Problem numbers are from the third edition of “Introduction to algorithms”. If unsure about which problem to solve, ask. Collaboration is permitted; looking for solutions from external sources (books, the web, etc.) is prohibited.

1. What is the smallest value of n such that an algorithm whose running time is $100n$ runs faster than an algorithm whose running time is 2^n on the same machine?

2. Illustrate the operation of INSERTION-SORT on the array

$$A = (31, 31, 59, 26, 41, 58).$$

3. 2.1-3

4. Give the asymptotic complexity (Θ) of each of the following functions in simplest terms and then order the functions by asymptotic dominance. That is, produce a permutation $f_1(n), f_2(n), \ldots$ such that $f_i = O(f_{i+1})$. Note if any two functions are asymptotically equivalent, i.e. if $f_i = \Theta(f_{i+1})$.

 (a) $f_a(n) = \log_2(n^2 + 7) \log_2(5n^{0.7} + 1)$
 (b) $f_b(n) = \sum_{i=1}^{n^3} \left(\frac{1}{2}\right)^i$
 (c) $f_c(n) = 2 \log_4(4n + 17)$
 (d) $f_d(n) = \sum_{j=1}^{3n} (4j + 1)$
 (e) $f_e(n) = 3^{16}$
 (f) $f_f(n) = 6n^{0.5} + 3n^{0.7}$
(g) \(f_g(n) = 6 \log_5(n^5 + 3n^3) + 3n^{0.2} \)
(h) \(f_h(n) = \sqrt{3n^3 + 2n + 74} \)
(i) \(f_i(n) = 5 \log_2(3n^2 + n + 8) \)
(j) \(f_j(n) = \sqrt{2 \log_2(n) + 3 + 7n} \)
(k) \(f_k(n) = 2n \log_3(2n^3 + 17n + 1) \)
(l) \(f_l(n) = 2 \log_3(n) + \sqrt{2n + 3n} \)