Graph Algorithms
Graph G

$G.V = \text{Set of vertices of graph } G$.

$G.E = \text{Set of edges of graph } G$.

$(v_i, v_j) = \text{edge with endpoints } v_i \text{ and } v_j$.

Vertices $v_i \in G.V$ and $v_j \in G.V$ are \textit{incident} on edge $(e_i, e_j) \in G.E$.
Vertex Degree

deg(v_i) = degree of v_i = \# edges incident on v_i.

What is the degree of each vertex?
Sum of $\text{deg}(v_i)$

$m =$ number of graph edges.

Proposition: $\sum_{v_i \in V} \text{deg}(v_i) = 2m$.

Proof 1:

$\sum_{v_i \in V} \text{deg}(v_i) =$ sum of $\# $ edges incident on vertices
 $=$ sum of $\# $ vertices incident on edges
 $= 2 \times (\# $ edges $) = 2m$.

Proof 2: Let $\delta_{ij} = 1$ if e_j is incident on v_i and 0 otherwise.

$$\sum_{v_i \in V} \text{deg}(v_i) = \sum_{v_i \in V} \sum_{e_j \in E} \delta_{ij} = \sum_{e_j \in E} \sum_{v_i \in V} \delta_{ij} = \sum_{e_j \in E} 2 = 2m.$$
Graph Representation

Adjacency matrix:

<table>
<thead>
<tr>
<th></th>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
<th>v_4</th>
<th>v_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1 :</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_2 :</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>v_3 :</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>v_4 :</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_5 :</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$A[i, j] = 1$ if (v_i, v_j) is an edge.

Adjacency lists:

- $v_1 : (v_2, v_3)$
- $v_2 : (v_1, v_3, v_4, v_5)$
- $v_3 : (v_1, v_2, v_5)$
- $v_4 : (v_2)$
- $v_5 : (v_2, v_3)$

$V[i].\text{degree} = \text{size of adj list.}$
$V[i].\text{AdjList}[k] =$
$k^{\text{th}} \text{ element of the adjacency list.}$
Sample Graph Algorithm

Input : Graph G represented by adjacency lists.

Func(G)

1. $k \leftarrow 0$

2. $\textbf{foreach}$ vertex v_i in $G.V$ \textbf{do} /* $G.V =$ vertices of G */

3. $\quad \textbf{foreach}$ edge (v_i, v_j) incident on v_i \textbf{do}

4. $\quad \quad k \leftarrow k + 1$

5. $\quad \textbf{end}$

6. \textbf{end}

7. \textbf{return} (k);
Connected Graphs

Definition. A path in a graph is a sequence of vertices \((w_1, w_2, \ldots, w_k)\) such that there is an edge \((w_i, w_{i+1})\) between every two adjacent vertices in the sequence.

Definition. A graph is **connected** if for every two vertices \(v, w \in G.V\), the graph has some path from \(v\) to \(w\).

Is the following graph connected?
Connected Graphs

Is the following graph connected?
Connected Graphs

Is the following graph connected?
Query Connected: Depth First Search

procedure QueryConnected(G)
1 foreach vertex \(v_i \) in \(G.V \) do /* \(G.V = \) vertices of \(G \) */
2 \(v_i \).mark ← NotVisited;
3 end
4 DFS(G,1);
5 foreach vertex \(v_i \) in \(G.V \) do
6 if \((v_i \).mark = \) NotVisited) then return false;
7 end
8 return true;
Depth First Search

procedure DFS(G, i)

/* Depth first search from vertex vi */

1 G.V[i].mark ← Visited;

2 foreach edge (i, j) incident on vertex i do

3 if (G.V[j].mark = NotVisited()) then

4 DFS (G,j);

5 end

6 end
procedure DFStree(G, i)

/* Depth first search from vertex vi */

1 G.V[i].mark ← Visited;

2 foreach edge (i, j) incident on vertex i do
3 if (G.V[j].mark = NotVisited()) then
4 G.V[j].parent ← i;
5 DFStree (G, j);
6 end

7 end
Example
Directed Graphs
Directed Graph Representation

Adjacency matrix:

\[
\begin{bmatrix}
 v_1 & v_2 & v_3 & v_4 & v_5 \\
 v_1 : & 0 & 1 & 1 & 0 & 0 \\
 v_2 : & 0 & 0 & 0 & 1 & 1 \\
 v_3 : & 0 & 1 & 0 & 0 & 1 \\
 v_4 : & 0 & 0 & 0 & 0 & 0 \\
 v_5 : & 0 & 0 & 1 & 0 & 0 \\
\end{bmatrix}
\]

