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Traveling Salesman Problem: Example
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Find the minimum cost path from v1 to v10 which visits each

vertex exactly once.
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Traveling Salesman Problem

Given a weighted graph G, find the minimum cost path from v1 to

vn which visits each vertex exactly once.

• No known polynomial time algorithm for solving this problem.
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Traveling Salesman: Decision Problem

Optimization problem: Given a weighted graph G, find the

minimum cost path from v1 to vn which visits each vertex

exactly once.

Decision problem: Given a weighted graph G and a cost C, is

there a path from v1 to vn which visits each vertex exactly

once and has cost less than C?

A decision problem has a yes or no answer.

• No known polynomial time algorithm for solving the decision

problem.
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Hamilton Path Problem: Example
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Is there a path from v1 to v10 which visits each vertex exactly once?
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Hamilton Path Problem: Example 2
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Is there a path from v1 to v10 which visits each vertex exactly once?
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Reduction

A reduction is a transformation of one problem into another.

Hamiltonian Path Problem: Given a graph G, is there a path

from v1 to vn which visits each vertex exactly once?

Traveling Salesman Problem: Given a weighted graph G and a

cost C, is there a path from v1 to vn which visits each vertex

exactly once and has cost less than C?

The Hamiltonian Path Problem can be reduced to the Traveling

Salesman Problem: Given a graph G, assign the weight 1 to each

edge of G.

Let C equal n.

Graph G has a Hamiltonian path from v1 to vn if and only if G has

a traveling salesman path with cost less than n.
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Hamiltonian Path
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Hamiltonian Path Problem: Is there a path from v1 to v10

which visits each vertex exactly once?
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Hamiltonian Path and Traveling Salesman
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Hamiltonian Path Problem: Is there a path from v1 to v10

which visits each vertex exactly once?

Traveling Salesman Problem: Is there a path from v1 to v10

which visits each vertex exactly once and has cost less than 10?
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Reduction

Definition. A reduction of decision problem Q1 to decision

problem Q2 is a mapping of every instance q1 of problem Q1 to an

instance q2 of problem Q2 such that q1 is yes if and only if q2 is

yes.

Example:

• An instance of the Hamiltonian Path Problem is a graph G with

vertices v1 and vn.

• Construct a weighted graph G′ by adding weight 1 to all edges of G.

• An instance of the Traveling Salesman Problem is graph G′ and cost

n.

• There is a path from v1 to vn visiting all the vertices in G if and

only if there is a path with cost less than n from v1 to vn visiting all

the vertices in G′.
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Other Problems Reducible to Traveling Salesman

3-Coloring: Given a graph G, is there a coloring of the vertices

with 3 colors so that no two adjacent vertices have the same

color?

Independent Set: Given a graph G and an integer k, is there a

set S of k vertices in G such that no two vertices in S are

adjacent?

Dominating Set: Given a graph G and an integer k, is there a

set S of k vertices in G such that every vertex of G is adjacent

(or equals) a vertex in S?

Longest Simple Path: Given a weighted graph G and a distance

D is there a simple path from v1 to vn in G whose distance is

greater than D? (A path is simple if each vertex along the path

appears only once.)

Subgraph Isomorphism Given two graphs G and G′, is G′ a

subgraph of G?
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3-Coloring

3-Coloring: Given a graph G, is there a coloring of the vertices

with 3 colors so that no two adjacent vertices have the same

color?

v9

CC
CC

CC
CC

C
v10 v11 v12

v5

{{{{{{{{{

QQQQQQQQQQQQQQQQQ v6 v7 v8

v1 v2

����������������
v3

zzzzzzzzz

����������������
v4

12.12



CSE 2331

3-Coloring (Copy of previous slide)

3-Coloring: Given a graph G, is there a coloring of the vertices

with 3 colors so that no two adjacent vertices have the same

color?
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3-Coloring

3-Coloring: Given a graph G, is there a coloring of the vertices

with 3 colors so that no two adjacent vertices have the same

color?

v6

}}
}}

}}
}}

}

BB
BB

BB
BB

B

v3 v4

}}
}}

}}
}}

}

BB
BB

BB
BB

B
v5

v1 v2

12.14



CSE 2331

Independent Set

Independent Set Given a graph G and an integer k, is there a set

S of k vertices in G such that no two vertices in S are adjacent?

Is there an independent set of 4 vertices?
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Independent Set

Independent Set Given a graph G and an integer k, is there a set

S of k vertices in G such that no two vertices in S are adjacent?

Is there an independent set of 5 vertices?
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Independent Set

Independent Set Given a graph G and an integer k, is there a set

S of k vertices in G such that no two vertices in S are adjacent?

Is there an independent set of 6 vertices?
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Dominating Set

Dominating Set: Given a graph G and an integer k, is there a

set S of k vertices in G such that every vertex of G is adjacent

(or equals) a vertex in S?

