

Graph

Graph G

G.V = Set of vertices of graph G.

G.E =Set of edges of graph G.

 $(v_i, v_j) = \text{edge with endpoints } v_i \text{ and } v_j.$

Vertices $v_i \in G.V$ and $v_j \in G.V$ are incident on edge $(e_i, e_j) \in G.E$.

Vertex Degree

 $deg(v_i) = degree \text{ of } v_i = \# \text{ edges incident on } v_i.$

What is the degree of each vertex?

Sum of $deg(v_i)$

m = number of graph edges.

Proposition: $\sum_{v_i \in V} \deg(v_i) = 2m$.

Proof 1:

$$\sum_{v_i \in V} \deg(v_i) = \text{sum of } \# \text{ edges incident on vertices}$$
$$= \text{sum of } \# \text{ vertices incident on edges}$$
$$= 2 \times (\# \text{ edges}) = 2m.$$

Proof 2: Let $\delta_{ij} = 1$ if e_j is incident on v_i and 0 otherwise.

$$\sum_{v_i \in V} \deg(v_i) = \sum_{v_i \in V} \sum_{e_j \in E} \delta_{ij} = \sum_{e_j \in E} \sum_{v_i \in V} \delta_{ij} = \sum_{e_j \in E} 2 = 2m.$$

Graph Representation

Adjacency matrix:

Adjacency lists:

$$egin{array}{lll} v_1: & (v_2,v_3) \ v_2: & (v_1,v_3,v_4,v_5) \ v_3: & (v_1,v_2,v_5) \end{array}$$

$$v_4: (v_2) \ v_5: (v_2, v_3)$$

$$A[i, j] = 1$$
 if (v_i, v_j) is an edge. $V[i]$.degree = size of adj list. $V[i]$.AdjList $[k] = k$ 'th element of the adjacency list.

Sample Graph Algorithm

```
Input : Graph G represented by adjacency lists.

Func(G)

1 k \leftarrow 0;

2 foreach vertex v_i in G.V do /* G.V = vertices of G */

3 | foreach edge (v_i, v_j) incident on v_i do

4 | k \leftarrow k + 1;

5 | end

6 end

7 return (k);
```

Connected Graphs

Definition. A **path** in a graph is a sequence of vertices (w_1, w_2, \ldots, w_k) such that there is an edge (w_i, w_{i+1}) between every two adjacent vertices in the sequence.

Definition. A graph is **connected** if for every two vertices $v, w \in G.V$, the graph has some path from v to w.

Is the following graph connected?

Connected Graphs

Is the following graph connected?

Connected Graphs

Is the following graph connected?

Query Connected: Depth First Search

```
procedure QueryConnected(G)
1 foreach vertex v_i in G.V do /*G.V = \text{vertices of } G^*/
  v_i.mark \leftarrow NotVisited;
3 end
4 DFS(G,1);
5 foreach vertex v_i in G.V do
6 | if (v_i.mark = NotVisited) then return false;
7 end
s return true;
```

Depth First Search

```
procedure DFS(G, i)

/* Depth first search from vertex v_i

*/

1 G.V[i].mark \leftarrow Visited;

2 foreach edge (i, j) incident on vertex i do

3 | if (G.V[j].mark = NotVisited()) then

4 | DFS (G,j);

5 | end

6 end
```

Depth First Search Tree

```
procedure DFStree(G, i)

/* Depth first search from vertex v_i

*/

1 G.V[i].mark \leftarrow Visited;

2 foreach edge (i, j) incident on vertex i do

3 | if (G.V[j].mark = NotVisited()) then

4 | G.V[j].parent \leftarrow i;

5 | DFStree (G,j);

6 | end

7 end
```

Example

Directed Graph Representation

Adjacency matrix:

Adjacency lists:

A[i,j] = 1 if (v_i, v_j) is an edge.

Sum of outdeg (v_i) and sum of indeg (v_i)

m = number of graph edges.

Proposition: $\sum_{v_i \in G.V} \text{outdeg}(v_i) = m$.

Proposition: $\sum_{v_i \in G.V} \text{indeg}(v_i) = m$.

Sample Graph Algorithm

Input : Directed graph G represented by adjacency lists.

Func(G)

1 $k \leftarrow 0$;

2 foreach vertex v_i in G.V do /* G.V = vertices of G */

3 | foreach directed edge (v_i, v_j) incident on v_i do

4 | $k \leftarrow k + 1$;

5 | end

6 end

7 return (k);

Directed Graph

How many vertices are reachable by a directed path from v_1 ?

Directed Graph

How many vertices are reachable by a directed path from v_{12} ?

Num Reachable: Depth First Search

```
procedure NumReachable (G, k)

1 foreach vertex v_i in G.V do /* G.V = vertices of G */

2 | v_i.mark \leftarrow NotVisited;

3 end

4 DirectedDFS (G,k);

5 count \leftarrow 0;

6 foreach vertex v_i in G.V do

7 | if (v_i.mark = Visited) then count \leftarrow count + 1;

8 end

9 return count;
```

Directed Depth First Search

```
procedure DirectedDFS(G, i)

/* Depth first search from vertex v_i

*/

1 G.V[i].mark \leftarrow Visited;

2 foreach directed edge (i, j) incident on vertex i do

3 | if (G.V[j].mark = NotVisited()) then

4 | DFS(G,j);

5 | end

6 end
```

Is Reachable?

Is vertex v_{12} reachable by a directed path from vertex v_1 ?

Is Reachable?

Is vertex v_1 reachable by a directed path from vertex v_{12} ?

Is Reachable: Depth First Search

```
procedure IsReachable (G, k, q)

1 foreach vertex v_i in G.V do /* G.V = vertices of G */

2 | v_i.mark \leftarrow NotVisited;

3 end

4 DirectedDFS (G,k);

5 if (v_q.mark = Visited) then return true;

6 else return false;
```


Directed Acylic Graph (DAG)

A directed graph with no cycles is called a **directed acyclic** graph or **DAG**.

Topological Sort

Sort vertices of a directed acyclic graph so that for every edge (v_i, v_j) , vertex v_i precedes v_j .

Topological Sort: Example

Topological Sort

```
procedure TopologicalSort(G)
   /* Report vertices of G in topologically sorted order
 1 foreach vertex v_i in G.V do
      /*S is a stack of vertices.
     if (indeg(v_i) = 0) then S.Push(v_i);
 3 end
 4 while (S \text{ is not empty}) do
      v_i \leftarrow S.Pop();
 5
      Report v_i;
      foreach edge (v_i, v_j) incident on v_i do
          Delete (v_i, v_j) from G;
          if (indeg(v_i) = 0) then S.Push(v_i);
       end
10
11 end
```

Topological Sort: Simplified Implementation

```
procedure TopologicalSort(G)
   /* Report vertices of G in topologically sorted order
 1 foreach vertex v_i in G.V do
       /*S is a stack of vertices.
     \mathsf{inCount}[v_i] \leftarrow \mathsf{indeg}(v_i);
       if (inCount[v_i] = 0) then S.Push(v_i);
 4 end
 5 while (S \text{ is not empty}) do
       v_i \leftarrow S.Pop();
       Report v_i;
       foreach edge (v_i, v_j) incident on v_i do
           inCount[v_i] \leftarrow inCount[v_i] - 1;
           if (inCount[v_i] = 0) then S.Push(v_i);
10
       end
11
12 end
```