CSE 2331

Graph Algorithms

CSE 2331

Graph G
G.V = Set of vertices of graph G.
G.E = Set of edges of graph G.

(vi,vj) = edge with endpoints v; and v;.

Vertices v; € G.V and v; € G.V are incident on edge (e;,e;) € G.E.

CSE 2331

Vertex Degree

deg(v;) = degree of v; = # edges incident on v;.

What is the degree of each vertex?

CSE 2331

Sum of deg(v;)

m = number of graph edges.

Proposition:) deg(v;) = 2m.

v, €V

Proof 1:

quiev deg(v;) = sum of # edges incident on vertices

sum of # vertices incident on edges
= 2X (# edges) = 2m.

Proof 2: Let 0;; = 1 if e; is incident on v; and 0 otherwise.

Zdeg(vi): Z Z(Sij: Z Z(Sij: 22:2772.

v, €V vi€EVe;el e;€EE v, €V e; €l

CSE 2331

Graph Representation

Adjacency matrix: Adjacency lists:

V1 V2 V3 V4 Vs
vi: [0 1 1 0 07
V2 . 1

V1 - (

va: (v1,v3,v4,05)

V3 . (

ve (V2)
(

fU2,’U3)

V3 . 1
V4 0 e
0 0

0
1
1
1

Vs .

Ali, j] = 1 if (vs,v;) is an edge. V[i].degree = size of ad] list.
V[i].AdjList[k] =
k’th element of the adjacency list.

CSE 2331

Sample Graph Algorithm

Input : Graph G represented by adjacency lists.

Func (G)
k «— O;

foreach vertex v; in G.V do /* G.V = vertices of G */
foreach edge (v;,v;) incident on v; do
| k—k+1;

end

end

return (k);

Connected Graphs

Definition. A path in a graph is a sequence of vertices
(w1, ws, ..., wy) such that there is an edge (w;, w;11) between

every two adjacent vertices in the sequence.

Definition. A graph is connected if for every two vertices
v,w € G.V, the graph has some path from v to w.

Is the following graph connected?

U1

CSE 2331

CSE 2331

Connected Graphs
Is the following graph connected?

Vi2

Vi1

Vio i

4

RV

VS8

CSE 2331

Connected Graphs

Is the following graph connected?

AT

Vg / <>V4

CSE 2331

Query Connected: Depth First Search

procedure QueryConnected(G)

foreach vertex v; in G.V do /* G.V = vertices of G */
v;.-mark «— NotVisited;

end
DFS(G,1);

foreach vertex v; in G.V do

‘ if (v;.mark = NotVisited) then return false;

end

return true;

8.10

CSE 2331

Depth First Search

procedure DFS(G, 1)
/* Depth first search from vertex v;
G.V]i].mark < Visited;

foreach edge (¢, 7) incident on vertex i do
if (G.V[j].mark = NotVisited()) then
| DFS (G.j);

end

end

8.11

CSE 2331

Depth First Search Tree

procedure DFStree (G, 1)
/* Depth first search from vertex v;
G.V[i].mark « Visited;

foreach edge (7, j) incident on vertex i do
if (G.V[j].mark = NotVisited()) then
G.V|j].parent « ¢;

DFStree (G,j);

end

end

8.12

CSE 2331

8.13

CSE 2331

Directed Graphs

8.14

CSE 2331

Directed Graph Representation

Adjacency matrix: Adjacency lists:

V1 V2 V3 Vg4 Vs
vi: [O 1 1 0 07
vy 0

vy out : (v2,vs)
v2 out :

v3 out :
Vs .

0 1

0 1 1

V4 0 0 0
Vs 0 0 0

v4 out :
U5 out :

Ali, j] = 1 if (vi,v;) is an edge.

8.15

CSE 2331

Sum of outdeg(v;) and sum of indeg(v;)

m = number of graph edges.
Proposition:) .y outdeg(v;) = m.

Proposition:) qy indeg(v;) = m.

8.16

CSE 2331

Sample Graph Algorithm

Input : Directed graph G represented by adjacency lists.

Func (G)
k «— O;

foreach vertex v; in G.V do /* G.V = vertices of G */
foreach directed edge (v;,v;) incident on v; do
| k—k+1;

end

end

return (k);

8.17

CSE 2331

Directed Graph

How many vertices are reachable by a directed path from v;?

Vi2 Vi

8.18

CSE 2331

Directed Graph

How many vertices are reachable by a directed path from v;57

Vi2 Vi

8.19

CSE 2331

Num Reachable: Depth First Search

procedure NumReachable (G, k)

1 foreach vertex v; in G.V do /* G.V = vertices of G */
‘ v;.mark <« NotVisited;

end
DirectedDFS(G.k);
count « 0;

foreach vertex v; in G.V do
| if (v;.mark = Visited) then count < count + 1;

end

return count;

8.20

CSE 2331

Directed Depth First Search

procedure DirectedDFS(G, 1)
/* Depth first search from vertex v;
G.V[i].mark « Visited;

foreach directed edge (i, j) incident on vertex ¢ do
if (G.V[j].mark = NotVisited()) then
| DFS (G.j);

end

end

8.21

CSE 2331

Is Reachable?

Is vertex vy reachable by a directed path from vertex v,?

()
LY

Wa

VS8

Vio
Vg

8.22

CSE 2331

Is Reachable?

Is vertex v reachable by a directed path from vertex v15?

()
LY

Wa

VS8

Vio
Vg

8.23

CSE 2331

Is Reachable: Depth First Search

procedure IsReachable(G, k, q)

1 foreach vertex v; in G.V do /* G.V = vertices of G */
‘ v;.mark «— NotVisited;

end
DirectedDFS(GLk);
if (vy.mark = Visited) then return true;

else return false;

8.24

CSE 2331

Topological Sort

8.25

CSE 2331

Directed Acylic Graph (DAG)

A directed graph with no cycles is called a directed acyclic
graph or DAG.

8.26

CSE 2331

Topological Sort

Sort vertices of a directed acyclic graph so that for every edge (v;, v;),

vertex v; precedes v;.
Vi

8.27

CSE 2331

Topological Sort: Example

8.28

CSE 2331

Topological Sort

procedure TopologicalSort (G)
/* Report vertices of G in topologically sorted order */

foreach vertex v; in G.V do
/* S is a stack of vertices. ¥/

if (indeg(v;) = 0) then S.Push(v;);
end

while (S is not empty) do
v; < S.Pop();

Report v;;

foreach edge (v;,v;) incident on v; do
Delete (v, v;) from G;

if (indeg(v,;) = 0) then S.Push(v;);
end

2
3
4
5
6
7
8
9

Y
o

end

[l
Y

8.29

CSE 2331

Topological Sort: Simplified Implementation

procedure TopologicalSort (G)
/* Report vertices of G in topologically sorted order */

foreach vertex v; in G.V do
/* S is a stack of vertices. ¥/

inCount|v;] < indeg(v;);
if (inCount|v;] = 0) then S.Push(v;);
end

while (S is not empty) do
v; «— S.Pop();

Report v;;

foreach edge (v;,v;) incident on v; do
inCount|v;| < inCount|v;] — 1;

if (inCount|v;| = 0) then S.Push(v,);
end

2
3
4
5
6
7
8
9

Y
Qo

(Y
[

end

ol
N

8.30