Is there an dominating set of 4 vertices?
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Dominating Set

Dominating Set: Given a graph G and an integer k, is there a

set S of k vertices in G such that every vertex of G is adjacent

(or equals) a vertex in S?

Is there an dominating set of 3 vertices?
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Dominating Set

Dominating Set: Given a graph G and an integer k, is there a

set S of k vertices in G such that every vertex of G is adjacent

(or equals) a vertex in S?

Is there an dominating set of 2 vertices?
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Other Problems Reducible to Traveling Salesman

3-Coloring: Given a graph G, is there a coloring of the vertices

with 3 colors so that no two adjacent vertices have the same

color?

Independent Set: Given a graph G and an integer k, is there a

set S of k vertices in G such that no two vertices in S are

adjacent?

Dominating Set: Given a graph G and an integer k, is there a

set S of k vertices in G such that every vertex of G is adjacent

(or equals) a vertex in S?

Longest Simple Path: Given a weighted graph G and a distance

D is there a simple path from v1 to vn in G whose distance is

greater than D? (A path is simple if each vertex along the path

appears only once.)

Subgraph Isomorphism Given two graphs G and G′, is G′ a

subgraph of G?
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Problems Reducible to/from Traveling Salesman

• Traveling Salesman;

• Hamiltonian Path;

• 3-Coloring;

• Independent Set;

• Domination Set;

• Longest Simple Path;

• Subgraph Isomorphism.

– No known polynomial time algorithm for solving any of these

problems;

– If any of these problems can be solved in polynomial time, then

they can all be solved in polynomial time.
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Independent Set

Independent Set Given a graph G and an integer k, is there a set

S of k vertices in G such that no two vertices in S are adjacent?

Is there an independent set of 5 vertices?
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Independent Set

Independent Set: Given a graph G and an integer k, is there a

set S of k vertices in G such that no two vertices in S are

adjacent?

Independent Set of Size 5: Given a graph G, is there a set S of

5 vertices in G such that no two vertices in S are adjacent?
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Independent Set of Size 5

Independent Set of Size 5: Given a graph G, is there a set S of

5 vertices in G such that no two vertices in S are adjacent?

Claim: Independent Set of Size 5 can be solved in O(n5) time!

(n = number of vertices)
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O(n5) Algorithm for Independent Set of Size 5

Input : Graph G with n vertices.

1 Build an adjacency matrix for G ; /* O(n2) time */

2 foreach set S of 5 vertices of G do /* O(n5) sets */

3 foreach pair vi, vj ∈ S do /* O(52) pairs */

4 Check if (vi, vj) is an edge of G;

5 end

6 end
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O(nk) Algorithm for Independent Set

Input : Graph G with n vertices.

1 Build an adjacency matrix for G ; /* O(n2) time */

2 foreach set S of k vertices of G do /* O(nk) sets */

3 foreach pair vi, vj ∈ S do /* O(52) pairs */

4 Check if (vi, vj) is an edge of G;

5 end

6 end

Algorithm runs in O(nk) time.

This algorithm does NOT run in polynomial time, since k is part of

the input and is not fixed.
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Problems Reducible to/from Traveling Salesman

• Traveling Salesman;

• Hamiltonian Path;

• 3-Coloring;

• Independent Set;

• Domination Set;

• Longest Simple Path;

• Subgraph Isomorphism.

– No known polynomial time algorithm for solving any of these

problems;

– If any of these problems can be solved in polynomial time, then

they can all be solved in polynomial time.
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Verification

Definition. A decision problem is verifiable in polynomial time if

for every instance with the answer yes, there is a solution S which

we can use to check in polynomial time that the answer is yes.

Example:

• An instance of the Hamiltonian Path Problem is a graph G

with vertices v1 and vn.

• A solution S is a sequence of vertices starting with v1 and

ending with vn;

• In polynomial time, we can check if S contains every vertex

exactly once and if every consecutive (w, w′) in S is an edge of

G.
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Class NP

Definition. A decision problem is verifiable in polynomial time if

for every instance with the answer yes, there is a solution S which

we can use to check in polynomial time that the answer is yes.

Definition. A decision problem is in the class NP, if it is verifiable

in polynomial time.

(NP stands for non-deterministic polynomial.)
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NP-Complete

Definition. A decision problem is in the class NP, if it is verifiable

in polynomial time.

Definition. A decision problem Q is NP-complete if

• Q is in NP;

• Every problem in NP can be reduced to Q in polynomial time.
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NP-Complete Problems

The following problems (and many others) are NP-complete:

• Traveling Salesman;

• Hamiltonian Path;

• 3-Coloring;

• Independent Set;

• Domination Set;

• Longest Simple Path;

• Subgraph Isomorphism.

