

CSE 3321 - Problem Set 6

Due beginning of lecture on November 12th

Problem numbers are from the third edition of Sipser's book. If unsure about which problem to solve, ask. Collaboration is permitted; looking for solutions from external sources (books, the web, material from previous years, etc.) is prohibited.

1. Give an implementation-level description and a formal description (i.e. including the state diagram of the transition function) of a TM that recognizes
$$\{u\#v : u, v \in \{0, 1\}^* \text{ and } u \text{ is } v \text{ reversed}\}$$
2. Show that the collection of decidable languages is closed under the operations of
 - (a) complementation.
 - (b) intersection.
3. Show that the collection of recognizable languages is closed under the operations of
 - (a) concatenation (Given languages A, B , their concatenation is $A \circ B := \{xy : x \in A, y \in B\}$, where xy is the concatenation of strings x, y).
 - (b) intersection.
4. Prove that the union of countably many countable sets is countable.

5. Explain why the following is not a description of a legitimate Turing machine.

$M_{\text{bad}} = \text{"On input } \langle p \rangle, \text{ a polynomial over variables } x_1, \dots, x_k:$

1. Try all possible setting of x_1, \dots, x_k to integer values.
2. Evaluate p on all of these settings.
3. If any of these settings evaluates to 0, *accept*; otherwise, *reject*."