2 0 0

0 3 0
0 0 0

 .

Definition The transpose of an r× k matrix M = (mi
j) is the k× r matrix

with entries
MT = (m̄i

j)

with m̄i
j = mj

i .
A matrix M is symmetric if M = MT .
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Example

(
2 5 6
1 3 4

)T
=

2 1
5 3
6 4


Observations

• Only square matrices can be symmetric.

• The transpose of a column vector is a row vector, and vice-versa.

• Taking the transpose of a matrix twice does nothing. i.e., (MT )T = M .

Theorem 8.1 (Transpose and Multiplication). Let M,N be matrices such
that MN makes sense. Then (MN)T = NTMT .

References

Hefferon, Chapter Three, Section IV, parts 1-3.
Wikipedia:

• Matrix Multiplication

Review Questions

1. Above, we showed that left multiplication by an r× k matrix N was a

linear transformation M s
k

N−→ M r
k . Show that right multiplication by

an s × m matrix R is a linear transformation M s
k

R−→ M s
m. In other

words, show that right matrix multiplication obeys linearity.

2. Prove the theorem (MN)T = NTMT .

3. Let M be any m × n matrix. Show that MTM is a symmetric n × n
matrix.

4. Let x =


x1
...
xn

 and y =


y1
...
yn

 be column vectors. Prove that the dot

product x y = xT 1 y.
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5. Explain what happens to a matrix when:

(i) You multiply it on the left by a diagonal matrix.

(ii) You multiply it on the right by a diagonal matrix.

Give a few simple examples before you start explaining.
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9 Properties of Matrices

9.1 Block Matrices

It is often convenient to partition a matrix M into smaller matrices called
blocks, like so:

M =


1 2 3 1
4 5 6 0
7 8 9 1
0 1 2 0

 =

(
A B
C D

)

Here A =

1 2 3
4 5 6
7 8 9

, B =

1
0
1

, C =
(
0 1 2

)
, D = (0).

• The blocks of a block matrix must fit together to form a rectangle. So(
B A
D C

)
makes sense, but

(
C B
D A

)
does not.

• There are many ways to cut up an n × n matrix into blocks. Often
context or the entries of the matrix will suggest a useful way to divide
the matrix into blocks. For example, if there are large blocks of zeros
in a matrix, or blocks that look like an identity matrix, it can be useful
to partition the matrix accordingly.

• Matrix operations on block matrices can be carried out by treating the
blocks as matrix entries. In the example above,

M2 =

(
A B
C D

)(
A B
C D

)

=

(
A2 +BC AB +BD
CA+DC CB +D2

)
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Computing the individual blocks, we get:

A2 +BC =

 30 37 44
66 81 96
102 127 152



AB +BD =

 4
10
16



CA+DC =

18
21
24


CB +D2 = (2)

Assembling these pieces into a block matrix gives:
30 37 44 4
66 81 96 10
102 127 152 16
4 10 16 2


This is exactly M2.

9.2 The Algebra of Square Matrices

Not every pair of matrices can be multiplied. When multiplying two matrices,
the number of rows in the left matrix must equal the number of columns in
the right. For an r × k matrix M and an s × l matrix N , then we must
have k = s.

This is not a problem for square matrices of the same size, though. Two
n×n matrices can be multiplied in either order. For a single matrix M ∈Mn

n ,
we can form M2 = MM , M3 = MMM , and so on, and define M0 = In, the
identity matrix.

As a result, any polynomial equation can be evaluated on a matrix.

Example Let f(x) = x− 2x2 + 3x3.

Let M =

(
1 t
0 1

)
. Then:

M2 =

(
1 2t
0 1

)
,M3 =

(
1 3t
0 1

)
, . . .
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Hence:

f(M) =

(
1 t
0 1

)
− 2

(
1 2t
0 1

)
+ 3

(
1 3t
0 1

)

=

(
2 6t
0 2

)

Suppose f(x) is any function defined by a convergent Taylor Series:

f(x) = f(0) + f ′(0)x+
1

2!
f ′′(0)x2 + . . .

Then we can define the matrix function by just plugging in M :

f(M) = f(0) + f ′(0)M +
1

2!
f ′′(0)M2 + . . .

There are additional techniques to determine the convergence of Taylor Series
of matrices, based on the fact that the convergence problem is simple for
diagonal matrices. It also turns out that exp(M) = 1+M+ 1

2
M2 + 1

3!
M3 + . . .

always converges.

Matrix multiplication does not commute. For generic n×n square ma-
trices M and N , then MN 6= NM . For example:(

1 1
0 1

)(
1 0
1 1

)
=

(
2 1
1 1

)

On the other hand: (
1 0
1 1

)(
1 1
0 1

)
=

(
1 1
1 2

)
Since n × n matrices are linear transformations Rn → Rn, we can see

that the order of successive linear transformations matters. For two linear
transformations K and L taking Rn → Rn, and v ∈ Rn, then in general

K(L(v)) 6= L(K(v)) .

Finding matrices such that MN = NM is an important problem in mathe-
matics.
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Trace

Matrices contain a great deal of information, so finding ways to extract es-
sential information is useful.

Definition The trace of a square matrice M = (mi
j) is the sum of its diag-

onal entries.

trM =
n∑
i=1

mi
i .

Example

tr

2 7 6
9 5 1
4 3 8

 = 2 + 5 + 8 = 15

While matrix multiplication does not commute, the trace of a product of
matrices does not depend on the order of multiplication:

tr(MN) = tr(
∑
l

M i
lN

l
j)

=
∑
i

∑
l

M i
lN

l
i

=
∑
l

∑
i

N l
iM

i
l

= tr(
∑
i

N l
iM

i
l )

= tr(NM).

Thus,
tr(MN) = tr(NM)

for any square matrices M and N .
In the previous example,

M =

(
1 1
0 1

)
, N =

(
1 0
1 1

)
.

MN =

(
2 1
1 1

)
6= NM =

(
1 1
1 2

)
.
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However, tr(MN) = 2 + 1 = 3 = 1 + 2 = tr(NM).
Another useful property of the trace is that:

trM = trMT

This is true because the trace only uses the diagonal entries, which are fixed

by the transpose. For example: tr

(
1 1
2 3

)
= 4 = tr

(
1 2
1 3

)
= tr

(
1 2
1 3

)T
Finally, trace is a linear transformation from matrices to the real numbers.

This is easy to check.

Linear Systems Redux Recall that we can view a linear system as a ma-
trix equation

MX = V,

with M an r × k matrix of coefficients, X a k × 1 matrix of unknowns, and
V an r × 1 matrix of constants. If M is a square matrix, then the number
of equations r is the same as the number of unknowns k, so we have hope of
finding a single solution.

Above we discussed functions of matrices. An extremely useful function
would be f(M) = 1

M
, where M 1

M
= I. If we could compute 1

M
, then we

would multiply both sides of the equation MX = V by 1
M

to obtain the
solution immediately: X = 1

M
V .

Clearly, if the linear system has no solution, then there can be no hope of
finding 1

M
, since if it existed we could find a solution. On the other hand, if

the system has more than one solution, it also seems unlikely that 1
M

would
exist, since X = 1

M
V yields only a single solution.

Therefore 1
M

only sometimes exists. It is called the inverse of M , and is
usually written M−1.

References

Wikipedia:

• Trace (Linear Algebra)

• Block Matrix
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Review Questions

1. Let A =

(
1 2 0
3 −1 4

)
. Find AAT and ATA. What can you say about

matrices MMT and MTM in general? Explain.

2. Compute exp(A) for the following matrices:

• A =

(
λ 0
0 λ

)

• A =

(
1 λ
0 1

)

• A =

(
0 λ
0 0

)

3. Suppose ad− bc 6= 0, and let M =

(
a b
c d

)
.

(a) Find a matrix M−1 such that MM−1 = I.

(b) Explain why your result explains what you found in a previous
homework exercise.

(c) Compute M−1M .

4. Let M =



1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 0 2 1 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 3 1
0 0 0 0 0 0 0 3


. Divide M into named blocks, and

then multiply blocks to compute M2.
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10 Inverse Matrix

Definition A square matrix M is invertible (or nonsingular) if there exists
a matrix M−1 such that

M−1M = I = M−1M.

Inverse of a 2× 2 Matrix Let M and N be the matrices:

M =

(
a b
c d

)
, N =

(
d −b
−c a

)

Multiplying these matrices gives:

MN =

(
ad− bc 0

0 ad− bc

)
= (ad− bc)I

Then M−1 = 1
ad−bc

(
d −b
−c a

)
, so long as ad− bc 6= 0.

10.1 Three Properties of the Inverse

1. If A is a square matrix and B is the inverse of A, then A is the inverse
of B, since AB = I = BA. Then we have the identity:

(A−1)−1 = A

2. Notice that B−1A−1AB = B−1IB = I = ABB−1A−1. Then:

(AB)−1 = B−1A−1

Then much like the transpose, taking the inverse of a product reverses
the order of the product.

3. Finally, recall that (AB)T = BTAT . Since IT = I, then (A−1A)T =
AT (A−1)T = I. Similarly, (AA−1)T = (A−1)TAT = I. Then:

(A−1)T = (AT )−1

As such, we could even write A−T for the inverse of the transpose of A
(or equivalently the transpose of the inverse).
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10.2 Finding Inverses

Suppose M is a square matrix and MX = V is a linear system with unique
solution X0. Since there is a unique solution, M−1V , then the reduced row
echelon form of the linear system has an identity matrix on the left:(

M V
)
∼
(
I M−1V

)
Solving the linear system MX = V then tells us what M−1V is.

To solve many linear systems at once, we can consider augmented matrices
with a matrix on the right side instead of a column vector, and then apply
Gaussian row reduction to the left side of the matrix. Once the identity
matrix is on the left side of the augmented matrix, then the solution of each
of the individual linear systems is on the right.

To compute M−1, we would like M−1, rather than M−1 to appear on the
right side of our augmented matrix. This is achieved by solving the collection
of systems MX = ek, where ek is the column vector of zeroes with a 1 in the
kth entry. I.e. then×n identity matrix can be viewed as a bunch of column
vectors In = (e1 e2 · · · en). So, putting the ek’s together into an identity
matrix, we get: (

M I
)
∼
(
I M−1I

)
=
(
I M−1

)

Example Find

−1 2 −3
2 1 0
4 −2 5


−1

. Start by writing the augmented matrix,

then apply row reduction to the left side.


−1 2 −3 1 0 0

2 1 0 0 1 0

4 −2 5 0 0 1

 ∼


1 −2 3 1 0 0

0 5 −6 2 1 0

0 6 −7 4 0 1



∼


1 0 3

5
−1
4

2
5

0

0 1 −6
5

2
5

1
5

0

0 0 1
5

4
5

−6
5

1



∼


1 0 1 −5 4 0

0 1 0 10 −7 6

0 0 1 8 −6 5


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At this point, we know M−1 assuming we didn’t goof up. However, row
reduction is a lengthy and arithmetically involved process, so we should check
our answer, by confirming that MM−1 = I (or if you prefer M−1M = I):

MM−1 =

−1 2 −3
2 1 0
4 −2 5


−5 4 0

10 −7 6
8 −6 5


The product of the two matrices is indeed the identity matrix, so we’re done.

10.3 Linear Systems and Inverses

If M−1 exists and is known, then we can immediately solve linear systems
associated to M .

Example Consider the linear system:

−x+2y −3z = 1

2x +y = 2

4x−2y +5z = 0

The associated matrix equation is MX =

1
2
0

. Then:

xy
z

 =

−1 2 −3
2 1 0
4 −2 5


−11

2
0

 =

−5 4 0
10 −7 6
8 −6 5


1

2
0

 =

 3
−4
−4



Then

xy
z

 =

 3
−4
−4

. In summary, when M−1 exists, then

MX = V ⇒ X = M−1V .

10.4 Homogeneous Systems

Theorem 10.1. A square matrix M is invertible if and only if the homoge-
neous system

MX = 0

has no non-zero solutions.
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Proof. First, suppose that M−1 exists. Then MX = 0 ⇒ X = M−10 = 0.
Thus, if M is invertible, then MX = 0 has no non-zero solutions.

On the other hand, MX = 0 always has the solution X = 0. If no other
solutions exist, then M can be put into reduced row echelon form with every
variable a pivot. In this case, M−1 can be computed using the process in the
previous section.

10.5 Bit Matrices

In computer science, information is recorded using binary strings of data.
For example, the following string contains an English word:

011011000110100101101110011001010110000101110010

A bit is the basic unit of information, keeping track of a single one or zero.
Computers can add and multiply individual bits very quickly.

Consider the set Z2 = {0, 1} with addition and multiplication given by
the following tables:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Notice that −1 = 1, since 1 + 1 = 0.
It turns out that Z2 is just as good as the real or complex numbers (they

are all fields), so we can apply all of the linear algebra we have learned thus
far to matrices with Z2 entries. A matrix with entries in Z2 is sometimes
called a bit matrix.

Example

1 0 1
0 1 1
1 1 1

 is an invertible matrix over Z2:

1 0 1
0 1 1
1 1 1


−1

=

0 1 1
1 0 1
1 1 1


This can be easily verified by multiplying:1 0 1

0 1 1
1 1 1


0 1 1

1 0 1
1 1 1

 =

1 0 0
0 1 0
0 0 1


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Application: Cryptography A very simple way to hide information is to
use a substitution cipher, in which the alphabet is permuted and each letter in
a message is systematically exchanged for another. For example, the ROT-13
cypher just exchanges a letter with the letter thirteen places before or after
it in the alphabet. For example, HELLO becomes URYYB. Applying the
algorithm again decodes the message, turning URYYB back into HELLO.
Substitution ciphers are easy to break, but the basic idea can be extended
to create very difficult to break cryptographic systems. For example, a one-
time pad is a system that uses a different substitution for each letter in the
message. So long as a particular set of substutions is not used on more than
one message, the one-time pad is unbreakable.

English characters are often stored in computers in the ASCII format. In
ASCII, a single character is represented by a string of eight bits, which we
can consider as a vector in Z8

2. One way to create a substitution cipher, then,
is to choose an 8× 8 invertible bit matrix M , and multiply each letter of the
message by M . Then to decode the message, each string of eight characters
would be multiplied by M−1.

To make the message a bit tougher to decode, one could consider pairs (or
longer sequences) of letters as a single vector in Z16

2 (or a higher-dimensional
space), and then use an appropriately-sized invertible matrix.

References

Hefferon: Chapter Three, Section IV.2
Wikipedia: Invertible Matrix

Review Questions

1. Let M be a square matrix. Explain why the following statements are
equivalent:

i. MX = V has a unique solution for every column vector V .

ii. M is non-singular.

(Show that (i)⇒ (ii) and (ii)⇒ (i).)

2. Find formulas for the inverses of the following matrices, when they are
not singular:
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i.

1 a b
0 1 c
0 0 1



ii.

a b c
0 d e
0 0 f


When are these matrices singular?

3. Write down all 2×2 bit matrices and decide which of them are singular.
For those which are not singular, pair them with their inverse.
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11 LU Decomposition

Certain matrices are easier to work with than others. In this section, we
will see how to write any square2 matrix M as the product of two simpler
matrices. We’ll write

M = LU ,

where:

• L is lower triangular . This means that all entries above the main
diagonal are zero. In notation, L = (lij) with lij = 0 for all j > i.

L =


l11 0 0 . . .
l21 l22 0 . . .
l31 l32 l33 . . .
...

...
...

. . .


• U is upper triangular . This means that all entries below the main

diagonal are zero. In notation, U = (uij) with uij = 0 for all j < i.

U =


u1

1 u1
2 u1

3 . . .
0 u2

2 u2
3 . . .

0 0 u3
3 . . .

...
...

...
. . .


M = LU is called an LU decomposition of M .

This is a useful trick for many computational reasons. It is much easier
to compute the inverse of an upper or lower triangular matrix. Since inverses
are useful for solving linear systems, this makes solving any linear system
associated to the matrix much faster as well. We haven’t talked about de-
terminants yet, but suffice it to say that they are important and very easy
to compute for triangular matrices.

Example Linear systems associated to triangular matrices are very easy to
solve by back substitution.(

a b 1
0 c e

)
⇒ y =

e

c
, x =

1

a
(1− be

c
)

2The case where M is not square is dealt with at the end of the lecture.
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1 0 0 d
a 1 0 e
b c 1 f

⇒ x = d , y = e− ad , z = f − bd− c(e− ad)

For lower triangular matrices, back substitution gives a quick solution; for
upper triangular matrices, forward substitution gives the solution.

11.1 Using LU Decomposition to Solve Linear Systems

Suppose we have M = LU and want to solve the system

MX = LUX = V.

• Step 1: Set W =

uv
w

 = UX.