If you can solve ANY NP-complete problem in polynomial time,

then you can solve EVERY NP-complete problem (and every

problem in NP) in polynomial time!?!
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More NP-Complete Problems

Boolean Satisfiability: Given a boolean expression
(i.e. (x1 ∨x2)∧ (¬x2 ∨x3 ∨¬x4)∧ . . .), is there an assignment of
true or false to the variables xi so that the expression is true?

Subset Sum: Given a set of positive integers K = {k1, k2, . . . , kn}
and an integer M , is there a subset of K whose sum equals M?

Set Packing: Given a collection C of finite sets and an integer M ,
does C contain at least K mutually disjoint sets?

Quadratic Diophantine Equations: Given integers a, b and c,
are there positive integers x and y such that ax2 + by = c?

Integer Programming: Given a set of linear inequalities of the
form ai,1x1 + ai,2x2 + . . . + ai,nxn ≤ bi, are there INTEGERS
x1, x2, . . . , xn which satisfy all these inequalities?

See Computers and Intractibility: A Guide to the Theory of
NP-Completeness by Garey and Johnson, 1979.
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Independent Set

Independent Set: Given a graph G and an integer k, is there a

set S of k vertices in G such that no two vertices in S are

adjacent?

Independent set is an NP-complete problem.

Independent Set of Size 5: Given a graph G, is there a set S of

5 vertices in G such that no two vertices in S are adjacent?

Independent Set of Size 5 can be solved in O(n5) time and is a

problem in P .
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Reductions
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NP-Complete

Definition. A decision problem Q is NP-complete if

• Q is in NP;

• Every problem in NP can be reduced to Q in polynomial time.
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Reduction

A reduction is a transformation of one problem into another.

Definition. A reduction of decision problem Q1 to decision

problem Q2 is a mapping of every instance q1 of problem Q1 to an

instance q2 of problem Q2 such that q1 is yes if and only if q2 is

yes.
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NP-Complete

Definition. A decision problem Q is NP-complete if

• Q is in NP;

• Every problem in NP can be reduced to Q in polynomial time.

How is it possible to know that every problem in NP can be

reduced to Q in polynomial time?

12.38



CSE 2331

The “First” NP-Complete Problem

Boolean Satisfiability: Given a boolean expression

(i.e. (x1 ∨ x2) ∧ (¬x2 ∨ x3 ∨ ¬x4) ∧ . . .), is there an assignment

of true or false to the variables xi so that the expression is true.

Theorem (Cook’s Theorem, 1971). Boolean Satisfiability is

NP-complete.
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NP-Complete Problems

To show that a decision problem Q is NP-complete:

• Show that Q is verifiable in polynomial time;

• Show that Boolean satisfiability reduces to Q in polynomial

time.
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Reduction Transitivity

Proposition. If Q1 reduces to Q2 in polynomial time and Q2

reduces to Q3 in polynomial time, then Q1 reduces to Q3 in

polynomial time.
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Proposition. If Q1 reduces to Q2 in polynomial time and Q2

reduces to Q3 in polynomial time, then Q1 reduces to Q3 in

polynomial time.

Proof. Let f1 be the mapping of Q1 to Q2.

Let f2 be the mapping of Q2 to Q3.

Define f3(q1) = f2(f1(q1)).

Function f3 maps q1 ∈ Q1 to f3(q1) ∈ Q3.

Since f1 and f2 can be computed in polynomial time, f3(q1) can be

computed in polynomial time.

q1 is yes ⇒ f1(q1) is yes ⇒ f2(f1(q1))(= f3(q1)) is yes.

q1 is no ⇒ f1(q1) is no ⇒ f2(f1(q1))(= f3(q1)) is no.

Therefore, Q1 reduces to Q3 in polynomial time.
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NP-Complete Problems

To show that a decision problem Q is NP-complete:

• Show that Q is verifiable in polynomial time;

• Show that Boolean satisfiability reduces to Q in polynomial

time.

OR

To show that a decision problem Q is NP-complete:

• Show that Q is verifiable in polynomial time;

• Show that SOME NP-complete problem reduces to Q in

polynomial time.
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NP-Complete Reductions
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Independent Set

Definition. An independent set is a subset V ′ of the vertices of

graph G such that if both u and v are in V ′ then (u, v) is NOT an

edge of G.

Example:

v1 v2
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B
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}}}}}}}}}
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}}}}}}}}}
v8

Set {v2, v4} is an independent set.

Set {v1, v6, v3, v8} is an independent set.

Vertex set {v1, v6, v4, v7} is NOT an independent set since (v4, v7)

is an edge of G.
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Independent Set

Independent Set Problem: Given a graph G and an integer K,

does G contain an independent set of size K?

Proposition. The Independent Set Problem is in NP.

Proof. A solution to the independent set problem is a subset V ′ of

the vertices of G.

Let n be the number of vertices of G.

