Collaboration is permitted; looking for solutions from external sources (books, the web, material from previous years, etc.) is prohibited.

1. Let

\[M = \{ \langle a, b, c, d \rangle : a, b, c \text{ and } p \text{ are binary integers such that } a^b \equiv c \mod p \} \].

Show that \(M \in P \). (Note that the most obvious algorithm does not run in polynomial time. Hint: Try first where \(b \) is a power of 2.)

2. Prove that the following language is undecidable:

\[A = \{ \langle M \rangle : M \text{ is a TM with running time } O(n) \} \].

3. Show that the following language is \(NP \)-complete:

\[\{(G_1, G_2) : G_1, G_2 \text{ are undirected graphs such that } G_1 \text{ contains a subgraph isomorphic to } G_2 \} \],

“\(G_1 \) contains a subgraph isomorphic to \(G_2 \)” means: there exist a set of vertices \(V' \subseteq V(G_1) \) and a set of edges \(E' \subseteq E(G_1) \) such that \(|V'| = |V(G_2)|, |E'| = |E(G_2)| \), and there exists a one-to-one function \(f : V(G_2) \rightarrow V' \) satisfying \(\{u, v\} \in E(G_2) \) iff \(\{f(u), f(v)\} \in E' \).

4. Show that the following problem is \(NP \)-complete: “Given \(\langle S, C \rangle \), where \(C \) is a collection of subsets of a finite set \(S \), determine whether there is a partition of \(S \) into two subsets \(S_1, S_2 \) so that no set in \(C \) is entirely contained in either \(S_1 \) or \(S_2 \).”

Hint: 3-SAT.
5. Say that two Boolean formulas are equivalent if they have the same set of variables and are true on the same set of assignments to those variables (i.e., they describe the same Boolean function). A Boolean formula is minimal if no shorter Boolean formula is equivalent to it. Let MIN-FORMULA be the collection of minimal Boolean formulas. Show that, if \(P = NP \), then MIN-FORMULA \(\in P \).