• Step 2: Solve the system LW = V . This should be simple by forward
substitution since L is lower triangular. Suppose the solution to LW =
V is W0.

• Step 3: Now solve the system UX = W0. This should be easy by
backward substitution, since U is upper triangular. The solution to
this system is the solution to the original system.

We can think of this as using the matrix L to perform row operations on the
matrix U in order to solve the system; this idea will come up again when we
study determinants.

Example Consider the linear system:

6x+18y +3z = 3

2x+12y + = 19

4x+15y +3z = 0

An LU decomposition for the associated matrix M is:6 18 3
2 12 1
4 15 3

 =

3 0 0
1 6 0
2 3 1


2 6 1

0 1 0
0 0 1

 .
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• Step 1: Set W =

uv
w

 = UX.

• Step 2: Solve the system LW = V :

2 0 0
1 6 0
2 3 1


uv
w

 =

 3
19
0


By substitution, we get u = 1, v = 3, and w = −11. Then

W0 =

 1
3
−11


• Step 3: Solve the system UX = W0.2 6 1

0 1 0
0 0 1


xy
z

 =

 1
3
−11


Back substitution gives z = −11, y = 3, and x = −6.

Then X =

 −6
3
−11

, and we’re done.

11.2 Finding an LU Decomposition.

For any given matrix, there are actually many different LU decompositions.
However, there is a unique LU decomposition in which the L matrix has ones
on the diagonal; then L is called a lower unit triangular matrix .

To find the LU decomposition, we’ll create two sequences of matrices
L0, L1, . . . and U0, U1, . . . such that at each step, LiUi = M . Each of the Li
will be lower triangular, but only the last Ui will be upper triangular.

Start by setting L0 = I and U0 = M , because L0U0 = M .

Next, use the first row of U0 to zero out the first entry of every row

below it. For our running example, U0 = M =

6 18 3
2 12 1
4 15 3

, so the second

61



row minus 1
3

of the first row will zero out the first entry in the second row.
Likewise, the third row minus 2

3
of the first row will zero out the first entry

in the third row.
Set L1 to be the lower triangular matrix whose first column is filled with

the constants used to zero out the first column of M . Then L1 =


1 0 0
1
3

1 0
2
3

0 1

.

Set U1 to be the matrix obtained by zeroing out the first column of M . Then

U1 =

6 18 3
0 6 0
0 3 1

.

Now repeat the process by zeroing the second column of U1 below the
diagonal using the second row of U1, and putting the corresponding entries
into L1. The resulting matrices are L2 and U2. For our example, L2 =

1 0 0
1
3

1 0
2
3

1
2

1

, and U2 =

6 18 3
0 6 0
0 0 1

. Since U2 is upper-triangular, we’re done.

Inserting the new number into L1 to get L2 really is safe: the numbers in the
first column don’t affect the second column of U1, since the first column of
U1 is already zeroed out.

If the matrix you’re working with has more than three rows, just continue
this process by zeroing out the next column below the diagonal, and repeat
until there’s nothing left to do.

The fractions in the L matrix are admittedly ugly. For two matrices
LU , we can multiply one entire column of L by a constant λ and divide the
corresponding row of U by the same constant without changing the product
of the two matrices. Then:
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LU =


1 0 0
1
3

1 0
2
3

1
2

1

 I
6 18 3

0 6 0
0 0 1



=


1 0 0
1
3

1 0
2
3

1
2

1


3 0 0

0 6 0
0 0 1




1
3

0 0

0 1
6

0

0 0 1


6 18 3

0 6 0
0 0 1



=

3 0 0
1 6 0
2 3 1


2 6 1

0 1 0
0 0 1

 .
The resulting matrix looks nicer, but isn’t in standard form.

For matrices that are not square, LU decomposition still makes sense.
Given an m × n matrix M , for example we could write M = LU with L
a square lower unit triangular matrix, and U a rectangular matrix. Then
L will be an m × m matrix, and U will be an m × n matrix (of the same
shape as M). From here, the process is exactly the same as for a square
matrix. We create a sequence of matrices Li and Ui that is eventually the
LU decomposition. Again, we start with L0 = I and U0 = M .

Example Let’s find the LU decomposition of M = U0 =

(
−2 1 3
−4 4 1

)
. Since

M is a 2× 3 matrix, our decomposition will consist of a 2× 2 matrix and a

2× 3 matrix. Then we start with L0 = I2 =

(
1 0
0 1

)
.

The next step is to zero-out the first column of M below the diagonal.
There is only one row to cancel, then, and it can be removed by subtracting
2 times the first row of M to the second row of M . Then:

L1 =

(
1 0
2 1

)
, U1 =

(
−2 1 3
0 6 −5

)
Since U1 is upper triangular, we’re done. With a larger matrix, we would
just continue the process.

11.3 Block LU Decomposition

Let M be a square block matrix with square blocks X, Y, Z,W such that X−1

exists. Then M can be decomposed with an LDU decomposition, where D
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is block diagonal, as follows:

M =

(
X Y
Z W

)

Then:

M =

(
I 0

ZX−1 I

)(
X 0
0 W − ZX−1Y

)(
I X−1Y
0 I

)
.

This can be checked explicitly simply by block-multiplying these three ma-
trices.

Example For a 2× 2 matrix, we can regard each entry as a block.(
1 2
3 4

)
=

(
1 0
3 1

)(
1 0
0 −2

)(
1 2
0 1

)

By multiplying the diagonal matrix by the upper triangular matrix, we get
the standard LU decomposition of the matrix.

References

Wikipedia:

• LU Decomposition

• Block LU Decomposition

Review Questions

1. Consider the linear system:

x1 = v1

l21x
1 +x2 = v2

...
...

ln1x
1 +ln2x

2 . . .+ xn = vn

i. Find x1.
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ii. Find x2.

iii. Find x3.

k. Try to find a formula for xk.

2. Let M =

(
X Y
Z W

)
be a square n× n block matrix with W invertible.

i. If W is invertible, what size are X, Y , and Z?

ii. Find a UDL decomposition for M . In other words, fill in the stars
in the following equation:(

X Y
Z W

)
=

(
I ∗
0 I

)(
∗ 0
0 ∗

)(
I 0
∗ I

)
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12 Elementary Matrices and Determinants

Given a square matrix, is there an easy way to know when it is invertible?
Answering this fundamental question is our next goal.

For small cases, we already know the answer. If M is a 1×1 matrix, then
M = (m)⇒M−1 = (1/m). Then M is invertible if and only if m 6= 0.

For M a 2× 2 matrix, we showed in Section 10 that if M =

(
m1

1 m1
2

m2
1 m2

2

)
,

then M−1 = 1
m1

1m
2
2−m

1
2m

2
1

(
m2

2 −m1
2

−m2
1 m1

1

)
. Thus M is invertible if and only if

m1
1m

2
2 −m1

2m
2
1 6= 0 .

For 2× 2 matrices, this quantity is called the determinant of M .

detM = det

(
m1

1 m1
2

m2
1 m2

2

)
= m1

1m
2
2 −m1

2m
2
1

Example For a 3×3 matrix, M =

m
1
1 m1

2 m1
3

m2
1 m2

2 m2
3

m3
1 m3

2 m3
3

, then (by the first review

question) M is non-singular if and only if:

detM = m1
1m

2
2m

3
3−m1

1m
2
3m

3
2+m1

2m
2
3m

3
1−m1

2m
2
1m

3
3+m1

3m
2
1m

3
2−m1

3m
2
2m

3
1 6= 0.

Notice that in the subscripts, each ordering of the numbers 1, 2, and 3
occurs exactly once. Each of these is a permutation of the set {1, 2, 3}.

12.1 Permutations

Consider n objects labeled 1 through n and shuffle them. Each possible
shuffle is called a permutation σ. For example, here is an example of a
permutation of 5:

σ =

[
1 2 3 4 5
4 2 5 1 3

]
=

[
1 2 3 4 5

σ(1) σ(2) σ(3) σ(4) σ(5)

]

We can consider σ as a function, and write σ(3) = 5, for example. Since the
top line of σ is always the same, we can omit the top line and just write:

σ =
[
σ(1) σ(2) σ(3) σ(4) σ(5)

]
=
[
4 2 5 1 3

]
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The mathematics of permutations is extensive and interesting; there are
a few properties of permutations that we’ll need.

• There are n! permutations of n distinct objects, since there are n choices
for the first object, n− 1 choices for the second once the first has been
chosen, and so on.

• Every permutation can be built up by successively swapping pairs of
objects. For example, to build up the permutation

[
3 1 2

]
from the

trivial permutation
[
1 2 3

]
, you can first swap 2 and 3, and then

swap 1 and 3.

• For any given permutation σ, there is some number of swaps it takes to
build up the permutation. (It’s simplest to use the minimum number of
swaps, but you don’t have to: it turns out that any way of building up
the permutation from swaps will have have the same parity of swaps,
either even or odd.) If this number happens to be even, then σ is
called an even permutation; if this number is odd, then σ is an odd
permutation. In fact, n! is even for all n ≥ 2, and exactly half of the
permutations are even and the other half are odd. It’s worth noting
that the trivial permutation (which sends i→ i for every i) is an even
permutation, since it uses zero swaps.

Definition The sign function is a function sgn(σ) that sends permutations
to the set {−1, 1}, defined by:

sgn(σ) =

{
1 if σ is even;
−1 if σ is odd.

We can use permutations to give a definition of the determinant.

Definition For an n×n matrix M , the determinant of M (sometimes writ-
ten |M |) is given by:

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) . . .m

n
σ(n).

The sum is over all permutations of n. Each summand is a product of a
single entry from each row, but with the column numbers shuffled by the
permutation σ.
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The last statement about the summands yields a nice property of the
determinant:

Theorem 12.1. If M has a row consisting entirely of zeros, then mi
σ(i) = 0

for every σ. Then detM = 0.

Example Because there are many permutations of n, writing the determi-
nant this way for a general matrix gives a very long sum. For n = 4, there
are 24 = 4! permutations, and for n = 5, there are already 120 = 5! permu-
tations.

For a 4× 4 matrix, M =


m1

1 m1
2 m1

3 m1
4

m2
1 m2

2 m2
3 m2

4

m3
1 m3

2 m3
3 m3

4

m4
1 m4

2 m4
3 m4

4

, then detM is:

detM = m1
1m

2
2m

3
3m

4
4 −m1

1m
2
3m

3
2m

4
4 −m1

1m
2
2m

3
4m

4
3

− m1
2m

2
1m

3
3m

4
4 +m1

1m
2
3m

3
4m

4
2 +m1

1m
2
4m

3
2m

4
3

+ m1
2m

2
3m

3
1m

4
4 +m1

2m
2
1m

3
4m

4
3 ± 16 more terms.

This is very cumbersome.
Luckily, it is very easy to compute the determinants of certain matrices.

For example, if M is diagonal, then M i
j = 0 whenever i 6= j. Then all

summands of the determinant involving off-diagonal entries vanish, so:

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) . . .m

n
σ(n) = m1

1m
2
2 . . .m

n
n.

Thus, the determinant of a diagonal matrix is just the product of its diagonal
entries.

Since the identity matrix is diagonal with all diagonal entries equal to
one, we have:

det I = 1.

We would like to use the determinant to decide whether a matrix is invert-
ible or not. Previously, we computed the inverse of a matrix by applying row
operations. As such, it makes sense to ask what happens to the determinant
when row operations are applied to a matrix.

Swapping Rows Swapping rows i and j (with i < j) in a matrix changes
the determinant. For a permutation σ, let σ̂ be the permutation obtained by
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swapping i and j. The sign of σ̂ is the opposite of the sign of σ. Let M be a
matrix, and M ′ be the same matrix, but with rows i and j swapped. Then
the determinant of M ′ is:

detM ′ =
∑
σ

sgn(σ)m1
σ(1) . . .m

j
σ(i) . . .m

i
σ(j) . . .m

n
σ(n)

=
∑
σ

sgn(σ)m1
σ(1) . . .m

i
σ(j) . . .m

j
σ(i) . . .m

n
σ(n)

=
∑
σ

(−sgn(σ̂))m1
σ̂(1) . . .m

i
σ̂(j) . . .m

j
σ̂(i) . . .m

n
σ̂(n)

= −
∑
σ̂

sgn(σ̂)m1
σ̂(1) . . .m

i
σ̂(j) . . .m

j
σ̂(i) . . .m

n
σ̂(n)

= − detM.

Thus we see that swapping rows changes the sign of the determinant. I.e.

detSijM = − detM .

Applying this result to M = I (the identity matrix) yields

detSij = −1 .

This implies another nice property of the determinant. If two rows of the
matrix are identical, then swapping the rows changes the sign of the matrix,
but leaves the matrix unchanged. Then we see the following:

Theorem 12.2. If M has two identical rows, then detM = 0.

12.2 Elementary Matrices

Our next goal is to find matrices that emulate the Gaussian row operations
on a matrix. In other words, for any matrix M , and a matrix M ′ equal to M
after a row operation, we wish to find a matrix R such that M ′ = RM .

We will first find a matrix that, when it multiplies a matrix M , rows i
and j of M are swapped.

Let R1 through Rn denote the rows of M , and let M ′ be the matrix M
with rows i and j swapped. Then M and M ′ can be regarded as a block
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matrices:

M =



...
Ri

...
Rj

...


, and M ′ =



...
Rj

...
Ri

...


.

Then notice that:

M ′ =



...
Rj

...
Ri

...


=



1
. . .

0 1
. . .

1 0
. . .

1





...
Ri

...
Rj

...


The matrix is just the identity matrix with rows i and j swapped. This is
called an elementary matrix Ei

j. Then, symbolically,

M ′ = Ei
jM

Because det I = 1 and swapping a pair of rows changes the sign of the
determinant, we have found that

detEi
j = −1

References
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Wikipedia:
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Review Questions

1. Let M =

m
1
1 m1

2 m1
3

m2
1 m2

2 m2
3

m3
1 m3

2 m3
3

. Use row operations to put M into row

echelon form. For simplicity, assume that m1
1 6= 0 6= m1

1m
2
2 −m2

1m
1
2.

Prove that M is non-singular if and only if:

m1
1m

2
2m

3
3−m1

1m
2
3m

3
2 +m1

2m
2
3m

3
1−m1

2m
2
1m

3
3 +m1

3m
2
1m

3
2−m1

3m
2
2m

3
1 6= 0

2. i. What does the matrix E1
2 =

(
0 1
1 0

)
do to M =

(
a b
d c

)
under left

multiplication? What about right multiplication?

ii. Find elementary matrices R1(λ) and R2(λ) that respectively mul-
tiply rows 1 and 2 of M by λ but otherwise leave M the same
under left multiplication.

iii. Find a matrix S1
2(λ) that adds a multiple λ of row 2 to row 1

under left multiplication.

3. Let M a matrix and Ei
j the elementary matrix swapping two rows.

Explain every line of the series of equations proving that detM =
− det(Ei

jM).

4. The inversion number of a permutation σ is the number of pairs i <
j such that σ(i) > σ(j); it’s the number of “numbers that appear
left of smaller numbers” in the permutation. For example, for the
permutation σ = [4, 2, 3, 1], the inversion number is 5. 4 comes before
2, 3, and 1, and 2 and 3 both come before 1.

i. What is the inversion number of the permutation τi,j that ex-
changes i and j and leaves everything else alone? Is τi,j an even
or an odd permutation? What is τ 2

i,j?

ii. Given a permutation σ, we can make a new permutation τi,jσ by
exchanging the ith and jth entries of σ. If σ has N inversions and
τi,jσ has M inversions, show that N and M have different parity.
In other words, applying a transposition to σ changes the number
of inversions by an odd number.
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iii. Show that (−1)N = sgn(σ), where σ is a permutation with N in-
versions. (Hint: How many inversions does the identity permuta-
tion have? Also, recall that σ can be built up with transpositions.)
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13 Elementary Matrices and Determinants II

In the last section, we saw the definition of the determinant and derived
an elementary matrix that exchanges two rows of a matrix. Next, we need
to find elementary matrices corresponding to the other two row operations;
multiplying a row by a scalar, and adding a multiple of one row to another. As
a consequence, we will derive some important properties of the determinant.

Consider M =


R1

...
Rn

, where Ri are row vectors. Let Ri(λ) be the identity

matrix, with the ith diagonal entry replaced by λ, not to be confused with
the row vectors. I.e.

Ri(λ) =



1
. . .

λ
. . .

1

 .

Then:

M ′ = Ri(λ)M =



R1

...
λRi

...
Rn


What effect does multiplication by Ri(λ) have on the determinant?

detM ′ =
∑
σ

sgn(σ)m1
σ(1) . . . λm

i
σ(i) . . .m

n
σ(n)

= λ
∑
σ

sgn(σ)m1
σ(1) . . .m

i
σ(i) . . .m

n
σ(n)

= λ detM

Thus, multiplying a row by λ multiplies the determinant by λ. I.e.

detRi(λ)M = λ detM .