Let m be the number of edges of G.

Given a subset V ′, check if V ′ has K elements and for each edge

(u, v) of G whether both u and v are in V ′.

Checking each edge against V ′ takes O(mn) time which is

polynomial in the size of the input.
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Clique

Definition. A clique is a subset V ′ of the vertices of graph G

such that for each u, v ∈ V ′, pair (u, v) is an edge of G.

Example:
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Vertex set {v1, v2, v5, v6} is a clique.

Vertex set {v2, v3, v7} is a clique.

Vertex set {v3, v4, v7, v8} is NOT a clique since (v3, v8) is not an

edge.
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Clique

Clique Problem: Given a graph G and an integer M , does G

contain a clique of size M?

Proposition. The Clique Problem is in NP.

Proof. A solution to the clique problem is a subset V ′ of the

vertices of G.

Let n be the number of vertices of G.

Let m be the number of edges of G.

Given a subset V ′, check if V ′ has M elements and if for every

u, v ∈ V ′, the pair (u, v) is an edge of G.

Checking if every u, v ∈ V ′ is an edge takes O(n2m) time which is

polynomial in the size of the input.
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Independent Set and Clique

Independent Set Problem: Given a graph G and an integer K,

does G contain an independent set of size K?

Clique Problem: Given a graph G and an integer M , does G

contain a clique of size M?

Proposition. The Independent Set Problem reduces to the Clique

Problem in polynomial time.
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Graph Complement

Definition. The complement of graph G is a graph G with the

same vertices as G such that (u, v) is an edge of G if and only if

(u, v) is NOT an edge of G.

Example:

G : v1
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v4

llllllllllllllll
v5

zzzzzzzz
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G : v1

OOOOOOO v2
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v5 v6
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Graph Complement

G : v1

RRRRRRRRRRRRRRRR v2 v3

v4

llllllllllllllll
v5

zzzzzzzz
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G : v1

OOOOOOO v2

OOOOOOO v3

v4

ooooooo
v5 v6

{v1, v2, v4, v5} is an independent set of G.

{v1, v2, v4, v5} is a clique of G.
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Graph Complement

Lemma.

If set V ′ is an independent set of G, then V ′ is a clique of G.

Proof. Let V ′ be an independent set of G.

For every u, v ∈ V ′, pair (u, v) is not an edge of G.

If (u, v) is not an edge of G, then (u, v) is an edge of G.

For every u, v ∈ V ′, pair (u, v) is an edge of G.

Thus, V ′ is a clique of G.
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Graph Complement

Lemma.

If set V ′ is a clique of G, then V ′ is an independent set of G.

Proof. Let V ′ be a clique of G.

For every u, v ∈ V ′, edge (u, v) is in G.

If (u, v) is an edge of G, then (u, v) is not an edge of G.

For every u, v ∈ V ′, pair (u, v) is NOT an edge of G.

Thus, V ′ is an independent set of G.
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Reduce Independent Set to Clique

Proposition. The Independent Set Problem reduces to the Clique

Problem in polynomial time.

Proof. Let graph G and integer K be an instance of the

independent set problem.

Let graph G be the complement of graph G.

Graph G has an independent set of size K if and only if graph G

has a clique of size K.

Mapping (G, K) to (G, K) is a reduction from the independent set

problem to the clique problem.

Since G can be computed O(n2) time, this is a polynomial time

reduction.
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Reduction

Definition. A reduction of decision problem Q1 to decision

problem Q2 is a mapping f of every instance q1 of problem Q1 to

an instance f(q1) of problem Q2 such that q1 is yes if and only if

f(q1) is yes.

(1) If q1 is yes, then f(q1) is yes.

(2) If q1 is no, then f(q1) is no.

OR

(1’) If q1 is yes, then f(q1) is yes.

(2’) If f(q1) is yes, then q1 is yes. (Contrapositive of 2.)
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NP-Complete Reductions

Circuit Satisfiability
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Vertex Cover

Definition. A vertex cover is a subset V ′ of the vertices of graph

G such that for each edge (u, v) ∈ E(G), either u or v (or both) are

in V ′.

Example:

v1 v2

BB
BB

BB
BB

B
v3 v4

v5

}}}}}}}}}
v6 v7

}}}}}}}}}
v8

Vertex set {v1, v3, v5, v6, v7, v8, } is a vertex cover.

Vertex set {v2, v4, v5} is a vertex cover.

Vertex set {v2, v3, v8} is NOT a vertex cover since edge (v4, v7) is

not covered.
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Vertex Cover

Vertex Cover Problem: Given a graph G and an integer M ,

does G contain a vertex cover of size M?

Proposition. The Vertex Cover Problem is in NP.

Proof. A solution to the vertex cover problem is a subset V ′ of the

vertices of G.

Let n be the number of vertices of G.

