CSE 788.01 - Sparse representations and compressive sensing Problem Set 1 Due lecture on April 17th

- 1. A Hadamard matrix is an *n*-by-*n* matrix with entries in $\{-1, 1\}$ so that all columns are orthogonal. Show that if there is a Hadamard matrix of size $n \ge 1$, then *n* must be 1, 2 or a multiple of 4.
- 2. Prove the following converse to the necessary condition for recovery of sparse signals that we discussed in the second lecture: Suppose that an m-by-n matrix A has the property that every 2k columns are linearly independent. Show that for any vector $y \in \mathbb{R}^m$ there exists at most one k-sparse signal $x \in \mathbb{R}^n$ such that y = Ax.
- 3. A linear program is an optimization problem of the form: For an *m*-by-*n* matrix A and vectors $c \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$,

$$\min \sum_{i} c_i x_i$$

abject to $Ax \le b.$

(where the inequality is coordinate by coordinate)

SU

Show that the following optimization problem $(l_1 \text{ reconstruction})$ can be rewritten as an equivalent linear program:

$$\min \|x\|_1$$

subject to $Ax = b$.

Equivalence here means than from a solution of the equivalent linear program we can get a solution to the original problem efficiently. Hint: use auxiliary variables.