73



Since Ri(λ) is just the identity matrix with a single row multiplied by λ, then
by the above rule, the determinant of Ri(λ) is λ. Thus:

detRi(λ) = det



1
. . .

λ
. . .

1

 = λ

The final row operation is adding λRj to Ri. This is done with the
matrix Sij(λ), which is an identity matrix but with a λ in the i, j position.

Sij(λ) =



1
. . .

1 λ
. . .

1
. . .

1


Then multiplying Sij(λ) by M gives the following:

1
. . .

1 λ
. . .

1
. . .

1





...
Ri

...
Rj

...


=



...
Ri + λRj

...
Rj

...


What is the effect of multiplying by Sij(λ) on the determinant? Let M ′ =
Sij(λ)M , and let M ′′ be the matrix M but with Ri replaced by Rj.
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detM ′ =
∑
σ

sgn(σ)m1
σ(1) . . . (m

i
σ(i) + λmj

σ(j)) . . .m
n
σ(n)

=
∑
σ

sgn(σ)m1
σ(1) . . .m

i
σ(i) . . .m

n
σ(n)

+
∑
σ

sgn(σ)m1
σ(1) . . . λm

j
σ(j) . . .m

j
σ(j) . . .m

n
σ(n)

= detM + λ detM ′′

Since M ′′ has two identical rows, its determinant is 0. Then

detSij(λ)M = detM .

Notice that if M is the identity matrix, then we have

detSij(λ) = det(Sij(λ)I) = det I = 1 .

We now have an elementary matrices associated to each of the row operations.

Ei
j = I with rows i, j swapped; detEi

j = −1

Ri(λ) = I with λ in position i, i; detRi
j(λ) = λ

Sij(λ) = I with λ in position i, j; detSij(λ) = 1

We have also proved the following theorem along the way:

Theorem 13.1. If E is any of the elementary matrices Ei
j, R

i(λ), Sij(λ),
then det(EM) = detE detM .

We have seen that any matrix M can be put into reduced row echelon
form via a sequence of row operations, and we have seen that any row op-
eration can be emulated with left matrix multiplication by an elementary
matrix. Suppose that RREF(M) is the reduced row echelon form of M .
Then RREF(M) = E1E2 . . . EkM where each Ei is an elementary matrix.

What is the determinant of a square matrix in reduced row echelon form?

• If M is not invertible, then some row of RREF(M) contains only zeros.
Then we can multiply the zero row by any constant λ without chang-
ing M ; by our previous observation, this scales the determinant of M
by λ. Thus, if M is not invertible, det RREF(M) = λ det RREF(M),
and so det RREF(M) = 0.
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• Otherwise, every row of RREF(M) has a pivot on the diagonal; since
M is square, this means that RREF(M) is the identity matrix. Then
if M is invertible, det RREF(M) = 1.

• Additionally, notice that det RREF(M) = det(E1E2 . . . EkM). Then
by the theorem above, det RREF(M) = det(E1) . . . det(Ek) detM . Since
each Ei has non-zero determinant, then det RREF(M) = 0 if and only
if detM = 0.

Then we have shown:

Theorem 13.2. For any square matrix M , detM 6= 0 if and only if M is
invertible.

Since we know the determinants of the elementary matrices, we can im-
mediately obtain the following:

Corollary 13.3. Any elementary matrix Ei
j, R

i(λ), Sij(λ) is invertible, except
for Ri(0). In fact, the inverse of an elementary matrix is another elementary
matrix.

To obtain one last important result, suppose that M and N are square
n × n matrices, with reduced row echelon forms such that, for elementary
matrices Ei and Fi,

M = E1E2 . . . Ek RREF(M) ,

and
N = F1F2 . . . Fl RREF(N) = N .

If RREF(M) is the identity matrix (ie, M is invertible), then:

det(MN) = det(E1E2 . . . Ek RREF(M)F1F2 . . . Fl RREF(N))

= det(E1E2 . . . EkIF1F2 . . . Fl RREF(N))

= det(E1) . . . det(Ek) det(I) det(F1) . . . det(Fl) det(RREF(N)

= det(M) det(N)
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Otherwise, M is not invertible, and detM = 0 = det RREF(M). Then there
exists a row of zeros in RREF(M), so Rn(λ) RREF(M) = RREF(M). Then:

det(MN) = det(E1E2 . . . Ek RREF(M)N)

= det(E1E2 . . . Ek RREF(M)N)

= det(E1) . . . det(Ek) det(RREF(M)N)

= det(E1) . . . det(Ek) det(Rn(λ) RREF(M)N)

= det(E1) . . . det(Ek)λ det(RREF(M)N)

= λ det(MN)

Which implies that det(MN) = 0 = detM detN .
Thus we have shown that for any matrices M and N ,

det(MN) = detM detN

This result is extremely important; do not forget it!

References

Hefferon, Chapter Four, Section I.1 and I.3
Wikipedia:

• Determinant
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Review Questions

1. Let M =

(
a b
c d

)
and N =

(
x y
z w

)
. Compute the following:

• detM .

• detN .

• det(MN).

• detM detN .

• det(M−1) assuming ab− cd 6= 0.
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• det(MT )

• det(M +N)− detM − detN

2. SupposeM =

(
a b
c d

)
is invertible. Write M as a product of elementary

row matrices times RREF(M).

3. Find the inverses of each of the elementary matrices, Ei
j, R

i(λ), Sij(λ).
Make sure to show that the elementary matrix times its inverse is ac-
tually the identity.
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14 Properties of the Determinant

Last time we showed that the determinant of a matrix is non-zero if and
only if that matrix is invertible. We also showed that the determinant is a
multiplicative function, in the sense that det(MN) = detM detN . Now we
will devise some methods for calculating the determinant.

Recall that:

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) . . .m

n
σ(n).

A minor of an n×n matrix M is any square matrix obtained from M by
deleting rows and columns. In particular, any entry mi

j of a square matrix M
is associated to a minor obtained by deleting the ith row and jth column
of M .

It is possible to write the determinant of a matrix in terms of the deter-
minants of its minors as follows:

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) . . .m

n
σ(n)

= m1
1

∑
σ̂

sgn(σ̂)m2
σ̂(2) . . .m

n
σ̂(n)

− m1
2

∑
σ̂

sgn(σ̂)m2
σ̂(1)m

3
σ̂(3) . . .m

n
σ̂(n)

+ m1
3

∑
σ̂

sgn(σ̂)m2
σ̂(1)m

3
σ̂(2)m

4
σ̂(4) . . .m

n
σ̂(n) ± . . .

Here the symbols σ̂ refer to permutations of n−1 objects. What we’re doing
here is collecting up all of the terms of the original sum that contain the
first row entry m1

j for each column number j. Each term in that collection
is associated to a permutation sending 1 → j. The remainder of any such
permutation maps the set {2, . . . , n} → {1, . . . , j − 1, j + 1, . . . , n}. We call

this partial permutation σ̂ =
[
σ(2) . . . σ(n)

]
.

The last issue is that the permutation σ̂ may not have the same sign as σ.
From previous homework, we know that a permutation has the same parity
as its inversion number. Removing 1 → j from a permutation reduces the
inversion number by the number of elements right of j that are less than j.
Since j comes first in the permutation

[
j σ(2) . . . σ(n)

]
, the inversion

number of σ̂ is reduced by j − 1. Then the sign of σ differs from the sign
of σ̂ if σ sends 1 to an even number.
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In other words, to expand by minors we pick an entry m1
j of the first

row, then add (−1)j−1 times the determinant of the matrix with row i and
column j deleted.

Example Let’s compute the determinant of M =

1 2 3
4 5 6
7 8 9

 using expan-

sion by minors.

detM = 1 det

(
5 6
8 9

)
− 2 det

(
4 6
7 9

)
+ 3 det

(
4 5
7 8

)
= 1(5 · 9− 8 · 6)− 2(4 · 9− 7 · 6) + 3(4 · 8− 7 · 5)

= 0

Here, M−1 does not exist because3 detM = 0

Example Sometimes the entries of a matrix allow us to simplify the calcu-

lation of the determinant. Take N =

1 2 3
4 0 0
7 8 9

. Notice that the second row

has many zeros; then we can switch the first and second rows of N to get:

det

1 2 3
4 0 0
7 8 9

 = − det

4 0 0
1 2 3
7 8 9


= 4 det

(
2 3
8 9

)
= −16

Theorem 14.1. For any square matrix M , we have:

detMT = detM

3A fun exercise is to compute the determinant of a 4 × 4 matrix filled in order, from
left to right, with the numbers 1, 2, 3, . . . 16. What do you observe? Try the same for a
5× 5 matrix with 1, 2, 3 . . . 25. Is there a pattern? Can you explain it?
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Proof. By definition,

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) . . .m

n
σ(n).

For any permutation σ, there is a unique inverse permutation σ−1 that
undoes σ. If σ sends i → j, then σ−1 sends j → i. In the two-line notation
for a permutation, this corresponds to just flipping the permutation over. For

example, if σ =

[
1 2 3
2 3 1

]
, then we can find σ−1 by flipping the permutation

and then putting the columns in order:

σ−1 =

[
2 3 1
1 2 3

]
=

[
1 2 3
3 1 2

]
Since any permutation can be built up by transpositions, one can also find
the inverse of a permutation σ by undoing each of the transpositions used to
build up σ; this shows that one can use the same number of transpositions
to build σ and σ−1. In particular, sgnσ = sgnσ−1.

Then we can write out the above in formulas as follows:

detM =
∑
σ

sgn(σ)m1
σ(1)m

2
σ(2) . . .m

n
σ(n)

=
∑
σ

sgn(σ)m
σ−1(1)
1 m

σ−1(2)
2 . . .mσ−1(n)

n

=
∑
σ

sgn(σ−1)m
σ−1(1)
1 m

σ−1(2)
2 . . .mσ−1(n)

n

=
∑
σ

sgn(σ)m
σ(1)
1 m

σ(2)
2 . . .mσ(n)

n

= detMT .

The second-to-last equality is due to the existence of a unique inverse permu-
tation: summing over permutations is the same as summing over all inverses
of permutations. The final equality is by the definition of the transpose.

Example Because of this theorem, we see that expansion by minors also

works over columns. Let M =

1 2 3
0 5 6
0 8 9

. Then

detM = detMT = 1 det

(
5 8
6 9

)
= −3 .
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14.1 Determinant of the Inverse

Let M and N be n× n matrices. We previously showed that

det(MN) = detM detN , and det I = 1.

Then 1 = det I = det(MM−1) = detM detM−1. As such we have:

Theorem 14.2.

detM−1 =
1

detM

14.2 Adjoint of a Matrix

Recall that for the 2× 2 matrix M =

(
m1

1 m1
2

m2
1 m2

2

)
, then

M−1 =
1

m1
1m

2
2 −m1

2m
2
1

(
m2

2 −m1
2

−m2
1 m1

1

)
.

This matrix

(
m2

2 −m1
2

−m2
1 m1

1

)
that appears above is a special matrix, called the

adjoint of M . Let’s define the adjoint for an n× n matrix.
A cofactor of M is obtained choosing any entry mi

j of M and then deleting
the ith row and jth column of M , taking the determinant of the resulting
matrix, and multiplying by(−1)i+j. This is written cofactor(mi

j).

Definition For M = (mi
j) a square matrix, The adjoint matrix adjM is

given by:
adjM = (cofactor(mi

j))
T

Example

adj

3 −1 −1
1 2 0
0 1 1

 =



det

(
2 0
1 1

)
− det

(
1 0
0 1

)
det

(
1 2
0 1

)

− det

(
−1 −1
1 1

)
det

(
3 −1
0 1

)
− det

(
3 −1
0 1

)

det

(
−1 −1
2 0

)
− det

(
3 −1
1 0

)
det

(
3 −1
1 2

)



T
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Let’s multiply M adjM . For any matrix N , the i, j entry of MN is given
by taking the dot product of the ith row of M and the jth column of N .
Notice that the dot product of the ith row of M and the ith column of adjM
is just the expansion by minors of detM in the ith row. Further, notice that
the dot product of the ith row of M and the jth column of adjM with j 6= i
is the same as expanding M by minors, but with the jth row replaced by the
ith row. Since the determinant of any matrix with a row repeated is zero,
then these dot products are zero as well.

We know that the i, j entry of the product of two matrices is the dot
product of the ith row of the first by the jth column of the second. Then:

M adjM = (detM)I

Thus, when detM 6= 0, the adjoint gives an explicit formula for M−1.

Theorem 14.3. For M a square matrix with detM 6= 0 (equivalently, if M
is invertible), then

M−1 =
1

detM
adjM

Example Continuing with the previous example,

adj

3 −1 −1
1 2 0
0 1 1

 =

 2 0 2
−1 3 −1
1 −3 7

 .
Now, multiply:

3 −1 −1
1 2 0
0 1 1


 2 0 2
−1 3 −1
1 −3 7

 =

6 0 0
0 6 0
0 0 6



⇒

3 −1 −1
1 2 0
0 1 1


−1

=
1

6

 2 0 2
−1 3 −1
1 −3 7


This process for finding the inverse matrix is sometimes called Cramer’s Rule .
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14.3 Application: Volume of a Parallelepiped

Given three vectors u, v, w in R3, the parallelepiped determined by the three
vectors is the “squished” box whose edges are parallel to u, v, and w.

From calculus, we know that the volume of this object is |u (v × w)|.
This is the same as expansion by minors of the matrix whose columns are
u, v, w. Then:

Volume = | det
(
u v w

)
|

References

Hefferon, Chapter Four, Section I.1 and I.3
Wikipedia:

• Determinant

• Elementary Matrix

• Cramer’s Rule

Review Questions

1. Let M =

(
a b
c d

)
. Show:

detM =
1

2
(trM)2 − 1

2
tr(M2)

Suppose M is a 3 × 3 matrix. Find and verify a similar formula for
detM in terms of tr(M3), (trM)(tr(M2)), and (trM)3.

2. Suppose M = LU is an LU decomposition. Explain how you would
efficiently compute detM in this case.

3. In computer science, the complexity of an algorithm is computed (roug-
hly) by counting the number of times a given operation is performed.
Suppose adding or subtracting any two numbers takes a seconds, and
multiplying two numbers takes m seconds. Then, for example, com-
puting 2 · 6− 5 would take a+m seconds.
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i. How many additions and multiplications does it take to compute
the determinant of a general 2× 2 matrix?

ii. Write a formula for the number of additions and multiplications
it takes to compute the determinant of a general n × n matrix
using the definition of the determinant. Assume that finding and
multiplying by the sign of a permutation is free.

iii. How many additions and multiplications does it take to compute
the determinant of a general 3 × 3 matrix using expansion by
minors? Assuming m = 2a, is this faster than computing the
determinant from the definition?
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15 Eigenvalues and Eigenvectors

Matrix of a Linear Transformation Consider a linear transformation

L : R2 → R2 .

Suppose we know that L

(
1
0

)
=

(
a
c

)
and L

(
0
1

)
=

(
b
d

)
. Then, because of

linearity, we can determine what L does to any vector

(
x
y

)
:

L

(
x
y

)
= L(x

(
1
0

)
+y

(
0
1

)
) = xL

(
1
0

)
+yL

(
0
1

)
= x

(
a
c

)
+y

(
b
d

)
=

(
ax+ by
cx+ dy

)
.

Now notice that for any vector

(
x
y

)
, we have(

a b
c d

)(
x
y

)
=

(
ax+ by
cx+ dy

)
= L

(
x
y

)
.

Then the matrix

(
a b
c d

)
acts by matrix multiplication in the same way that L

does. Call this matrix the matrix of L in the “basis” {
(

1
0

)
,

(
0
1

)
}.

Since every linear function from R2 → R2 can be given a matrix in
this way, we see that every such linear function has a matrix in the basis

{
(

1
0

)
,

(
0
1

)
}. We will revisit this idea in depth later, and develop the notion

of a basis further, and learn about how to make a matrix for an arbitrary
linear transformation Rn → Rm in an arbitrary basis.

15.1 Invariant Directions

Consider the linear transformation L such that

L

(
1
0

)
=

(
−4
−10

)
and L

(
0
1

)
=

(
3
7

)
,

so that the matrix of L is

(
−4 3
−10 7

)
. Recall that a vector is a direction and

a magnitude; L applied to

(
1
0

)
or

(
0
1

)
changes both the direction and the
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magnitude of the vectors given to it.