Let m be the number of edges of G.

Given a subset V ′, check if V ′ has M elements and, for every edge

(u, v) of G, check that either u or v are in V ′.

Checking if either u or v are in V ′ for every edge (u, v) of G takes

O(mn) time which is polynomial in the size of the input.
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Independent Set and Vertex Cover

Independent Set Problem: Given a graph G and an integer K,

does G contain an independent set of size K?

Vertex Cover Problem: Given a graph G and an integer M ,

does G contain a vertex cover of size M?

Proposition. The Independent Set Problem reduces to the Vertex

Cover Problem in polynomial time.
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Independent Set and Vertex Cover

Example:

v1 v2

BB
BB

BB
BB

B
v3 v4

v5

}}}}}}}}}
v6 v7

}}}}}}}}}
v8

V ′ = {v1, v3, v6, v7, v8} is an independent set of G.

V (G) − V ′ = {v2, v4, v5} is a vertex cover of G.
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Reduce Independent Set to Vertex Cover

Lemma. If set V ′ is an independent set of G, then V (G) − V ′ is a

vertex cover of G.

Proof. Let V ′ be an independent set of G.

Let W = V (G) − V ′.

Let (u, v) be an edge of G.

Since (u, v) is an edge of G, either u or v is not in V ′ (or both are

not in V ′.)

Since u or v is not in V ′, either u or v is in W .

Thus, for each edge (u, v) ∈ E(G), either u or v is in W .

Thus, W is a vertex cover of G.
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Reduce Independent Set to Vertex Cover

Lemma. If set V (G) − V ′ is a vertex cover of G, then V ′ is an

independent set of G.

Proof. Let W = V (G) − V ′ be a vertex cover of G.

Let u and v be two vertices in V ′.

Since u and v are in V ′, they are not in W .

Since W is a vertex cover of G, pair (u, v) is not an edge in G.

Since (u, v) is not an edge of G for every u, v ∈ V ′, set V ′ is an

independent set.
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Reduce Independent Set to Vertex Cover

Proposition. The Independent Set Problem reduces to the Vertex

Cover Problem in polynomial time.

Proof. Let graph G and integer K be an instance of the

independent set problem.

Graph G has an independent set of size K if and only if graph G

has a vertex cover of size n − K where n is the number of vertices

of G.

Mapping (G, K) to (G, n−K) is a reduction from the independent

set to the vertex cover problem.

Since G can be copied in Θ(n + m) time this is a polynomial time

reduction.
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NP-Complete Reductions
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Set Cover

Definition. Let U be a set of elements, and let

C = {S1, S2, . . . , Sn} be a collection of subsets of U . A set cover of

U is a subcollection C′ ⊆ C of these subsets whose union equals U .

Example:

U = {1, 2, 3, 4, 5, 6, 7, 8}

S1 = {1, 2, 3} S2 = {1, 4, 5, 8}

S3 = {2, 3, 4} S4 = {6, 7}

S5 = {2, 4, 6} S6 = {2, 3, 5, 8}

Subcollection {S1, S2, S4, S6} is a set cover.

Subcollection {S2, S3, S4} is a set cover.

Subcollection {S1, S3, S6} is NOT a set cover since it is missing

elements 6 and 7.
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Set Cover

Set Cover Problem: Given a set U , a collection S1, S2, . . . , Sn of

subsets of U and an integer K, is there a set cover of U of size

K?

Proposition. The Set Cover Problem is in NP.
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Vertex Cover and Set Cover

Vertex Cover Problem: Given a graph G and an integer M ,

does G contain a vertex cover of size M?

Set Cover Problem: Given a set U , a collection S1, S2, . . . , Sn of

subsets of U and an integer K, is there a set cover of U of size

K?

Proposition. The Vertex Cover Problem reduces to the Set Cover

Problem in polynomial time.
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Reduce Vertex Cover to Set Cover

Vertex Cover Problem: Given a graph G and an integer M , does G

contain a vertex cover of size M?

Set Cover Problem: Given a set U , a collection S1, S2, . . . , Sn of

subsets of U and an integer K, is there a set cover of U of size K?

v4

e9

v5 v6

v3

e7

BBBBBBBBB
e8

v1
e1

e3

v2

e2

|||||||||

e4

0000000000000000

e5 e6

����������������

U = {e1, e2, e3, e4, e5, e6, e7, e8, e9}

S1 = {e1, e3}

S2 = {e1, e2, e4, e5, e6}

S3 = {e2, e7, e8}

S4 = {e3, e4, e9}

S5 = {e5, e7, e9}

S6 = {e7, e8}
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Reduce Vertex Cover to Set Cover

Proposition. The Vertex Cover Problem reduces to the Set Cover

Problem in polynomial time.

Proof. Let graph G and integer M be an instance of the vertex

cover problem.