Adjacency lists:

- \(v_1 \) out: \((v_2, v_3)\) \(v_1 \) in: ()
- \(v_2 \) out: \((v_4, v_5)\) \(v_2 \) in: \((v_1, v_3)\)
- \(v_3 \) out: \((v_2, v_5)\) \(v_3 \) in: \((v_1, v_5)\)
- \(v_4 \) out: () \(v_4 \) in: \((v_2)\)
- \(v_5 \) out: \((v_3)\) \(v_5 \) in: \((v_2, v_3)\)

\(A[i, j] = 1 \) if \((v_i, v_j)\) is an edge.
Sum of outdeg\((v_i)\) and sum of indeg\((v_i)\)

\[m = \text{number of graph edges.} \]

Proposition: \[\sum_{v_i \in G.V} \text{outdeg}(v_i) = m. \]

Proposition: \[\sum_{v_i \in G.V} \text{indeg}(v_i) = m. \]
Sample Graph Algorithm

Input: Directed graph G represented by adjacency lists.

\begin{verbatim}
Func(G)
1 $k \leftarrow 0$;
2 foreach vertex v_i in $G.V$ do /* $G.V =$ vertices of G */
3 foreach directed edge (v_i, v_j) incident on v_i do
4 $k \leftarrow k + 1$;
5 end
6 end
7 return (k);
\end{verbatim}
How many vertices are reachable by a directed path from v_1?
Directed Graph

How many vertices are reachable by a directed path from v_{12}?
procedure NumReachable(G, k)
1 foreach vertex v_i in $G.V$ do /* $G.V =$ vertices of G */
2 v_i.mark ← NotVisited;
3 end
4 DirectedDFS(G,k);
5 count ← 0;
6 foreach vertex v_i in $G.V$ do
7 if (v_i.mark = Visited) then count ← count + 1;
8 end
9 return count;
procedure DirectedDFS(G, i)

 /* Depth first search from vertex vi */

1. G.V[i].mark ← Visited;

2. foreach directed edge (i, j) incident on vertex i do

3. if (G.V[j].mark = NotVisited()) then

4. DFS (G, j);

5. end

6. end
Is Reachable?

Is vertex v_{12} reachable by a directed path from vertex v_1?
Is Reachable?

Is vertex v_1 reachable by a directed path from vertex v_{12}?
procedure IsReachable(G, k, q)

1 foreach vertex \(v_i \) in \(G.V \) do /* \(G.V \) = vertices of \(G \) */
2 \(v_i \).mark ← NotVisited;
3 end
4 DirectedDFS(G,k);
5 if (\(v_q \).mark = Visited) then return true;
6 else return false;
Topological Sort
A directed graph with no cycles is called a **directed acyclic graph** or **DAG**.
Topological Sort

Sort vertices of a directed acyclic graph so that for every edge \((v_i, v_j)\), vertex \(v_i\) precedes \(v_j\).
Topological Sort: Example
Topological Sort

```plaintext
procedure TopologicalSort(G)
   /* Report vertices of G in topologically sorted order */
   foreach vertex v_i in G.V do
      /* S is a stack of vertices. */
      if (indeg(v_i) = 0) then S.Push(v_i);
   end
   while (S is not empty) do
      v_i ← S.Pop();
      Report v_i;
      foreach edge (v_i, v_j) incident on v_i do
         Delete (v_i, v_j) from G;
         if (indeg(v_j) = 0) then S.Push(v_j);
      end
   end
```

8.29
Topological Sort: Simplified Implementation

procedure TopologicalSort(G)
/* Report vertices of G in topologically sorted order */
1 foreach vertex \(v_i\) in G.V do
 /* S is a stack of vertices. */
 2 inCount[\(v_i\)] ← indeg(\(v_i\));
 3 if (inCount[\(v_i\)] = 0) then S.Push(\(v_i\));
end
5 while (S is not empty) do
 6 \(v_i\) ← S.Pop();
 7 Report \(v_i\);
 8 foreach edge \((v_i, v_j)\) incident on \(v_i\) do
 9 inCount[\(v_j\)] ← inCount[\(v_j\)] − 1;
 10 if (inCount[\(v_j\)] = 0) then S.Push(\(v_j\));
end
12 end