Notice that L

(
3
5

)
=

(
−4 · 3 + 3 · 5
−10 · 3 + 7 · 5

)
=

(
3
5

)
. Then L fixes both the

magnitude and direction of the vector v1 =

(
3
5

)
. Try drawing a picture of

this situation on some graph paper to help yourself visualize it better!
Now, notice that any vector with the same direction as v1 can be written

as cv1 for some constant c. Then L(cv1) = cL(v1) = cv1, so L fixes every
vector pointing in the same direction as v1.

Also notice that L

(
1
2

)
=

(
−4 · 1 + 3 · 2
−10 · 1 + 7 · 2

)
=

(
2
4

)
= 2

(
1
2

)
. Then L fixes

the direction of the vector v2 =

(
1
2

)
but stretches v2 by a factor of 2. Now

notice that for any constant c, L(cv2) = cL(v2) = 2cv2. Then L stretches
every vector pointing in the same direction as v2 by a factor of 2.

In short, given a linear transformation L it is sometimes possible to find
a vector v 6= 0 and constant λ 6= 0 such that

L(v) = λv

We call the direction of the vector v an invariant direction. In fact, any
vector pointing in the same direction also satisfies the equation: L(cv) =
cL(v) = λcv. The vector v is called an eigenvector of L, and λ is an eigen-
value. Since the direction is all we really care about here, then any other
vector cv (so long as c 6= 0) is an equally good choice of eigenvector.

Returning to our example of the linear transformation L with matrix(
−4 3
−10 7

)
, we have seen that L enjoys the property of having two invariant

directions, represented by eigenvectors v1 and v2 with eigenvalues 1 and 2,
respectively.

It would be very convenient if I could write any vector w as a linear
combination of v1 and v2. Suppose w = rv1 +sv2 for some constants r and s.
Then:

L(w) = L(rv1 + sv2) = rL(v1) + sL(v2) = rv1 + 2sv2.

Now L just multiplies the number r by 1 and the number s by 2. If we
could write this as a matrix, it would look like:(

1 0
0 2

)(
r
s

)
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which is much slicker than the usual scenario L

(
x
y

)
=

(
a b
c d

)(
x
y

)
=

(
ax+ by
cx+ dy

)
.

Here, r and s give the coordinates of w in terms of the vectors v1 and v2. In
the previous example, we multiplied the vector by the matrix L and came
up with a complicated expression. In these coordinates, we can see that L is
a very simple diagonal matrix, whose diagonal entries are exactly the eigen-
values of L.

This process is called diagonalization, and it can make complicated linear
systems much easier to analyze.

Now that we’ve seen what eigenvalues and eigenvectors are, there are a
number of questions that need to be answered.

• How do we find eigenvectors and their eigenvalues?

• How many eigenvalues and (independent) eigenvectors does a given
linear transformation have?

• When can a linear transformation be diagonalized?

We’ll start by trying to find the eigenvectors for a linear transformation.

Example Let L : R2 → R2 such that L(x, y) = (2x + 2y, 16x + 6y). First,
we can find the matrix of L:(

x
y

)
L7→
(

2 2
16 6

)(
x
y

)
.

We want to find an invariant direction v =

(
x
y

)
such that

L(v) = λv

or, in matrix notation, (
2 2
16 6

)(
x
y

)
= λ

(
x
y

)

⇔
(

2 2
16 6

)(
x
y

)
=

(
λ 0
0 λ

)(
x
y

)

⇔
(

2− λ 2
16 6− λ

)(
x
y

)
=

(
0
0

)
.
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This is a homogeneous system, so it only has solutions when the matrix(
2− λ 2

16 6− λ

)
is singular. In other words,

det

(
2− λ 2

16 6− λ

)
= 0

⇔ (2− λ)(6− λ)− 32 = 0

⇔ λ2 − 8λ− 20 = 0

⇔ (λ− 10)(λ+ 2) = 0

For any square n× n matrix M , the polynomial in λ given by

PM(λ) = det(λI −M) = (−1)n det(M − λI)

is called the characteristic polynomial of M , and its roots are the eigenvalues
of M .

In this case, we see that L has two eigenvalues, λ1 = 10 and λ2 = −2.
To find the eigenvectors, we need to deal with these two cases separately.

To do so, we solve the linear system

(
2− λ 2

16 6− λ

)(
x
y

)
=

(
0
0

)
with the

particular eigenvalue λ plugged in to the matrix.

λ = 10: We solve the linear system(
−8 2
16 −4

)(
x
y

)
=

(
0
0

)
.

Both equations say that y = 4x, so any vector

(
x
4x

)
will do. Since we

only need the direction of the eigenvector, we can pick a value for x.

Setting x = 1 is convenient, and gives the eigenvector v1 =

(
1
4

)
.

λ = −2: We solve the linear system(
4 2
16 4

)(
x
y

)
=

(
0
0

)
.

Here again both equations agree, because we chose λ to make the sys-

tem singular. We see that y = −2x works, so we can choose v2 =

(
1
−2

)
.
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In short, our process was the following:

• Find the characteristic polynomial of the matrix M for L, given by4

det(λI −M).

• Find the roots of the characteristic polynomial; these are the eigenval-
ues of L.

• For each eigenvalue λi, solve the linear system (M−λiI)v = 0 to obtain
an eigenvector v associated to λi.

References

• Hefferon, Chapter Three, Section III.1: Representing Linear Maps with
Matrices

• Hefferon, Chapter Five, Section II.3: Eigenvalues and Eigenvectors

Wikipedia:

• Eigen*

• Characteristic Polynomial

• Linear Transformations (and matrices thereof)

Review Questions

1. Consider L : R2 → R2 with L(x, y) = (x cos θ + y sin θ,−x sin θ +
y cos θ).

i. Write the matrix of L on the basis

(
1
0

)
,

(
0
1

)
.

ii. When θ 6= 0, explain how L acts on the plane. Draw a picture.

iii. Do you expect L to have invariant directions?

iv. Try to find eigenvalues for L by solving the equation

L(v) = λv.

4It is often easier (and equivalent if you only need the roots) to compute det(M − λI).
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v. Does L have real eigenvalues? If not, are there complex eigenval-
ues for L, assuming that i =

√
−1 exists?

2. Let M =

(
2 1
0 2

)
. Find all eigenvalues of M . Does M have two inde-

pendent eigenvectors? Can M be diagonalized?

3. Let L be the linear transformation L : R3 → R3 given by L(x, y, z) =
(x+ y, y+ z, x+ z). Let ei be the vector with a one in the ith position
and zeros in all other positions.

i. Find Lei for each i.

ii. Given a matrix M =

m
1
1 m1

2 m1
3

m2
1 m2

2 m2
3

m3
1 m3

2 m3
3

, what can you say about

Mei for each i?

iii. Find a 3 × 3 matrix M representing L. Choose three non-trivial
vectors pointing in different directions and show that Mv = Lv
for each of your choices.
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16 Eigenvalues and Eigenvectors II

Last time, we developed the idea of eigenvalues and eigenvectors in the case
of linear transformations R2 → R2. In this section, we will develop the idea
more generally.

Definition For a linear transformation L : V → V , then λ is an eigenvalue
of L with eigenvector v 6= 0V if

Lv = λv.

This equation says that the direction of v is invariant (unchanged) under L.
Let’s try to understand this equation better in terms of matrices. Let

V be a finite-dimensional vector space (we’ll explain what it means to be
finite-dimensional in more detail later; for now, take this to mean Rn), and
let L : V → V .

Matrix of a Linear Transformation Any vector in Rn can be written as
a linear combination of the standard basis vectors {ei|i ∈ {1, . . . , n}}. The
vector ei has a one in the ith position, and zeros everywhere else. I.e.

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , · · · en =


0
0
...
1

 .

Then to find the matrix of any linear transformation L : Rn → Rn, it suffices
to know what L(ei) is for every i.

For any matrix M , observe that Mei is equal to the ith column of M .
Then if the ith column of M equals L(ei) for every i, then Mv = L(v) for
every v ∈ Rn. Then the matrix representing L in the standard basis is just
the matrix whose ith column is L(ei).

Since we can represent L by a square matrix M , we find eigenvalues λ
and associated eigenvectors v by solving the homogeneous system

(M − λI)v = 0.

This system has non-zero solutions if and only if the matrix
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M − λI
is singular, and so we require that

det(λI −M) = 0.

The left hand side of this equation is a polynomial in the variable λ
called the characteristic polynomial PM(λ) of M . For an n × n matrix, the
characteristic polynomial has degree n. Then

PM(λ) = λn + c1λ
n−1 + . . .+ cn.

Notice that PM(0) = det(−M) = (−1)n detM .
The fundamental theorem of algebra states that any polynomial can be

factored into a product of linear terms over C. Then there exists a collection
of n complex numbers λi (possibly with repetition) such that

PM(λ) = (λ− λ1)(λ− λ2) . . . (λ− λn), PM(λi) = 0

The eigenvalues λi of M are exactly the roots of PM(λ). These eigenvalues
could be real or complex or zero, and they need not all be different. The
number of times that any given root λi appears in the collection of eigenvalues
is called its multiplicity .

Example Let L be the linear transformation L : R3 → R3 given by

L(x, y, z) = (2x+ y − z, x+ 2y − z,−x− y + 2z) .

The matrix M representing L has columns Lei for each i, so:xy
z

 L7→

 2 1 −1
1 2 −1
−1 −1 2


xy
z

 .
Then the characteristic polynomial of L is5

PM(λ) = det

λ− 2 −1 1
−1 λ− 2 1
1 1 λ− 2


= (λ− 2)[(λ− 2)2 − 1] + [−(λ− 2)− 1] + [−(λ− 2)− 1]

= (λ− 1)2(λ− 4)

5It is often easier (and equivalent) to solve det(M − λI) = 0.
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Then L has eigenvalues λ1 = 1 (with multiplicity 2), and λ2 = 4 (with
multiplicity 1).

To find the eigenvectors associated to each eigenvalue, we solve the ho-
mogeneous system (M − λiI)X = 0 for each i.

λ = 4: We set up the augmented matrix for the linear system:−2 1 −1 0
1 −2 −1 0
−1 −1 −2 0

 ∼

1 −2 −1 0
0 −3 −3 0
0 −3 −3 0



∼

1 0 1 0
0 1 1 0
0 0 0 0

 .

So we see that z = t, y = −t, and x = −t gives a formula for eigen-
vectors in terms of the free parameter t. Any such eigenvector is of the

form t

−1
−1
1

; thus L leaves a line through the origin invariant.

λ = 1: Again we set up an augmented matrix and find the solution set: 1 1 −1 0
1 1 −1 0
−1 −1 1 0

 ∼

1 1 −1 0
0 0 0 0
0 0 0 0

 .
Then the solution set has two free parameters, s and t, such that z = t,
y = s, and x = −s+ t. Then L leaves invariant the set:

{s

−1
1
0

+ t

1
0
1

 |s, t ∈ R}.

This set is a plane through the origin. So the multiplicity two eigenvalue

has two independent eigenvectors,

−1
1
0

 and

1
0
1

 that determine an

invariant plane.
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Example Let V be the vector space of smooth (i.e. infinitely differentiable)
functions f : R → R. Then the derivative is a linear operator ∂

∂x
: V → V .

What are the eigenvectors of the derivative? In this case, we don’t have a
matrix to work with, so we have to make do.

A function f is an eigenvector of ∂
∂x

if there exists some number λ such
that ∂

∂x
f = λf . An obvious candidate is the exponential function, eλx;

indeed, ∂
∂x
eλx = λeλx.

As such, the operator ∂
∂x

has an eigenvector eλx for every λ 6= 0 ∈ R. For
λ = 0, ∂

∂x
still has an eigenvector: the zero-function.

This is actually the whole collection of eigenvectors for ∂
∂x

; this can be
proved using the fact that every infinitely differentiable function has a Taylor
series with infinite radius of convergence, and then using the Taylor series
to show that if two functions are eigenvectors of ∂

∂x
with eigenvalues λ, then

they are scalar multiples of each other.

16.1 Eigenspaces

In the previous example, we found two eigenvectors

−1
1
0

 and

1
0
1

 for L

with eigenvalue 1. Notice that

−1
1
0

 +

1
0
1

 =

0
1
1

 is also an eigenvector

of L with eigenvalue 1. In fact, any linear combination r

−1
1
0

 + s

1
0
1

 of

these two eigenvectors will be another eigenvector with the same eigenvalue.
More generally, let {v1, v2, . . .} be eigenvectors of some linear transforma-

tion L with the same eigenvalue λ. A linear combination of the vi can be
written c1v1 + c2v2 + . . . for some constants {c1, c2, . . .}. Then:

L(c1v1 + c2v2 + . . .) = c1Lv1 + c2Lv2 + . . . by linearity of L

= c1λv1 + c2λv2 + . . . since Lvi = λvi

= λ(c1v1 + c2v2 + . . .).

So every linear combination of the vi is an eigenvector of L with the same
eigenvalue λ. In simple terms, any sum of eigenvectors is again an eigenvector
if they share the same eigenvalue.
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The space of all vectors with eigenvalue λ is called an eigenspace. It
is, in fact, a vector space contained within the larger vector space V : It
contains 0V , since L0V = 0V = λ0V , and is closed under addition and scalar
multiplication by the above calculation. All other vector space properties are
inherited from the fact that V itself is a vector space.

An eigenspace is an example of a subspace of V , a notion that we will
explore further next time.

References

• Hefferon, Chapter Three, Section III.1: Representing Linear Maps with
Matrices

• Hefferon, Chapter Five, Section II.3: Eigenvalues and Eigenvectors

Wikipedia:

• Eigen*

• Characteristic Polynomial

• Linear Transformations (and matrices thereof)

Review Questions

1. Explain why the characteristic polynomial of an n×n matrix has degree
n. Make your explanation easy to read by starting with some simple
examples, and then use properties of the determinant to give a general
explanation.

2. Compute the characteristic polynomial PM(λ) of the matrix M =(
a b
c d

)
. Now, since we can evaluate polynomials on square matrices,

we can plug M into its characteristic polynomial and find the matrix
PM(M). What do you find from this computation? Investigate whether
something similar holds for n× n matrices.
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17 Subspaces and Spanning Sets

It is time to study vector spaces more carefully and answer some fundamental
questions.

1. Subspaces : When is a subset of a vector space itself a vector space?
(This is the notion of a subspace.)

2. Linear Independence: Given a collection of vectors, is there a way to
tell whether they are independent, or if one is a linear combination of
the others?

3. Dimension: Is there a consistent definition of how “big” a vector space
is?

4. Basis : How do we label vectors? Can we write any vector as a sum of
some basic set of vectors? How do we change our point of view from
vectors labeled one way to vectors labeled in another way?

Let’s start at the top!

17.1 Subspaces

Definition We say that a subset U of a vector space V is a subspace of V
if U is a vector space under the inherited addition and scalar multiplication
operations of V .

Example Consider a plane P in R3 through the origin:

ax+ by + cz = 0.

This equation can be expressed as the homogeneous system
(
a b c

)xy
z

 =

0, or MX = 0 with M the matrix
(
a b c

)
. If X1 and X2 are both solutions

to MX = 0, then, by linearity of matrix multiplication, so is µX1 + νX2:

M(µX1 + νX2) = µMX1 + νMX2 = 0.

So P is closed under addition and scalar multiplication. Additionally, P
contains the origin (which can be derived from the above by setting µ = ν =
0). All other vector space requirements hold for P because they hold for all
vectors in R3.
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Theorem 17.1 (Subspace Theorem). Let U be a non-empty subset of a
vector space V . Then U is a subspace if and only if µu1 + νu2 ∈ U for
arbitrary u1, u2 in U , and arbitrary constants µ, ν.

Proof. The proof is left as an exercise to the reader.

Note that the requirements of the subspace theorem are often referred to as
“closure”.

17.2 Building Subspaces

Consider the set

U =


1

0
0

 ,
0

1
0


 ⊂ R3.

Because U consists of only two vectors, it clear that U is not a vector space,
since any constant multiple of these vectors should also be in U . For example,
the 0-vector is not in U , nor is U closed under vector addition.

But we know that any two vectors define a plane. In this case, the vectors
in U define the xy-plane in R3. We can consider the xy-plane as the set of
all vectors that arise as a linear combination of the two vectors in U . Call
this set of all linear combinations the span of U :

span(U) = {x

1
0
0

+ y

0
1
0

 |x, y ∈ R}.

Notice that any vector in the xy-plane is of the formxy
0

 = x

1
0
0

+ y

0
1
0

 ∈ span(U).

Definition Let V be a vector space and S = {s1, s2, . . .} ⊂ V a subset of V .
Then the span of S is the set:

span(U) = {r1s1 + r2s2 + . . .+ rNsN |ri ∈ R, N ∈ N}.
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Example Let V = R3 and X ⊂ V be the x-axis. Let P =

0
1
0

, and set

S = X ∪ P .