Let U equal E(G), the edges of G.

Let Si = {ej : vi is a vertex of ej}.

Let the collection C be {S1, S2, . . . , Sn}.

G has a vertex cover of size M if and only if U has a set cover of

size M .

Mapping (G, M) to (U, C, M) is a reduction from the vertex cover

to the set cover problem.

Since U and C can be computed in O(nm) time, this is a

polynomial time reduction.
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Reduction of Vertex Cover to Set Cover

Vertex Cover Problem: Given a graph G and an integer M , does G

contain a vertex cover of size M?

Set Cover Problem: Given a set U , a collection S1, S2, . . . , Sn of

subsets of U and an integer K, is there a set cover of U of size K?

The reduction in the previous slide actually reduces Vertex Cover to a

special case of Set Cover Problem, where every element is in exactly two

sets.

The reduction is not onto (not all instances of the Set Cover Problem are

in images of an instance of Vertex Cover.)

The reduction is not reversible (i.e., it cannot be used to map Set Cover

to Vertex Cover.)

Note: Since Vertex Cover is NP-complete, there is some reduction of Set

Cover to Vertex Cover but it’s much more complicated than the

reduction of Vertex Cover to Set Cover.
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Boolean Expressions

x1 AND x2: x1 ∧ x2

x1 OR x2: x1 ∨ x2

NOT x: x

A literal is xi or xi.

A boolean clause is an “OR” of literals:

(x1 ∨ x3 ∨ x4).

A boolean expression in conjunctive normal form is an “AND” of

boolean clauses:

(x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).
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Boolean Expressions

A boolean expression in 3-CNF (conjunctive normal form) is an

“AND” of boolean clauses where each clause has EXACTLY 3

literals.

(x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3).

A truth assignment is an assignment of true (T) or false (F) to each

variable.

x1 = T x2 = T x3 = F x4 = F

(x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3)

(T ∨ T ∨ F ) ∧ (F ∨ F ∨ T ) ∧ (F ∨ T ∨ F ) = T.
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Boolean Expressions

(x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3).

A truth assignment is an assignment of true (T) or false (F) to each

variable.

x1 = F x2 = T x3 = F x4 = T

(x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3)

(F ∨ T ∨ T ) ∧ (F ∨ F ∨ F ) ∧ (T ∨ T ∨ F ) = F.
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Boolean Expressions

A truth assignment satisfies a boolean expression is it makes the

boolean expression evaluate to true.

Give a truth assignment which satisfies the following expression:

(x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4).

x1 =

x2 =

x3 =

x4 =
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Satisfiability

A truth assignment satisfies a boolean expression is it makes the

boolean expression evaluate to true.

Not all boolean expressions can be satisfied.

x1 ∧ (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ x3
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3-SAT

3-SAT: Given a boolean expression in 3-CNF (conjunctive normal

form), is there a truth assignment which makes the boolean

expression true?

(A truth assignment satisfies a boolean expression is it makes the

boolean expression evaluate to true.)

Proposition. 3-SAT is in NP.
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3-SAT and Independent Set

3-SAT: Given a boolean expression in 3-CNF (conjunctive normal

form), is there a truth assignment which makes the boolean

expression true?

Independent Set Problem: Given a graph G and an integer K,

does G contain an independent set of size K?

(An independent set is a subset V ′ of the vertices of graph G such

that if both u and v are in V ′ then (u, v) is NOT an edge of G.)

Proposition. 3-SAT reduces to the Independent Set Problem in

polynomial time.
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Reduce 3-SAT to Independent Set

An instance of 3-SAT is a boolean expression in 3-CNF form.

• For each literal create a vertex;

(x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3).

x2 x3 x4

x1 x1

x3 x2

x4 x3
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Reduce 3-SAT to Independent Set

• Connect each literal to the two other literals in the same clause;

(x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3).

x2
x3 x4

x1 x1

x1 x2

x4 x3
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Reduce 3-SAT to Independent Set

• Connect each literal to the two other literals in the same clause;

• Connect each literal xi to xi;

(x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3).

x2

OOOOOOOOOOOOOOOOOOOOOOOOOOO x3 x4

x1 x1

x3

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

wwwwwwwwwwwwwwwwwww
x2

x4

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
x3
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Reduce 3-SAT to Independent Set

An instance of 3-SAT is a boolean expression in 3-CNF form.

• For each literal create a vertex;

• Connect each literal to the two other literals in the same clause;

• Connect each literal xi to xi;
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Reduce 3-SAT to Independent Set

(x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3).

x2

OOOOOOOOOOOOOOOOOOOOOOOOOOO x3 x4

x1 x1

x3

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

wwwwwwwwwwwwwwwwwww
x2

x4

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
x3
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Reduce 3-SAT to Independent Set

Proposition. 3-SAT reduces to the Independent Set Problem in

polynomial time.

