
CSE 2331 - Problem Set 7

Due beginning of lecture on December 1st

Problem numbers are from the third edition of “Introduction to algo-
rithms”. If unsure about which problem to solve, ask. Collaboration is
permitted; looking for solutions from external sources (books, the web, etc.)
is prohibited.

1. Consider the following network and flow.
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(a) Draw the residual network for this flow.

(b) Given an augmenting path for this flow.

(c) Increase the flow by the maximum possible value along the aug-
menting path and draw the resulting flow network and flow.

2. Prove that the following flow is maximum. (Hint: Use the max-flow
min-cut theorem.)
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3. Consider the following flow network. (The values are edge capacities.)
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(a) What is the value of the capacity of the cut (S, T ) where S =
{s, v1, v2, v4} and T = {v3, v5, v6, t}?

(b) Prove that the cut (S, T ) where S = {s, v1, v2, v4} and T =
{v3, v5, v6, t} is a minimum cut? (Hint: Use the max-flow min
cut theorem.)

4. Given the following maximum flow in a flow network, give the min-
imum cut whose value equals the maximum flow. (If you can’t find
the minimum cut, compute the residual network and use it to find the
minimum cut.)
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5. We say that a bipartite graphG = (V,E), where V = L∪R, is d-regular
if every vertex v ∈ V has degree exactly d. Every d-regular bipartite
graph has |L| = |R|. Prove that every d-regular bipartite graph has
a matching of cardinality |L| by arguing that a minimum cut of the
corresponding flow network has capacity |L|.
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