The elements of span(S) are linear combinations of vectors in the x-axis and
the vector P .

Since the sum of any number of vectors along the x-axis is still a vector
along the x-axis, then the elements of S are all of the form:x0

0

+ y

0
1
0

 =

xy
0

 .
Then span(S) is the xy-plane, which is a vector space. (Try drawing a picture
to verify this!)

Lemma 17.2. For any subset S ⊂ V , span(S) is a subspace of V .

Proof. We need to show that span(S) is a vector space.
It suffices to show that span(S) is closed under linear combinations. Let

u, v ∈ span(S) and λ, µ be constants. By the definition of span(S), there are
constants ci and di (some of which could be zero) such that:

u = c1s1 + c2s2 + . . .

v = d1s1 + d2s2 + . . .

⇒ λu+ µv = λ(c1s1 + c2s2 + . . .) + µ(d1s1 + d2s2 + . . .)

= (λc1 + µd1)s1 + (λc2 + µd2)s2 + . . .

This last sum is a linear combination of elements of S, and is thus in span(S).
Then span(S) is closed under linear combinations, and is thus a subspace
of V .

Note that this proof, like many proofs, consisted of little more than just
writing out the definitions.

Example For which values of a does

span{

1
0
a

 ,
 1

2
−3

 ,
a1

0

} = R3?
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Given an arbitrary vector

xy
z

 in R3, we need to find constants r1, r2, r3 such

that

r1

1
0
a

+ r2

 1
2
−3

+ r3

a1
0

 =

xy
z

 .
We can write this as a linear system in the unknowns r1, r2, r3 as follows:1 1 a

0 2 1
a −3 0


r

1

r2

r3

 =

xy
z

 .

If the matrix M =

1 1 a
0 2 1
a −3 0

 is invertible, then we can find a solution

M−1

xy
z

 =

r
1

r2

r3



for any vector

xy
z

 ∈ R3.

Therefore we should choose a so that M is invertible:

i.e., 0 6= detM = −2a2 + 3 + a = −(2a− 3)(a+ 1).

Then the span is R3 if and only if a 6= −1, 3
2
.

References

• Hefferon, Chapter Two, Section I.2: Subspaces and Spanning Sets

Wikipedia:
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Review Questions

1. (Subspace Theorem) Suppose that V is a vector space and that U ⊂ V
is a subset of V . Show that

µu1 + νu2 ∈ U for all u1, u2 ∈ U, µ, ν ∈ R

implies that U is a subspace of V . (In other words, check all the vector
space requirements for U .)

2. Let P3[x] be the vector space of degree 3 polynomials in the variable x.
Check whether

x− x3 ∈ span{x2, 2x+ x2, x+ x3}

3. Let U and W be subspaces of V . Are:

i. U ∪W
ii. U ∩W

also subspaces? Explain why or why not. Draw examples in R3.
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18 Linear Independence

Consider a plane P that includes the origin in R3 and a collection {u, v, w}
of non-zero vectors in P . If no two of u, v and w are parallel, then certainly
P = span{u, v, w}. But any two vectors determines a plane, so we should
be able to span the plane using only two vectors. Then we could choose
two of the vectors in {u, v, w} whose span is P , and express the other as
a linear combination of those two. Suppose u and v span P . Then there
exist constants d1, d2 (not both zero) such that w = d1u + d2v. Since w can
be expressed in terms of u and v we say that it is not independent. More
generally, the relationship

c1u+ c2v + c3w = 0 ci ∈ R, some ci 6= 0

expresses the fact that u, v, w are not all independent.

Definition We say that the vectors v1, v2, . . . , vn are linearly dependent if
there exist constants c1, c2, . . . , cn not all zero such that

c1v1 + c2v2 + . . .+ cnvn = 0.

Otherwise, the vectors v1, v2, . . . , vn are linearly independent.

Example Consider the following vectors in R3:

v1 =

0
0
1

 , v2 =

1
2
1

 , v3 =

1
2
3

 .
Are they linearly independent?

We need to see whether the system

c1v1 + c2v2 + c3v3 = 0.

has any solutions for c1, c2, c3. We can rewrite this as a homogeneous system:

(
v1 v2 v3

)c
1

c2

c3

 = 0.
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This system has solutions if and only if the matrix M =
(
v1 v2 v3

)
is

singular, so we should find the determinant of M :

detM = det

0 1 1
0 2 2
1 1 3

 = det

(
1 1
2 2

)
= 0.

Therefore nontrivial solutions exist. At this point we know that the vec-
tors are linearly dependent. If we need to, we can find coefficients that
demonstrate linear independence by solving the system of equations:0 1 1 0

0 2 2 0
1 1 3 0

 ∼
1 1 3 0

0 1 1 0
0 0 0 0

 ∼
1 0 2 0

0 1 1 0
0 0 0 0

 .
Then c3 = µ, c2 = −µ, and c3 = −2µ. Now any choice of µ will produce
coefficients c1, c2, c3 that satisfy the linear equation. So we can set µ = 1 and
obtain:

c1v1 + c2v2 + c3v3 = 0⇒ −2v1 − v2 + v3 = 0.

Theorem 18.1 (Linear Dependence). A set of non-zero vectors {v1, . . . , vn}
is linearly dependent if and only if one of the vectors vk is expressible as a
linear combination of the preceeding vectors.

Proof. The theorem is an if and only if statement, so there are two things to
show.

i. First, we show that if vk = c1v1 + . . . ck−1vk−1 then the set is linearly
dependent.

This is easy. We just rewrite the assumption:

c1v1 + . . . ck−1vk−1 − vk + 0vk+1 + . . .+ 0vn = 0.

This is a vanishing linear combination of the vectors {v1, . . . , vn} with
not all coefficients equal to zero, so {v1, . . . , vn} is a linearly dependent
set.

ii. Now, we show that linear dependence implies that there exists k for
which vk is a linear combination of the vectors {v1, . . . , vk−1}.
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The assumption says that

c1v1 + c2v2 + . . .+ cnvn = 0.

Take k to be the largest number for which ck is not equal to zero. So:

c1v1 + c2v2 + . . .+ ck−1vk−1 + ckvk = 0.

(Note that k > 1, since otherwise we would have c1v1 = 0 ⇒ v1 = 0,
contradicting the assumption that none of the vi are the zero vector.)

As such, we can rearrange the equation:

c1v1 + c2v2 + . . .+ ck−1vk−1 = −ckvk

⇒ −c
1

ck
v1 −

c2

ck
v2 − . . .−

ck−1

ck
vk−1 = vk.

Therefore we have expressed vk as a linear combination of the previous
vectors, and we are done.

Example Consider the vector space P2(t) of polynomials of degree less than
or equal to 2. Set:

v1 = 1 + t

v2 = 1 + t2

v3 = t+ t2

v4 = 2 + t+ t2

v5 = 1 + t+ t2.

The set {v1, . . . , v5} is linearly dependent, because v4 = v1 + v2.
Now suppose vectors v1, . . . , vn are linearly dependent,

c1v1 + c2v2 + . . .+ cnvn = 0

with c1 6= 0. Then:

span{v1, . . . , vn} = span{v2, . . . , vn}
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because any x ∈ span{v1, . . . , vn} is given by

x = a1v1 + . . . anvn

= a1(−c
2

c1
v2 − . . .−

cn

c1
vn) + a2v2 + . . .+ anvn

= (a2 − a1 c
2

c1
)v2 + . . .+ (an − a1 c

n

c1
)vn.

Then x is in span{v2, . . . , vn}.

When we write a vector space as the span of a list of vectors, we would
like that list to be as short as possible. This can be achieved by iterating the
above procedure.

Example In the above example, we found that v4 = v1 + v2. In this case,
any expression for a vector as a linear combination involving v4 can be turned
into a combination without v4 by making the substitution v4 = v1 + v2.

Then:

S = span{1 + t, 1 + t2, t+ t2, 2 + t+ t2, 1 + t+ t2}
= span{1 + t, 1 + t2, t+ t2, 1 + t+ t2}.

Now we notice that 1 + t + t2 = 1
2
(1 + t) + 1

2
(1 + t2) + 1

2
(t + t2). So the

vector 1 + t+ t2 = v5 is also extraneous, since it can be expressed as a linear
combination of the remaining three vectors, v1, v2, v3. Therefore

S = span{1 + t, 1 + t2, t+ t2}.

In fact, you can check that there are no (non-zero) solutions to the linear
system

c1(1 + t) + c2(1 + t2) + c3(t+ t2) = 0.

Therefore the remaining vectors {1+t, 1+t2, t+t2} are linearly independent,
and span the vector space S. Then these vectors are a minimal spanning set,
in the sense that no more vectors can be removed since the vectors are linearly
independent. Such a set is called a basis for S.

Example Let B3 be the space of 3 × 1 bit-valued matrices (i.e., column
vectors). Is the following subset linearly independent?

1
1
0

 ,
1

0
1

 ,
0

1
1



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If the set is linearly dependent, then we can find non-zero solutions to
the system:

c1

1
1
0

+ c2

1
0
1

+ c3

0
1
1

 = 0,

which becomes the linear system1 1 1
1 0 1
0 1 1


c

1

c2

c3

 = 0.

Solutions exist if and only if the determinant of the matrix is non-zero. But:

det

1 1 1
1 0 1
0 1 1

 = 1 det

(
0 1
1 1

)
− 1 det

(
1 0
0 1

)
= −1− 1 = 1 + 1 = 0

Therefore non-trivial solutions exist, and the set is not linearly independent.

References
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Review Questions

1. Let Bn be the space of n×1 bit-valued matrices (i.e., column vectors).

i. How many different vectors are there in Bn.

ii. Find a collection S of vectors that span B3 and are linearly inde-
pendent. In other words, find a basis of B3.
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iii. Write each other vector inB3 as a linear combination of the vectors
in the set S that you chose.

iv. Would it be possible to span B3 with only two vectors?

2. Let ei be the vector in Rn with a 1 in the ith position and 0’s in every
other position. Let v be an arbitrary vector in Rn.

i. Prove that the collection {e1, . . . , en} is linearly independent.

ii. Show that v =
∑n
i=1(v ei)ei.

iii. What does this say about the span{e1, . . . , en}?
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19 Basis and Dimension

In the last section, we established the notion of a linearly independent set of
vectors in a vector space V , and of a set of vectors that span V . We saw that
any set of vectors that span V can be reduced to some minimal collection of
linearly independent vectors; such a set is called a basis of the subspace V .

Definition Let V be a vector space. Then a set S is a basis for V if S is
linearly independent and spanS = V .

If S is a basis of V and S has only finitely many elements, then we say
that V is finite-dimensional. The number of vectors in S is the dimension
of V .

Suppose V is a finite-dimensional vector space, and S and T are two
different bases for V . One might worry that S and T have a different number
of vectors; then we would have to talk about the dimension of V in terms
of the basis S or in terms of the basis T . Luckily this isn’t what happens.
Later in this section, we will show that S and T must have the same number
of vectors. This means that the dimension of a vector space does not depend
on the basis. In fact, dimension is a very important way to characterize of
any vector space V .

Example Pn(t) has a basis {1, t, . . . , tn}, since every polynomial of degree
less than or equal to n is a sum

a0 1 + a1 t+ . . .+ an tn, ai ∈ R

so Pn(t) = span{1, t, . . . , tn}. This set of vectors is linearly independent: If
the polynomial p(t) = c01 + c1t+ . . .+ cntn = 0, then c0 = c1 = . . . = cn = 0,
so p(t) is the zero polynomial.

Then Pn(t) is finite dimensional, and dimPn(t) = n+ 1.

Theorem 19.1. Let S = {v1, . . . , vn} be a basis for a vector space V . Then
every vector w ∈ V can be written uniquely as a linear combination of vectors
in the basis S:

w = c1v1 + . . .+ cnvn.

Proof. Since S is a basis for V , then spanS = V , and so there exists con-
stants ci such that w = c1v1 + . . .+ cnvn.
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Suppose there exists a second set of constants di such that

w = d1v1 + . . .+ dnvn .

Then:

0V = w − w
= c1v1 + . . .+ cnvn − d1v1 + . . .+ dnvn

= (c1 − d1)v1 + . . .+ (cn − dn)vn.

If it occurs exactly once that ci 6= di, then the equation reduces to 0 =
(ci − di)vi, which is a contradiction since the vectors vi are assumed to be
non-zero.

If we have more than one i for which ci 6= di, we can use this last equation
to write one of the vectors in S as a linear combination of other vectors in S,
which contradicts the assumption that S is linearly independent. Then for
every i, ci = di.

Next, we would like to establish a method for determining whether a
collection of vectors forms a basis for Rn. But first, we need to show that
any two bases for a finite-dimensional vector space has the same number of
vectors.

Lemma 19.2. If S = {v1, . . . , vn} is a basis for a vector space V and T =
{w1, . . . , wm} is a linearly independent set of vectors in V , then m ≤ n.

Proof. The idea is to start with the set S and replace vectors in S one at a
time with vectors from T , such that after each replacement we still have a
basis for V .

Since S spans V , then the set {w1, v1, . . . , vn} is linearly dependent. Then
we can write w1 as a linear combination of the vi; using that equation, we can
express one of the vi in terms of w1 and the remaining vj with j 6= i. Then
we can discard one of the vi from this set to obtain a linearly independent
set that still spans V . Now we need to prove that S1 is a basis; we need to
show that S1 is linearly independent and that S1 spans V .

The set S1 = {w1, v1, . . . , vi−1, vi+1, . . . , vn} is linearly independent: By
the previous theorem, there was a unique way to express w1 in terms of the set
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S. Now, to obtain a contradiction, suppose there is some k and constants ci

such that

vk = c0w1 + c1v1 + . . .+ ci−1vi−1 + ci+1vi+1 + . . .+ cnvn.

Then replacing w1 with its expression in terms of the collection S gives a way
to express the vector vk as a linear combination of the vectors in S, which
contradicts the linear independence of S. On the other hand, we cannot
express w1 as a linear combination of the vectors in {vj|j 6= i}, since the
expression of w1 in terms of S was unique, and had a non-zero coefficient on
the vector vi. Then no vector in S1 can be expressed as a combination of
other vectors in S1, which demonstrates that S1 is linearly independent.

The set S1 spans V : For any u ∈ V , we can express u as a linear com-
bination of vectors in S. But we can express vi as a linear combination of
vectors in the collection S1; rewriting vi as such allows us to express u as a
linear combination of the vectors in S1.

Then S1 is a basis of V with n vectors.
We can now iterate this process, replacing one of the vi in S1 with w2,

and so on. If m ≤ n, this process ends with the set Sm = {w1, . . . , wm,
vi1 , . . . , vin−m}, which is fine.

Otherwise, we have m > n, and the set Sn = {w1, . . . , wn} is a basis
for V . But we still have some vector wn+1 in T that is not in Sn. Since Sn
is a basis, we can write wn+1 as a combination of the vectors in Sn, which
contradicts the linear independence of the set T . Then it must be the case
that m ≤ n, as desired.

Corollary 19.3. For a finite dimensional vector space V , any two bases
for V have the same number of vectors.

Proof. Let S and T be two bases for V . Then both are linearly independent
sets that span V . Suppose S has n vectors and T has m vectors. Then by
the previous lemma, we have that m ≤ n. But (exchanging the roles of S
and T in application of the lemma) we also see that n ≤ m. Then m = n,
as desired.
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19.1 Bases in Rn.

From one of the review questions, we know that

Rn = span




1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
0
...
1


 ,

and that this set of vectors is linearly independent. So this set of vectors is
a basis for Rn, and dim Rn = n. This basis is often called the standard or
canonical basis for Rn. The vector with a one in the ith position and zeros
everywhere else is written ei. It points in the direction of the ith coordinate
axis, and has unit length. In multivariable calculus classes, this basis is often
written {i, j, k} for R3.

Bases are not unique. While there exists a unique way to express a vector
in terms of any particular basis, bases themselves are far from unique. For
example, both of the sets:{(

1
0

)
,

(
0
1

)}
and

{(
1
1

)
,

(
1
−1

)}

are bases for R2. Rescaling any vector in one of these sets is already enough
to show that R2 has infinitely many bases. But even if we require that all of
the basis vectors have unit length, it turns out that there are still infinitely
many bases for R2. (See Review Question 3.)

To see whether a collection of vectors S = {v1, . . . , vm} is a basis for Rn,
we have to check that they are linearly independent and that they span Rn.
From the previous discussion, we also know that m must equal n, so assume S
has n vectors.

If S is linearly independent, then there is no non-trivial solution of the
equation

0 = x1v1 + . . .+ xnvn.