Proof. An instance of 3-SAT is a boolean expression φ in 3-CNF form.

n = number of variables in φ.

m = number of clauses in φ.

• For each literal create a vertex;

• Connect each literal to the two other literals in the same clause;

• Connect each literal xi to xi;

There an assignment of true or false to the variables xi so that φ is true

if and only if the graph has an independent set of size m.

Since the graph can be constructed in polynomial time, the reduction

takes polynomial time.
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Reduce 3-SAT to Independent Set: Exercise

(x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4)

x2 x3 x4

x1 x1

x2 x2

x4 x3

x1 x3 x4
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Hamiltonian Cycle

Hamiltonian Path Problem: Given a graph G, is there a path

from v1 to vn which visits each vertex exactly once?

Hamiltonian Cycle: Given a graph G, is there a cycle which

visits each vertex exactly once?

Proposition. The Hamiltonian path problem reduces to the

Hamiltonian cycle problem in polynomial time.
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Reduce Hamiltonian Path to Hamiltonian Cycle

An instance of the Hamiltonian path problem is a graph G and

vertices v1 and vn.

Form a new graph G′ by adding a new vertex w to G and

connecting w to v1 and vn.

w

v2

GG
GG

GG
G v3

GG
GG

GG
G v4

HH
HH

HH
H

v1

wwwwwww
v5

wwwwwww

GG
GG

GG
G v6

wwwwwww

GG
GG

GG
G v10

vv
vv

vv
v

v7

GGGGGGG

wwwwwww
v8

wwwwwww
v9
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Reduce Hamiltonian Path to Hamiltonian Cycle

Proposition. The Hamiltonian path problem reduces to the

Hamiltonian cycle problem in polynomial time.

Proof. An instance of the Hamiltonian path problem is a graph G

and vertices v1 and vn.

Form a new graph G′ by adding a new vertex w to G and

connecting w to v1 and vn.

Graph G has a path from v1 to vn which visits each vertex once if

and only if graph G′ has a Hamiltonian cycle.

Since graph G′ can be computed in polynomial time, this is a

polynomial time reduction.
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Subset Sum

Subset Sum: Given a set of positive integers K = {k1, k2, . . . , kn}

and an integer M , is there a subset of K whose sum equals M?

Example:

K = {12, 15, 23, 32, 41, 61, 66}.

M = 140.

Is there a subset J of K whose sum equals 140?
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Partition

Partition: Given a set of positive integers A = {a1, a2, . . . , an}, is

there a partition of A into subsets B1 and B2 such that
∑

x∈B1
x =

∑

y∈B2
y?

Example:

K = {12, 16, 29, 34, 41, 50, 58}.

Is there a partition of K into two subsets B1 and B2 such that
∑

x∈B1
x =

∑

y∈B2
y?
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Subset Sum and Partition

Subset Sum: Given a set of positive integers K = {k1, k2, . . . , kn}

and an integer M , is there a subset of K whose sum equals M?

Partition: Given a set of positive integers A = {a1, a2, . . . , an}, is

there a partition of A into subsets B1 and B2 such that
∑

x∈B1
x =

∑

y∈B2
y?

Proposition. The Subset Sum problem reduces to the Partition

problem in polynomial time.
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Reduce Subset Sum to Partition: Example

K = {12, 15, 23, 32, 41, 61, 66}. M = 140.

Is there a subset J of K whose sum equals 140?

∑

k∈K k = 12 + 15 + 23 + 32 + 41 + 61 + 66 = 250.
(
∑

k∈K k
)

− 140 = 250 − 140 = 110.

Let A = K ∪ {1110, 1140} = {12, 15, 23, 32, 41, 61, 66, 1110, 1140}.

J = {15, 23, 41, 61} and 15 + 23 + 41 + 61 = 140.

B1 = {15, 23, 41, 61, 1110} and B2 = {12, 32, 66, 1140} is a partition

of A.

(15 + 23 + 41 + 61) + 1110 = 140 + 1110 = 1250.

(12 + 32 + 66) + 1140 = (250 − 140) + 1140 = 110 + 1140 = 1250.
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Reduce Subset Sum to Partition: Example

Lemma. Let K be a set of positive integers, let M be an integer

and let I =
∑

k∈K k.

Let A = K ∪ {4 ∗ I + M, 5 ∗ I − M}.

If K has a subset J whose sum is M , then A has a partition into

subsets B1 and B2 such that
∑

x∈B1
x =

∑

y∈B2
y.

Proof.

Let B1 = J ∪ {5 ∗ I − M}.

Let B2 = K − J ∪ {4 ∗ I + M}.

Sets B1 and B2 partition A.
∑

x∈B1
x =

(
∑

k∈J k
)

+ (5 ∗ I − M) = M + (5 ∗ I − M) = 5 ∗ I.
∑

y∈B2
y =

(
∑

k∈K−J k
)

+(4∗I +M) = (I−M)+(4∗I+M) = 5∗I.