Let M be a matrix whose columns are the vectors vi. Then the above equa-
tion is equivalent to requiring that there is a unique solution to

MX = 0 .
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To see if S spans Rn, we take an arbitrary vector w and solve the linear
system

w = x1v1 + . . .+ xnvn

in the unknowns ci. For this, we need to find a unique solution for the linear
system MX = w.

Thus, we need to show that M−1 exists, so that

X = M−1w

is the unique solution we desire. Then we see that S is a basis for V if and
only if detM 6= 0.

Theorem 19.4. Let S = {v1, . . . , vm} be a collection of vectors in Rn. Let M
be the matrix whose columns are the vectors in S. Then S is a basis for V if
and only if m is the dimension of V and

detM 6= 0.

Example Let

S = {
(

1
0

)
,

(
0
1

)
} and T = {

(
1
1

)
,

(
1
−1

)
}.

Then set MS =

(
1 0
0 1

)
. Since detMS = 1 6= 0, then S is a basis for R2.

Likewise, set MT =

(
1 1
1 −1

)
. Since detMT = −2 6= 0, then T is a basis

for R2.
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Review Questions

1. Let S be a collection of vectors in a vector space V . Show that if
every vector w in V can be expressed uniquely as a linear combination
of vectors in S, then S is a basis of V . (This is the converse to the
theorem in the lecture.)

2. Show that the set of all linear transformations mapping R3 → R is itself
a vector space. Find a basis for this vector space. Do you think your
proof could be modified to work for linear transformations Rn → R?

(Hint: Represent R3 as column vectors, and argue that a linear trans-
formation T : R3 → R is just a column vector.)

(Hint: If you are really stuck (or just curious), look up “dual space.”
This is a big idea, though, and could just be more confusing.)

3. i. Draw the collection of all unit vectors in R2.

ii. Let Sx = {
(

1
0

)
, x}, where x is a unit vector in R2. For which x

is Sx a basis of R2?

4. Let Bn be the vector space of column vectors with bit entries 0, 1. Write
down every basis for B1 and B2. How many bases are there for B3?
B4? Can you make a conjecture for the number of bases for Bn?

(Hint: You can build up a basis for Bn by choosing one vector at a
time, such that the vector you choose is not in the span of the previous
vectors you’ve chosen. How many vectors are in the span of any one
vector? Any two vectors? How many vectors are in the span of any k
vectors, for k ≤ n?)
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20 Diagonalization

Let V and W be vector spaces, with bases S = {e1, . . . , en} and T =
{f1, . . . , fm} respectively. Since these are bases, there exist constants vi and
wj such that any vectors v ∈ V and w ∈ W can be written as:

v = v1e1 + v2e2 + . . .+ vnen

w = w1f1 + w2f2 + . . .+ wmfm

We call the coefficients v1, . . . , vn the components of v in the basis6 {e1, . . . , en}.
It is often convenient to arrange the components vi in a column vector and
the basis vector in a row vector by writing

v =
(
e1 e2 · · · en

)

v1

v2

...
vn

 .

Example Consider the basis S = {1 − t, 1 + t} for the vector space P1(t).
The vector v = 2t has components v1 = −1, v2 = 1, because

v = −1(1− t) + 1(1 + t) =
(
(1− t) (1 + t)

)−1

1

 .

We may consider these components as vectors in Rn and Rm:
v1

...
vn

 ∈ Rn,


w1

...
wm

 ∈ Rm.

Now suppose we have a linear transformation L : V → W . Then we can
expect to write L as an m × n matrix, turning an n-dimensional vector of
coefficients corresponding to v into an m-dimensional vector of coefficients
for w.

6To avoid confusion, it helps to notice that components of a vector are almost always
labeled by a superscript, while basis vectors are labeled by subscripts in the conventions
of these lecture notes.
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Using linearity, we write:

L(v) = L(v1e1 + v2e2 + . . .+ vnen)

= v1L(e1) + v2L(e2) + . . .+ vnL(en)

=
(
L(e1) L(e2) · · · L(en)

)

v1

v2

...
vn

 .

This is a vector in W . Let’s compute its components in W .
We know that for each ej, L(ej) is a vector in W , and can thus be written

uniquely as a linear combination of vectors in the basis T . Then we can find
coefficients M i

j such that:

L(ej) = f1M
1
j + . . .+ fmM

m
j =

m∑
i=1

fiM
i
j =

(
f1 f2 · · · fm

)

M1

j

M2
j

...

Mm
j

 .

We’ve written the M i
j on the right side of the f ’s to agree with our pre-

vious notation for matrix multiplication. We have an “up-hill rule” where
the matching indices for the multiplied objects run up and to the left, like
so: fiM

i
j .

Now M i
j is the ith component of L(ej). Regarding the coefficients M i

j as
a matrix, we can see that the jth column of M is the coefficients of L(ej) in
the basis T .
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Then we can write:

L(v) = L(v1e1 + v2e2 + . . .+ vnen)

= v1L(e1) + v2L(e2) + . . .+ vnL(en)

=
m∑
i=1

vjL(ej)

=
m∑
i=1

vj(M1
j f1 + . . .+Mm

j fm)

=
m∑
i=1

fi[
n∑
j=1

M i
jv
j]

=
(
f1 f2 · · · fm

)

M1

1 M1
2 · · · M1

n

M2
1 M2

2
...

...
Mm

1 · · · Mm
n



v1

v2

...
vn


The second last equality is the definition of matrix multiplication which is
obvious from the last line. Thus:

v1

...
vn

 L7→


M1

1 . . . M1
n

...
...

Mm
1 . . . Mm

n



v1

...
vn

 ,
and M = (M i

j) is called the matrix of L. Notice that this matrix depends
on a choice of bases for both V and W . Also observe that the columns of M
are computed by examining L acting on each basis vector in V expanded in
the basis vectors of W .

Example Let L : P1(t) 7→ P1(t), such that L(a + bt) = (a + b)t. Since
V = P1(t) = W , let’s choose the same basis for V and W . We’ll choose the
basis {1− t, 1 + t} for this example.

Thus:

L(1− t) = (1− 1)t = 0 = (1− t) · 0 + (1 + t) · 0 =
(
(1− t) (1 + t)

)(0
0

)

L(1 + t) = (1 + 1)t = 2t = (1− t) · −1 + (1 + t) · 1 =
(
(1− t) (1 + t)

)(−1
1

)

⇒M =

(
0 −1
0 1

)
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To obtain the last line we used that fact that the columns of M are just the
coefficients of L on each of the basis vectors; this always makes it easy to
write down M in terms of the basis we have chosen.

Now suppose we are lucky, and we have L : V 7→ V , and the basis
{v1, . . . , vn} is a set of linearly independent eigenvectors for L, with eigen-
values λ1, . . . , λn. Then:

L(v1) = λ1v1

L(v2) = λ2v2

...

L(vn) = λnvn

As a result, the matrix of L in the basis of eigenvectors is:

M =


λ1

λ2

. . .

λn

 ,

where all entries off of the diagonal are zero.
We call the n× n matrix of a linear transformation L : V 7→ V diagonal-

izable if there exists a collection of n linearly independent eigenvectors for L.
In other words, L is diagonalizable if there exists a basis for V of eigenvectors
for L.

In a basis of eigenvectors, the matrix of a linear transformation is diago-
nal. On the other hand, if an n×n matrix M is diagonal, then the standard
basis vectors ei are already a set of n linearly independent eigenvectors for M .
We have shown:

Theorem 20.1. Given a basis S for a vector space V and a linear transfor-
mation L : V → V , then the matrix for L in the basis S is diagonal if and
only if S is a basis of eigenvectors for L.
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20.1 Change of Basis

Suppose we have two bases S = {v1, . . . , vn} and T = {u1, . . . , un} for a
vector space V . (Here vi and ui are vectors, not components of vectors in a
basis!) Then we may write each vi uniquely as a linear combination of the uj:

vj =
∑
i

uiP
i
j ,

or in a matrix notation

(
v1 v2 · · · vn

)
=
(
u1 u2 · · · un

)

P 1

1 P 1
2 · · · P 1

n

P 2
1 P 2

2
...

...
P n

1 · · · P n
n

 .

Here, the P i
j are constants, which we can regard as entries of a square ma-

trix P = (P i
j ). The matrix P must have an inverse, since we can also write

each ui uniquely as a linear combination of the vj:

uj =
∑
k

vkQ
k
j .

Then we can write:
vj =

∑
k

∑
i

vkQ
k
jP

i
j .

But
∑
iQ

k
jP

i
j is the k, j entry of the product of the matrices QP . Since the

only expression for vj in the basis S is vj itself, then QP fixes each vj. As
a result, each vj is an eigenvector for QP with eigenvalues 1, so QP is the
identity.

The matrix P is called a change of basis matrix.

Changing basis changes the matrix of a linear transformation. To wit,
suppose L : V 7→ V has matrix M = (M i

j) in the basis T = {u1, . . . , un}, so

L(ui) =
∑
k

Mk
i uk.

Now, let S = {v1, . . . , vn} be a basis of eigenvectors for L, with eigenvalues
λ1, . . . , λn. Then

L(vi) = λivi =
∑
k

vkD
k
i
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where D is the diagonal matrix whose diagonal entries Dk
k are the eigenval-

ues λk; ie, D =


λ1

λ2

. . .

λn

. Let P be the change of basis matrix

from the basis T to the basis S. Then:

L(vj) = L(
∑
i

uiP
i
j ) =

∑
i

L(ui)P
i
j =

∑
i

∑
k

ukM
k
i P

i
j .

Meanwhile, we have:

L(vi) =
∑
k

vkD
k
i =

∑
k

∑
j

ujP
j
kD

k
i .

Since the expression for a vector in a basis is unique, then we see that the
entries of MP are the same as the entries of PD. In other words, we see that

MP = PD or D = P−1MP.

This motivates the following definition:

Definition A matrix M is diagonalizable if there exists an invertible matrix
P and a diagonal matrix D such that

D = P−1MP.

We can summarize as follows:

• Change of basis multiplies vectors by the change of basis matrix P , to
give vectors in the new basis.

• To get the matrix of a linear transformation in the new basis, we con-
jugate the matrix of L by the change of basis matrix: M → P−1MP .

If for two matrices N and M there exists an invertible matrix P such
that M = P−1NP , then we say that M and N are similar . Then the
above discussion shows that diagonalizable matrices are similar to diagonal
matrices.

Corollary 20.2. A square matrix M is diagonalizable if and only if there
exists a basis of eigenvectors for M .
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Review Questions

1. Show that similarity of matrices is an equivalence relation. (The def-
inition of an equivalence relation is given in Section 2, in the fourth
review problem.)

2. When is the 2× 2 matrix

(
a b
c d

)
diagonalizable? Include examples in

your answer.

3. Let Pn(t) be the vector space of degree n polynomials, and d
dt

: Pn(t) 7→
Pn−1(t) be the derivative operator. Find the matrix of d

dt
in the bases

{1, t, . . . , tn} for Pn(t) and {1, t, . . . , tn−1} for Pn−1(t).

4. When writing a matrix for a linear transformation, we have seen that
the choice of basis matters. In fact, even the order of the basis matters!

• Write all possible reorderings of the standard basis {e1, e2, e3}
for R3.

• Write each change of basis matrix between the standard basis
{e1, e2, e3} and each of its reorderings. Make as many observations
as you can about these matrices. (Note: These matrices are known
as permutation matrices .)

• Given the linear transformation L(x, y, z) = (2y−z, 3x, 2z+x+y),
write the matrix M for L in the standard basis, and two other
reorderings of the standard basis. Can you make any observations
about the resulting matrices?
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21 Orthonormal Bases

The canonical/standard basis

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...
1


has many useful properties.

• Each of the standard basis vectors has unit length:

||ei|| =
√
ei ei =

√
eTi ei = 1.

• The standard basis vectors are orthogonal (in other words, at right
angles or perpendicular).

ei ej = eTi ej = 0 when i 6= j

This is summarized by

eTi ej = δij =

{
1 i = j
0 i 6= j

,

where δij is the Kronecker delta. Notice that the Kronecker delta gives the
entries of the identity matrix.

Given column vectors v and w, we have seen that the dot product v w is
the same as the matrix multiplication vTw. This is the inner product on Rn.
We can also form the outer product vwT , which gives a square matrix.
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The outer product on the standard basis vectors is interesting. Set

Π1 = e1e
T
1

=


1
0
...
0


(
1 0 . . . 0

)

=


1 0 . . . 0
0 0 . . . 0
...

...
0 0 . . . 0


...

Πn = ene
T
n

=


0
0
...
1


(
0 0 . . . 1

)

=


0 0 . . . 0
0 0 . . . 0
...

...
0 0 . . . 1



In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position
and zeros everywhere else. 7

Notice that ΠiΠj = eie
T
i eje

T
j = eiδije

T
j . Then:

ΠiΠj =

{
Πi i = j
0 i 6= j

.

Moreover, for a diagonal matrix D with diagonal entries λ1, . . . , λn, we
can write

D = λ1Π1 + . . .+ λnΠn.

7This is reminiscent of an older notation, where vectors are written in juxtaposition.
This is called a “dyadic tensor”, and is still used in some applications.
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Other bases that share these properties should behave in many of the
same ways as the standard basis. As such, we will study:

• Orthogonal bases {v1, . . . , vn}:

vi vj = 0 if i 6= j

In other words, all vectors in the basis are perpendicular.

• Orthonormal bases {u1, . . . , un}:

ui uj = δij.

In addition to being orthogonal, each vector has unit length.

Suppose T = {u1, . . . , un} is an orthonormal basis for Rn. Since T is
a basis, we can write any vector v uniquely as a linear combination of the
vectors in T :

v = c1u1 + . . . cnun.

Since T is orthonormal, there is a very easy way to find the coefficients of this
linear combination. By taking the dot product of v with any of the vectors
in T , we get:

v ui = c1u1 ui + . . .+ ciui ui + . . .+ cnun ui

= c1 · 0 + . . .+ ci · 1 + . . .+ cn · 0
= ci,

⇒ ci = v ui

⇒ v = (v u1)u1 + . . .+ (v un)un

=
∑
i

(v ui)ui.

This proves the theorem:

Theorem 21.1. For an orthonormal basis {u1, . . . , un}, any vector v can be
expressed

v =
∑
i

(v ui)ui.
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21.1 Relating Orthonormal Bases

Suppose T = {u1, . . . , un} and R = {w1, . . . , wn} are two orthonormal bases
for Rn. Then:

w1 = (w1 u1)u1 + . . .+ (w1 un)un
...

wn = (wn u1)u1 + . . .+ (wn un)un

⇒ wi =
∑
j

uj(uj wi)

As such, the matrix for the change of basis from T to R is given by

P = (P j
i ) = (uj wi).

Consider the product PP T in this case.

(PP T )jk =
∑
i

(uj wi)(wi uk)

=
∑
i

(uTj wi)(w
T
i uk)

= uTj

[∑
i

(wiw
T
i )

]
uk

= uTj Inuk (∗)
= uTj uk = δjk.

In the equality (∗) is explained below. So assuming (∗) holds, we have shown
that PP T = In, which implies that

P T = P−1.

The equality in the line (∗) says that
∑
iwiw

T
i = In. To see this, we

examine (
∑
iwiw

T
i )v for an arbitrary vector v. We can find constants cj such
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that v =
∑
j c

jwj, so that:

(
∑
i

wiw
T
i )v = (

∑
i

wiw
T
i )(

∑
j

cjwj)

=
∑
j

cj
∑
i

wiw
T
i wj

=
∑
j

cj
∑
i

wiδij

=
∑
j

cjwj since all terms with i 6= j vanish

= v.

Then as a linear transformation,
∑
iwiw

T
i = In fixes every vector, and thus

must be the identity In.

Definition A matrix P is orthogonal if P−1 = P T .

Then to summarize,

Theorem 21.2. A change of basis matrix P relating two orthonormal bases
is an orthogonal matrix. i.e.

P−1 = P T .

Example Consider R3 with the orthonormal basis

S =

u1 =


2√
6

1√
6
−1√

6

 , u2 =


0
1√
2

1√
2

 , u3 =


1√
3
−1√

3
1√
3


 .

Let R be the standard basis {e1, e2, e3}. Since we are changing from the
standard basis to a new basis, then the columns of the change of basis matrix
are exactly the images of the standard basis vectors. Then the change of basis
matrix from R to S is given by:

P = (P j
i ) = (ejui) =

e1 u1 e1 u2 e1 u3

e2 u1 e2 u2 e2 u3

e3 u1 e3 u2 e3 u3



=
(
u1 u2 u3

)
=


2√
6

0 1√
3

1√
6

1√
2
−1√

3
−1√

6
1√
2

1√
3

 .
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From our theorem, we observe that:

P−1 = P T =

u
T
1

uT2
uT3



=


2√
6

1√
6
−1√

6

0 1√
2

1√
2

1√
3
−1√

3
1√
3

 .