Therefore,
∑

x∈B1
x =

∑

y∈B2
y.
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Reduce Subset Sum to Partition: Example

Lemma. Let K be a set of positive integers, let M be an integer

and let I =
∑

k∈K k.

Let A = K ∪ {4 ∗ I + M, 5 ∗ I − M}.

If A has a partition into subsets B1 and B2 such that
∑

x∈B1
x =

∑

y∈B2
y, then K has a subset J whose sum is M .

Proof.
∑

a∈A a =
(
∑

k∈K

)

+ (5 ∗ I − M) + (4 ∗ I + M) = 10 ∗ I.
∑

x∈B1
x +

∑

y∈B2
y =

∑

a∈A a = 10 ∗ I.
∑

x∈B1
x +

∑

y∈B2
y = 2

∑

x∈B1
x since

∑

x∈B1
x =

∑

y∈B2
y.

Thus,
∑

x∈B1
x = 10 ∗ I/2 = 5 ∗ I.

Since
∑

x∈B1
x = 5 ∗ I, set B1 contains (4 ∗ I + M) or (5 ∗ I − M)

but not both.

Without loss of generality, assume that B1 contains (5 ∗ I − M).

Let J = B1 − {5 ∗ I − M}.
∑

k∈J k =
(
∑

x∈B1
x
)

− (5 ∗ I − M) = 5 ∗ I − (5 ∗ I − M) = M .
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Reduce Subset Sum to Partition

Proposition. The Subset Sum problem reduces to the Partition

problem in polynomial time.

Proof. An instance of the Subset Sum problem is a set K of

positive integers and an integer M .

Let I =
∑

k∈K k.

Let A = K ∪ {5 ∗ I − M, 4 ∗ I + M}.

Set K has a subset J whose sum equals M , if and only if A has a

partition into subsets B1 and B2 such that
∑

x∈B1
x =

∑

y∈B2
.

Since A can be computed in polynomial time, this is a polynomial

time reduction.
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NP-Completeness Summary

• A decision problem has a yes or no answer.

• A decision problem is in the class NP, if it is verifiable in

polynomial time. (NP = non-deterministic polynomial.)

• A reduction is a transformation of one problem into another.

• A decision problem Q is NP-complete if

– Q is in NP;

– Every problem in NP can be reduced to Q in polynomial

time.

• If any NP-complete problem can be solved in polynomial time,

then all NP-complete problems (and all problems in NP) can

be solved in polynomial time;

• There is no known polynomial time algorithm for any

NP-complete problem.
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Factoring
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Factoring

Factoring Problem: Given an integer X , find its factors.

Example:

What are the factors of 169,627,128,197?
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Factoring

Factoring Problem: Given an integer X , find its factors.

• The factoring problem is in NP;

• No known polynomial time algorithm for factoring large

numbers (polynomial in the number of digits);

• NP-complete problems do NOT seem to reduce to the factoring

problem. (Even if NP-complete problems cannot be solve in

polynomial time, there may be a polynomial time factoring

algorithm.)
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Cryptography

Factoring Problem: Given an integer X , find its factors.

• Modern cryptographic systems are based on the assumption

that factoring is hard;

• Public key cryptosystems are based on the assumption that

factoring is hard;

• If NP-complete problems can be solved in polynomial time,

then numbers can be factored in polynomial time and these

cryptographic systems can be broken in polynomial time!
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Heuristics for Optimization Problems

12.103



CSE 2331

Dominating Set Optimization Problem

Dominating Set (Optimization): Given a graph G, find the

small set S of vertices of G such that every vertex of G is

adjacent (or equals) a vertex in S.

Give a heuristic for the Dominating Set Optimization Problem.
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Clique Optimization Problem

Definition. A clique is a subset V ′ of the vertices of graph G

such that for each u, v ∈ V ′, pair (u, v) is an edge of G.

Clique Prolem (Optimization): Given a graph G, find the

largest clique of G.

Give a heuristic for the Clique Optimization Problem.
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Independent Set Optimization Problem

Definition. An independent set is a subset V ′ of the vertices of

graph G such that if both u and v are in V ′ then (u, v) is NOT an

edge of G.

Independent Set (Optimization): Given a graph G, find the

largest independent set of G.

Give a heuristic for the Independent Set Optimization Problem.
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Vertex Coloring Problem

Definition. An independent set is a subset V ′ of the vertices of

graph G such that if both u and v are in V ′ then (u, v) is NOT an

edge of G.

Vertex Coloring (Optimization): Given a graph G, find the

coloring of the vertices of G with the fewest number of colors so

that no two adjacent vertices have the same color.

Give a heuristic for the Vertex Coloring Optimization Problem.
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