We can check that P TP = I by a lengthy computation, or more simply,
notice that

(P TP )ij =

u
T
1

uT2
uT3

(u1 u2 u3

)

=

1 0 0
0 1 0
0 0 1

 .
We are using orthonormality of the ui for the matrix multiplication above.

Orthonormal Change of Basis and Diagonal Matrices. Suppose D is
a diagonal matrix, and we use an orthogonal matrix P to change to a new
basis. Then the matrix M of D in the new basis is:

M = PDP−1 = PDP T .

Now we calculate the transpose of M .

MT = (PDP T )T

= (P T )TDTP T

= PDP T

= M

So we see the matrix PDP T is symmetric!
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Review Questions

1. Let D =

(
λ1 0
0 λ2

)
.

i. Write D in terms of the vectors e1 and e2, and their transposes.

ii. Suppose P =

(
a b
c d

)
is invertible. Show that D is similar to

M =
1

ad− bc

(
λ1ad− λ2bc (λ1 − λ2)bd

(λ1 − λ2)ac −λ1bc+ λ2ad

)
.

iii. Suppose the vectors
(
a b

)
and

(
c d

)
are orthogonal. What can

you say about M in this case?

2. Suppose S = {v1, . . . , vn} is an orthogonal (not orthonormal) basis for
Rn. Then we can write any vector v as v =

∑
i c
ivi for some constants

ci. Find a formula for the constants ci in terms of v and the vectors in
S.

3. Let u, v be independent vectors in R3, and P = span{u, v} be the plane
spanned by u and v.

i. Is the vector v⊥ = v − u·v
u·uu in the plane P?

ii. What is the angle between v⊥ and u?

iii. Given your solution to the above, how can you find a third vector
perpendicular to both u and v⊥?
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iv. Construct an orthonormal basis for R3 from u and v.

v. Test your abstract formulae starting with

u =
(
1 2 0

)
and v =

(
0 1 1

)
.
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Diagonalizing Symmetric Matrices

Symmetric matrices have many applications. For example, if we consider the
shortest distance between pairs of important cities, we might get a table like
this:

Davis Seattle San Francisco
Davis 0 2000 80

Seattle 2000 0 2010
San Francisco 80 2010 0

Encoded as a matrix, we obtain:

M =

 0 2000 80
2000 0 2010
80 2010 0

 = MT .

Definition A matrix is symmetric if it obeys

M = MT .

One very nice property of symmetric matrices is that they always have
real eigenvalues. The general proof is an exercise, but here’s an example for
2× 2 matrices.

Example For a general symmetric 2× 2 matrix, we have:

Pλ

(
a b
b d

)
= det

(
λ− a −b
−b λ− d

)
= (λ− a)(λ− d)− b2

= λ2 − (a+ d)λ− b2 + ad

⇒ λ =
a+ d

2
±

√√√√b2 +

(
a− d

2

)2

.

Notice that the discriminant 4b2 + (a − d)2 is always positive, so that the
eigenvalues must be real.

Now, suppose a symmetric matrix M has two distinct eigenvalues λ 6= µ
and eigenvectors x and y:

Mx = λx, My = λy.
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Consider the dot product x y = xTy = yTx. And now calculate:

xTMy = xTµy = µx y, and

xTMy = (yTMx)T (by transposing a 1× 1 matrix)

= xTMTy

= xTMy

= xTλy

= λx y.

Subtracting these two results tells us that:

0 = xTMy − xTMy = (µ− λ)x y.

Since µ and λ were assumed to be distinct eigenvalues, λ − µ is non-zero,
and so x y = 0. Then we have proved the following theorem.

Theorem 21.3. Eigenvectors of a symmetric matrix with distinct eigenval-
ues are orthogonal.

Example The matrix M =

(
2 1
1 2

)
has eigenvalues determined by

det(M − λ) = (2− λ)2 − 1 = 0.

Then the eigenvalues of M are 3 and 1, and the associated eigenvectors

turn out to be

(
1
1

)
and

(
1
−1

)
. It is easily seen that these eigenvectors are

orthogonal: (
1
1

) (
1
−1

)
= 0

Last lecture we saw that the matrix P built from orthonormal basis vec-
tors {v1, . . . , vn}

P =
(
v1 . . . vn

)
was an orthogonal matrix:

P−1 = P T , or PP T = I = P TP.
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Moreover, given any (unit) vector x1, one can always find vectors x2,
. . ., xn such that {x1, . . . , xn} is an orthonormal basis. (Such a basis can be
obtained using the “Gram-Schmidt” procedure, which we will present later.) Hyperlink to notes24!

Now suppose M is a symmetric n×n matrix and λ1 is an eigenvalue with
eigenvector x1. Let the square matrix of column vectors P be the following:

P =
(
x1 x2 . . . xn

)
,

where x1 through xn are orthonormal, and x1 is an eigenvector for M , but
the others are not necessarily eigenvectors for M . Then

MP =
(
λ1x1 Mx2 . . . Mxn

)
.

But P is an orthogonal matrix, so P−1 = P T . Then:

P−1 = P T =


xT1
...
xTn



⇒ P TMP =


xT1 λ1x1 ∗ . . . ∗
xT2 λ1x1 ∗ . . . ∗

...
...

xTnλ1x1 ∗ . . . ∗



=


λ1 ∗ . . . ∗
0 ∗ . . . ∗
... ∗ ...
0 ∗ . . . ∗



=


λ1 0 . . . 0
0
... M̂
0


The last equality follows since P TMP is symmetric. The asterisks in the
matrix are where “stuff” happens; this extra information is denoted by M̂
in the final equation. We know nothing about M̂ except that it is an (n −
1)× (n− 1) matrix and that it is symmetric. But then, by finding an (unit)
eigenvector for M̂ , we could repeat this procedure successively. The end
result would be a diagonal matrix with eigenvalues of M on the diagonal.
Then we have proved a theorem.
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Theorem 21.4. Every symmetric matrix is similar to a diagonal matrix of
its eigenvalues. In other words,

M = MT ⇒M = PDP T

where P is an orthogonal matrix and D is a diagonal matrix whose entries
are the eigenvalues of M .

To diagonalize a real symmetric matrix, begin by building an orthogonal
matrix from an orthonormal basis of eigenvectors.

Example The symmetric matrix M =

(
2 1
1 2

)
has eigenvalues 3 and 1 with

eigenvectors

(
1
1

)
and

(
1
−1

)
respectively. From these eigenvectors, we nor-

malize and build the orthogonal matrix:

P =

 1√
2

1√
2

1√
2
−1√

2


Notice that P TP = I2. Then:

MP =

 3√
2

1√
2

3√
2
−1√

2

 =

 1√
2

1√
2

1√
2
−1√

2

(3 0
0 1

)
.

In short, MP = DP , so D = P TMP . Then D is the diagonalized form of
M and P the associated change-of-basis matrix from the standard basis to
the basis of eigenvectors.
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Wikipedia:

• Symmetric Matrix

• Diagonalizable Matrix

• Similar Matrix
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Review Questions

1. (On Reality of Eigenvectors)

i. Suppose z = x + iy where x, y ∈ R, i =
√
−1, and z = x − iy.

Compute z. What can you say about zz and zz? This operation
is called complex conjugation.

ii. What can you say about complex numbers λ that obey λ = λ?

iii. Let x =


z1

...
zn

 ∈ Cn. Let x† =
(
z1 . . . zn

)
∈ Cn. Compute x†x.

What can you say about the result?

iv. Suppose M = MT is an n×n symmetric matrix with real entries.
Let λ be an eigenvalue of M with eigenvector x, so Mx = λx.
Compute:

x†Mx

x†x

v. Suppose Λ is a 1× 1 matrix. What is ΛT ?

vi. What is the size of the matrix x†Mx?

vii. For any matrix (or vector) N , we can compute N by applying
complex conjugation to each entry of N . Compute (x†)T . Then
compute (x†Mx)T .

viii. Show that λ = λ. What does this say about λ?

2. Let x1 =

ab
c

, where a2 + b2 + c2 = 1. Find vectors x2 and x3 such

that {x1, x2, x3} is an orthonormal basis for R3.

3. What can you say about the sum of the dimensions of the eigenspaces
of a real symmetric matrix?
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22 Kernel, Range, Nullity, Rank

The range of a linear transformation L : V → W is the set of vectors the

Define all for functions;
segue into linear
transformations; merge
footnote into text. Fluffy
text before hitting with
definitions.linear transformation maps to. This set is also often called the image of L,

written
ran(L) = Im(L) = L(V ) = {L(v)|v ∈ V } ⊂ W.

The domain V of a linear transformation L : V → W is often called the pre-
image of L. We can also talk about the pre-image of any subset of vectors
U ∈ W :

L−1(U) = {v ∈ V |L(v) ∈ U} ⊂ V.

A linear transformation L is one-to-one if for any x 6= y ∈ V , L(x) 6= f(y).
In other words, different vectors in V always map to different vectors in
W . One-to-one transformations are also known as injective transformations.
Notice that injectivity is a condition on the pre-image of L.

A linear transformation L is onto if for every w ∈ W , there exists an
x ∈ V such that L(x) = w. In other words, every vector in W is the image
of some vector in V . An onto transformation is also known as an surjective
transformation. Notice that surjectivity is a condition on the image of L. 8

Suppose L : V → W is not injective. Then we can find v1 6= v2 such that
Lv1 = Lv2. Then v1 − v2 6= 0, but

L(v1 − v2) = 0.

Definition Let L : V → W be a linear transformation. The set of all vectors
v such that Lv = 0W is called the kernel of L:

kerL = {v ∈ V |Lv = 0W}.
8 The notions of one-to-one and onto can be generalized to arbitrary functions on sets.

For example if g is a function from a set S to a set T , then g is one-to-one if different
objects in S always map to different objects in T . For a linear transformation f , these
sets S and T are then just vector spaces, and we require that f is a linear map; i.e. f
respects the linear structure of the vector spaces.

The linear structure of sets of vectors lets us say much more about one-to-one and onto
functions than one can say about functions on general sets. For example, we always know
that a linear function sends 0V to 0W . Then we can show that a linear transformation is
one-to-one if and only if 0V is the only vector that is sent to 0W : by looking at just one
(very special) vector, we can figure out whether f is one-to-one. For arbitrary functions
between arbitrary sets, things aren’t nearly so convenient!
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Theorem 22.1. A linear transformation L is injective if and only if

kerL = {0V } .

Proof. The proof of this theorem is an exercise.

Notice that if L has matrix M in some basis, then finding the kernel of
L is equivalent to solving the homogeneous system

MX = 0.

Example Let L(x, y) = (x+ y, x+ 2y, y). Is L one-to-one?
To find out, we can solve the linear system:1 1 0

1 2 0
0 1 0

 ∼
1 0 0

0 1 0
0 0 0

 .
Then all solutions of MX = 0 are of the form x = y = 0. In other words,
kerL = 0, and so L is injective.

Theorem 22.2. Let L : V → W . Then kerL is a subspace of V .

Proof. Notice that if L(v) = 0 and L(u) = 0, then for any constants c, d,
L(cu+dv) = 0. Then by the subspace theorem, the kernel of L is a subspace hyperlink to subspace

theorem

of V .

This theorem has an interpretation in terms of the eigenspaces of L : V →
V . Suppose L has a zero eigenvalue. Then the associated eigenspace consists
of all vectors v such that Lv = 0v = 0; in other words, the 0-eigenspace of L
is exactly the kernel of L.

Returning to the previous example, let L(x, y) = (x + y, x + 2y, y). L is
clearly not surjective, since L sends R2 to a plane in R3.

Notice that if x = L(v) and y = L(u), then for any constants c, d, cx +
dy = L(cv + du). Now the subspace theorem strikes again, and we have the
following theorem.

Theorem 22.3. Let L : V → W . Then the image L(V ) is a subspace of W .
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To find a basis of the image of L, we can start with a basis S = {v1, . . . , vn}
for V , and conclude (see the Review Exercises) that

L(V ) = spanL(S) = span{L(v1), . . . , L(vn)}.

However, the set {L(v1), . . . , L(vn)} may not be linearly independent, so we
solve

c1L(v1) + . . .+ cnL(vn) = 0.

By finding relations amongst L(S), we can discard vectors until a basis is
arrived at. The size of this basis is the dimension of the image of L, which
is known as the rank of L.

Definition The rank of a linear transformation L is the dimension of its
image, written rankL = dimL(V ) = dim ran L.

The nullity of a linear transformation is the dimension of the kernel,
written nullL = dim kerL.

Theorem 22.4 (Dimension Formula). Let L : V → W be a linear transfor-
mation, with V a finite-dimensional vector space9. Then:

dimV = dim kerV + dimL(V )

= nullL+ rankL.

Proof. Pick a basis for V :

{v1, . . . , vp, u1, . . . , uq},

where v1, . . . , vp is also a basis for kerL. This can always be done, for exam-
ple, by finding a basis for the kernel of L and then extending to a basis for V .
Then p = nullL and p+ q = dimV . Then we need to show that q = rankL.
To accomplish this, we show that {L(u1), . . . , L(uq)} is a basis for L(V ).

9The formula still makes sense for infinite dimensional vector spaces, such as the space
of all polynomials, but the notion of a basis for an infinite dimensional space is more
sticky than in the finite-dimensional case. Furthermore, the dimension formula for infinite
dimensional vector spaces isn’t useful for computing the rank of a linear transformation,
since an equation like ∞ = ∞ + x cannot be solved for x. As such, the proof presented
assumes a finite basis for V .
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To see that {L(u1), . . . , L(uq)} spans L(V ), consider any vector w in L(V ).
Then we can find constants ci, dj such that:

w = L(c1v1 + . . .+ cpvp + d1u1 + . . .+ dquq)

= c1L(v1) + . . .+ cpL(vp) + d1L(u1) + . . .+ dqL(uq)

= d1L(u1) + . . .+ dqL(uq) since L(vi) = 0,

⇒ L(V ) = span{L(u1), . . . , L(uq)}.

Now we show that {L(u1), . . . , L(uq)} is linearly independent. We argue
by contradiction: Suppose there exist constants dj (not all zero) such that

0 = d1L(u1) + . . .+ dqL(uq)

= L(d1u1 + . . .+ dquq).

But since the uj are linearly independent, then d1u1 + . . . + dquq 6= 0, and
so d1u1 + . . . + dquq is in the kernel of L. But then d1u1 + . . . + dquq must
be in the span of {v1, . . . , vp}, since this was a basis for the kernel. This
contradicts the assumption that {v1, . . . , vp, u1, . . . , uq} was a basis for V , so
we are done.

References

• Hefferon, Chapter Three, Section II.2: Rangespace and Nullspace (Re-
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Review Questions

1. Let L : V → W be a linear transformation. Prove that kerL = {0V } if
and only if L is one-to-one.

2. Let {v1, . . . , vn} be a basis for V . Explain why

L(V ) = span{L(v1), . . . , L(vn)}.

3. Suppose L : R4 → R3 whose matrix M in the standard basis is row
equivalent to the folowing matrix:1 0 0 −1

0 1 0 1
0 0 1 1

 .
Explain why the first three columns of the original matrix M form a
basis for L(V ).
Find and describe and algorithm (i.e. a general procedure) for finding
a basis for L(V ) when L : Rn → Rm.
Finally, provide an example of the use of your algorithm.

Hold hands on this a bit
more!

4. Claim: If {v1, . . . , vn} is a basis for kerL, where L : V → W , then it is
always possible to extend this set to a basis for V .

Choose a simple yet non-trivial linear transformation with a non-trivial
kernel and verify the above claim for the transformation you choose.

5. Let Pn(x) be the space of polynomials in x of degree less than or equal
to n, and consider the derivative operator ∂

∂x
. Find the dimension of

the kernel and image of ∂
∂x

.

Now, consider P2(x, y), the space of polynomials of degree two or less
in x and y. (Recall that xy is degree two, y is degree one and x2y is
degree three, for example.) Let L = ∂

∂x
+ ∂

∂y
. (For example, L(xy) =

∂
∂x

(xy) + ∂
∂y

(xy) = y + x.) Find a basis for the kernel of L. Verify the
dimension formula in this case.
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23 Gram-Schmidt and Orthogonal Comple-

ments

Given a vector u and some other vector v not in the span of u, we can Put pictures here?

construct a new vector:
v⊥ = v − u · v

u · u
u.

This new vector v⊥ is orthogonal to u because

u v⊥ = u v − u · v
u · u

u u = 0.

Hence, {u, v⊥} is an orthogonal basis for span{u, v}. When v is not parallel to

u, v⊥ 6= 0, and normalizing these vectors we obtain { u|u| ,
v⊥

|v⊥|}, an orthonormal
basis.

Sometimes we write v = v⊥ + v‖ where:

v⊥ = v − u · v
u · u

u

v‖ =
u · v
u · u

u.

This is called an orthogonal decomposition because we have decomposed v
into a sum of orthogonal vectors. It is significant that we wrote this decom-
position with u in mind; v‖ is parallel to u.

If u, v are linearly independent vectors in R3, then the set {u, v⊥, u×v⊥}
would be an orthogonal basis for R3. This set could then be normalized by
dividing each vector by its length to obtain an orthonormal basis.

However, it often occurs that we are interested in vector spaces with di-
mension greater than 3, and must resort to craftier means than cross products
to obtain an orthogonal basis. 10

Given a third vector w, we should first check that w does not lie in the
span of u and v, i.e. check that u, v and w are linearly independent. We
then can define:

w⊥ = w − u · w
u · u

u− v⊥ · w
v⊥ · v⊥

v⊥.

10Actually, given a set T of (n − 1) independent vectors in n-space, one can define an
analogue of the cross product that will produce a vector orthogonal to the span of T , using
a method exactly analogous to the usual computation for calculating the cross product of
two vectors in R3. This only gets us the last orthogonal vector, though; the process in
this Section gives a way to get a full orthogonal basis.
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One can check by directly computing u w⊥ and v⊥ w⊥ that w⊥ is Put in the computation!

orthogonal to both u and v⊥; as such, {u, v⊥, w⊥} is an orthogonal basis for
span{u, v, w}.

In fact, given a collection {v1, v2, . . .} of linearly independent vectors,
we can produce an orthogonal basis for span{v1, v2, . . .} consisting of the
following vectors:

v⊥1 = v1

v⊥2 = v2 −
v1 · v2

v1 · v1

v1

...

v⊥3 = v3 −
v⊥1 · v3

v⊥1 · v⊥1
v⊥1 −

v⊥2 · v3

v⊥2 · v⊥2
v⊥2

...

v⊥i = vi −
∑
j<i

v⊥j · vi
v⊥j · v⊥j

v⊥j

= vi −
v⊥1 · vi
v⊥1 · v⊥1

v⊥1 − . . .−
v⊥n−1 · vi
v⊥n−1 · v⊥n−1

v⊥n−1

...

Notice that each v⊥i here depends on the existence of v⊥j for every j < i.
This allows us to inductively/algorithmically build up a linearly independent,
orthogonal set of vectors whose span is span{v1, v2, . . .}. This algorithm bears
the name Gram–Schmidt orthogonalization procedure.

Example Let u =
(
1 1 0

)
, v =

(
1 1 1

)
, and w =

(
3 1 1

)
. We’ll

apply Gram-Schmidt to obtain an orthogonal basis for R3.
First, we set u⊥ = u. Then:

v⊥ =
(
1 1 1

)
− 2

2

(
1 1 0

)
=
(
0 0 1

)
w⊥ =

(
3 1 1

)
− 4

2

(
1 1 0

)
− 1

1

(
0 0 1

)
=
(
1 −1 0

)
.

Then the set
{
(
1 1 0

)
,
(
0 0 1

)
,
(
1 −1 0

)
}
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is an orthogonal basis for R3. To obtain an orthonormal basis, as always we
simply divide each of these vectors by its length, yielding:

{
(

1√
2

1√
2

0
)
,
(
0 0 1

)
,
(

1√
2
−1√

2
0
)
}.

23.1 Orthogonal Complements

Let U and V be subspaces of a vector space W . We saw as a review exercise
that U ∩V is a subspace of W , and that U ∪V was not a subspace. However,
spanU∪V is certainly a subspace, since the span of any subset is a subspace.

Notice that all elements of spanU ∪ V take the form u + v with u ∈ U
and v ∈ V . We call the subspace

spanU ∪ V = {u+ v|u ∈ U, v ∈ V } = U + V

the sum of U and V . Here, we are not adding vectors, but vector spaces to
produce a new vector space!

Definition Given two subspaces U and V of a space W such that U ∩ V =
{0W}, the direct sum of U and V is defined as:

U ⊕ V = spanU ∪ V = {u+ v|u ∈ U, v ∈ V }.

The direct sum has a very nice property.

Theorem 23.1. Let w = u+ v ∈ U ⊕ V . Then the expression w = u+ v is
unique.

Proof. Suppose that u+ v = u′ + v′, with u, u′ ∈ U , and v, v′ ∈ V . Then we
could express 0 = (u − u′) + (v − v′). Then (u − u′) = −(v − v′). Since U
and V are subspaces, we have (u − u′) ∈ U and −(v − v′) ∈ V . But since
these elements are equal, we also have (u−u′) ∈ V . Since U ∩V = {0}, then
(u− u′) = 0. Similarly, (v − v′) = 0, proving the theorem.

Given a subspace U in W , we would like to write W as the direct sum of
U and something. Using the inner product, there is a natural candidate for
this second subspace.

Definition Given a subspace U of a vector space W , define:

U⊥ = {w ∈ W |w u = 0 for all u ∈ U}.
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The set U⊥ (pronounced “U -perp”) is the set of all vectors in W orthogo-
nal to every vector in U . This is also often called the orthogonal complement
of U .

Theorem 23.2. Let U be a subspace of a finite-dimensional vector space W .
Then the set U⊥ is a subspace of W , and W = U ⊕ U⊥.

Proof. To see that U⊥ is a subspace, we only need to check closure, which
requires a simple check.

We have U ∩ U⊥ = {0}, since if u ∈ U and u ∈ U⊥, we have:

u u = 0⇔ u = 0.

Finally, we show that any vector w ∈ W is in U ⊕ U⊥. (This is where
we use the assumption that W is finite-dimensional.) Let e1, . . . , en be an
orthonormal basis for W . Set:

u = (w e1)e1 + . . .+ (w en)en ∈ U
u⊥ = w − u

It is easy to check that u⊥ ∈ U⊥ (see the Gram-Schmidt procedure). Then
w = u+ u⊥, so w ∈ U ⊕ U⊥, and we are done.

Example Consider any plane P through the origin in R3. Then P is a
subspace, and P⊥ is the line through the origin orthogonal to P . For example,
if P is the xy-plane, then

R3 = P ⊕ P⊥ = {(x, y, 0)|x, y ∈ R} ⊕ {(0, 0, z)|z ∈ R}.

Notice that for any subspace U , the subspace (U⊥)⊥ is just U again. As
such, ⊥ is an involution on the set of subspaces of a vector space.
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Review Questions

1. Suppose u and v are linearly independent. Show that u and v⊥ are also
linearly independent. Explain why {u, v⊥} are a basis for span{u, v}.

2. Repeat the previous problem, but with three independent vectors u, v, w,
and v⊥ and w⊥ as defined in the lecture.

3. Given any three vectors u, v, w, when do v⊥ or w⊥ vanish?

4. This question will answer the question, “If I choose a vector at random,
what is the probability that it lies in the span of some other vectors?”

5. For U a subspace of W , use the subspace theorem to check that U⊥ is
a subspace of W .

i. Given a collection S of k vectors in Rn, consider the matrix M
whose columns are the vectors in S. Show that S is linearly inde-
pendent if and only if the kernel of M is trivial.

ii. Give some method for choosing a random vector v. Suppose S is
a collection of k linearly independent vectors in Rn. How can we
tell whether S ∪ {v} is linearly independent? Do you think it is
likely or unlikely that S ∪ {v} is linearly independent? Explain
your reasoning.

iii. Let M be an n × n diagonalizable matrix whose eigenvalues are
chosen uniformly at random. (i.e. every real number has equal
chance of being an eigenvalue.) What is the probability that the
columns of M form a basis for Rn? (Hint: What is the relationship
between the kernel of M and its eigenvalues?)
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24 Least Squares

Consider the linear system L(x) = v, where L : U
linear−→ W , and v ∈ W is

given. As we have seen, this system may have no solutions, a unique solution,
or a space of solutions. But if v is not in the range of L then there will never
be any solutions for L(x) = v.

However, for many applications we do not need a exact solution of the
system; instead, we try to find the best approximation possible. To do this,
we try to find x that minimizes ||L(x)− v||.

“My work always tried to unite the Truth with the Beautiful,
but when I had to choose one or the other, I usually chose the
Beautiful.”

– Hermann Weyl.

This method has many applications, such as when trying to fit a (perhaps
linear) function to a “noisy” set of observations. For example, suppose we
measured the position of a bicycle on a racetrack once every five seconds.
Our observations won’t be exact, but so long as the observations are right on
average, we can figure out a best-possible linear function of position of the
bicycle in terms of time.

Suppose M is the matrix for L in some bases for U and W , and v and x
are given by column vectors V and X in these bases. Then we need to
approximate

MX − V ≈ 0

Note that if dimU = n and dimW = m then M can be represented by
an m × n matrix and x and v as vectors in Rn and Rm, respectively. Thus,
we can write W = L(U)⊕ L(U)⊥. Then we can uniquely write v = v‖ + v⊥,
with v‖ ∈ L(U) and v⊥ ∈ L(U)⊥.

Then we should solve L(u) = v‖. In components, v⊥ is just V −MX,
and is the part we will eventually wish to minimize.

In terms of M , recall that L(V ) is spanned by the columns of M . (In
the natural basis, the columns of M are Me1, . . ., Men.) Then v⊥ must be
perpendicular to the columns of M . i.e., MT (V −MX) = 0, or

MTMX = MTV.

Solutions X to MTMX = MTV are called least squares solutions to
MX = V .
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Notice that any solution X to MX = V is a least squares solution.
However, the converse is often false. In fact, the equation MX = V may have
no solutions at all, but still have least squares solutions to MTMX = MTV .

Observe that since M is an m× n matrix, then MT is an n×m matrix.
Then MTM is an n× n matrix, and is symmetric, since (MTM)T = MTM .
Then, for any vector X, we can evaluate XTMTMX to obtain a num-
ber. This is a very nice number, though! It is just the length |MX|2 =
(MX)T (MX) = XTMTMX.

Now suppose that kerL = {0}, so that the only solution to MX = 0
is X = 0; in particular, M is invertible. But if M is invertible, then so is
MTM , since (MTM)−1 = M−1M−T . Then the only solution to MTMX = 0
is X = 0.

In this case, the least squares solution (the X that solves MTMX = MV )
is unique, and is equal to

X = (MTM)−1MTV.

In a nutshell, this is the least squares method.

• Compute MTM and MTV .

• Solve (MTM)X = MTV by Gaussian elimination.

Example Captain Conundrum falls off of the leaning tower of Pisa and
makes three (rather shaky) measurements of his velocity at three different
times.

t s v m/s
1 11
2 19
3 31

Having taken some calculus11, he believes that his data are best approx-
imated by a straight line

v = at+ b.

Then he should find a and b to best fit the data.

11 = a · 1 + b

19 = a · 2 + b

31 = a · 3 + b.

11In fact, he is a Calculus Superhero.
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As a system of linear equations, this becomes:1 1
2 1
3 1

(a
b

)
?
=

11
19
31

 .
There is likely no actual straight line solution, so instead solve MTMX =
MTV .

(
1 2 3
1 1 1

)1 1
2 1
3 1

(a
b

)
=

(
1 2 3
1 1 1

)11
19
31

 .
This simplifies to the system:(

14 6 142
6 3 61

)
∼
(

1 0 10
0 1 1

3

)
.

Then the least-squares fit is the line

v = 10 t+
1

3
.

Notice that this equation implies that Captain Conundrum accelerates to-
wards Italian soil at 10 m/s2 (which is an excellent approximation to reality)
and that he started at a downward velocity of 1

3
m/s (perhaps somebody

gave him a shove....)!
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Review Questions

1. Let L : U → V be a linear transformation. Suppose v ∈ L(U) and you
have found a vector ups that obeys L(ups) = v.

Explain why you need to compute kerL to describe the solution space
of the linear system L(u) = v.

2. Suppose that M is an m× n matrix with trivial kernel. Show that for
any vectors u and v in Rm:

• uTMTMv = vTMTMu

• vTMTMv ≥ 0.

• If vTMTMv = 0, then v = 0.

(Hint: Think about the dot product in Rn.)
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Determinant, 67
2× 2 matrix, 66
3× 3 matrix, 66

Diagonal matrix, 44
Diagonalizable, 117
Diagonalization

concept of, 88
Dimension, 108

concept of, 40
notion of, 97

Dimension formula, 136
Direct sum, 141
Domain, 134
Dot product, 28
Dyad, 122

Eigenspace, 96
Eigenvalue, 87, 92

multiplicity of, 93
Eigenvector, 87, 92
Elementary matrix, 69

swapping rows, 70
Elementary row operations, 16
Equivalence relation, 120
Euclidean length, 28
Even permutation, 67
Expansion by minors, 79

Forward substitution, 60
Fundamental theorem of algebra, 93

Gauss–Jordan elimination, 16
Gaussian elimination, 16
General solution, 24
Goofing up, 55
Gram–Schmidt orthogonalization pro-

cedure, 140
Graph theory, 42

Homogeneous solution
an example, 23

Homogeneous system, 24
Hyperplane, 21, 27

Identity matrix, 44

148



2× 2, 10
Image, 134
Injective, 134
Inner product, 121
Invariant direction, 87
Inverse matrix

concept of, 51
Inversion number, 71
Invertible, 53

Kernel, 134
Kronecker delta, 121

Law of Cosines, 28
Least squares, 144

solutions, 144
Length of a vector, 28
Linear

function, 23
Linear combination, 95
Linear dependence theorem, 103
Linear function, 37
Linear independence

concept of, 97
Linear System

concept of, 7
Linear Transformation

concept of, 7
Linear transformation, 37
Linearity, 37
Linearity property, 23
Linearly dependent, 102
Linearly independent, 102
Lower triangular matrix, 59
Lower unit triangular matrix, 61
LU decomposition, 59

Matrix, 42
diagonal of, 44

entries of, 42
of a linear transformation, 86, 92

Minimal spanning set, 105
Minor, 79
Multiplicative function, 79

Non-leading variables, 21
Nonsingular, 53
Nullity, 136

Odd permutation, 67
One-to-one, 134
Onto, 134
Orthogonal complement, 142
Orthogonal decomposition, 139
Orthogonal matrix, 125
Orthonormal basis, 123
Othogonal, 121
Othogonal basis, 123
Outer product, 121

Parallelepiped, 84
Particular solution, 24

an example, 23
Permutation, 66
Permutation matrices, 120
Pivot, 12
Pre-image, 134

Random, 143
Range, 134
Rank, 136
Reduced row echelon form, 12
Row equivalence, 11
Row vector, 42

Scalar multiplication
n-vectors, 26

Sign function, 67
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Similar matrices, 119
Solution set, 21

set notation, 22
Span, 98
Square matrices, 48
Square matrix, 44
Standard basis, 92, 111
Subspace, 97

notion of, 96, 97
Subspace theorem, 98
Sum of vectors spaces, 141
Surjective, 134
Symmetric matrix, 44, 129

Trace, 50
Transpose, 44
Triangle inequality, 30

Upper triangular matrix, 59

Vector
in R2, 6

Vector addition
n-vectors, 26

Vector space, 32
finitedimensional, 108

Zero vector
n-vectors, 26

150


	What is Linear Algebra?
	Gaussian Elimination
	Notation for Linear Systems
	Reduced Row Echelon Form

	Elementary Row Operations
	Solution Sets for Systems of Linear Equations 
	Non-Leading Variables

	 Vectors in Space, n-Vectors 
	Directions and Magnitudes

	 Vector Spaces 
	 Linear Transformations 
	 Matrices 
	 Properties of Matrices 
	Block Matrices
	The Algebra of Square Matrices 

	 Inverse Matrix 
	Three Properties of the Inverse
	Finding Inverses
	Linear Systems and Inverses
	Homogeneous Systems
	Bit Matrices

	LU Decomposition 
	Using LU Decomposition to Solve Linear Systems
	Finding an LU Decomposition.
	Block LU Decomposition

	 Elementary Matrices and Determinants 
	Permutations
	Elementary Matrices

	Elementary Matrices and Determinants II
	Properties of the Determinant 
	Determinant of the Inverse
	Adjoint of a Matrix
	Application: Volume of a Parallelepiped

	Eigenvalues and Eigenvectors 
	Invariant Directions

	 Eigenvalues and Eigenvectors II 
	Eigenspaces

	Subspaces and Spanning Sets 
	Subspaces
	Building Subspaces

	Linear Independence 
	 Basis and Dimension 
	Bases in Rn.

	Diagonalization 
	Change of Basis

	Orthonormal Bases 
	Relating Orthonormal Bases

	 Kernel, Range, Nullity, Rank 
	 Gram-Schmidt and Orthogonal Complements 
	Orthogonal Complements

	 Least Squares 

