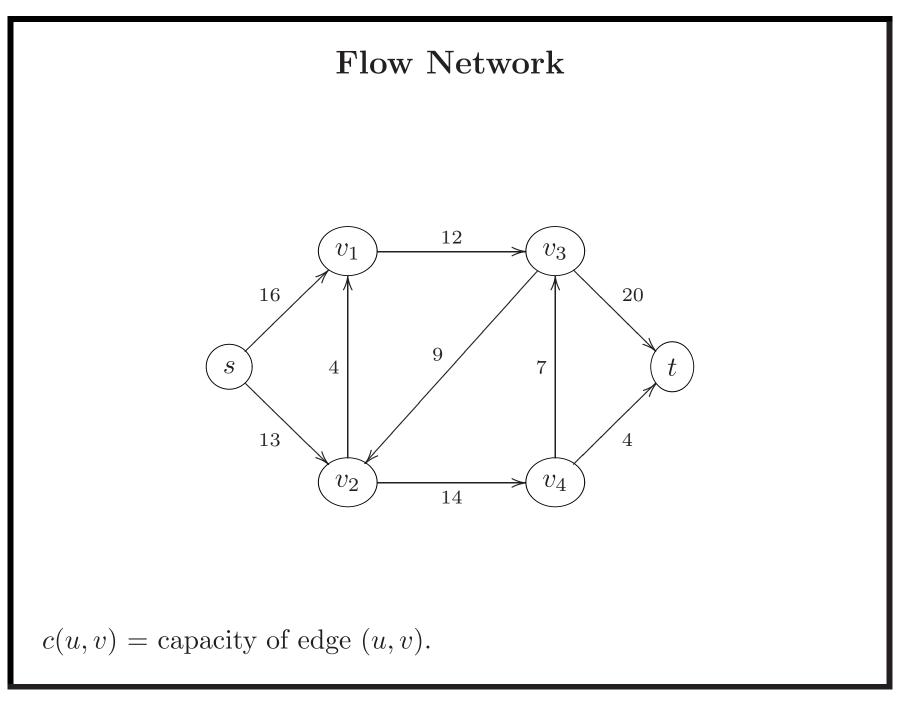
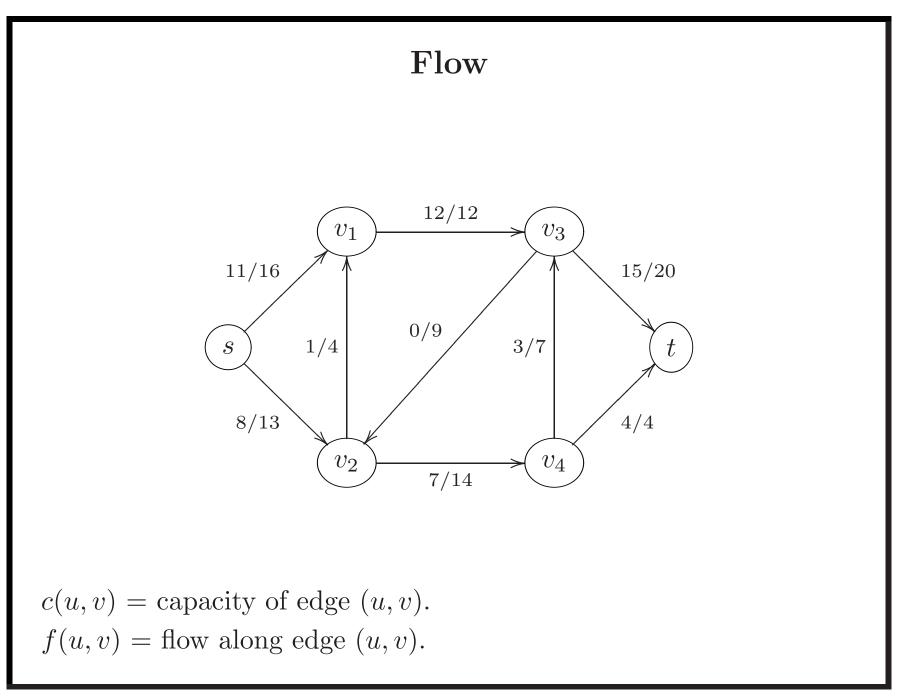
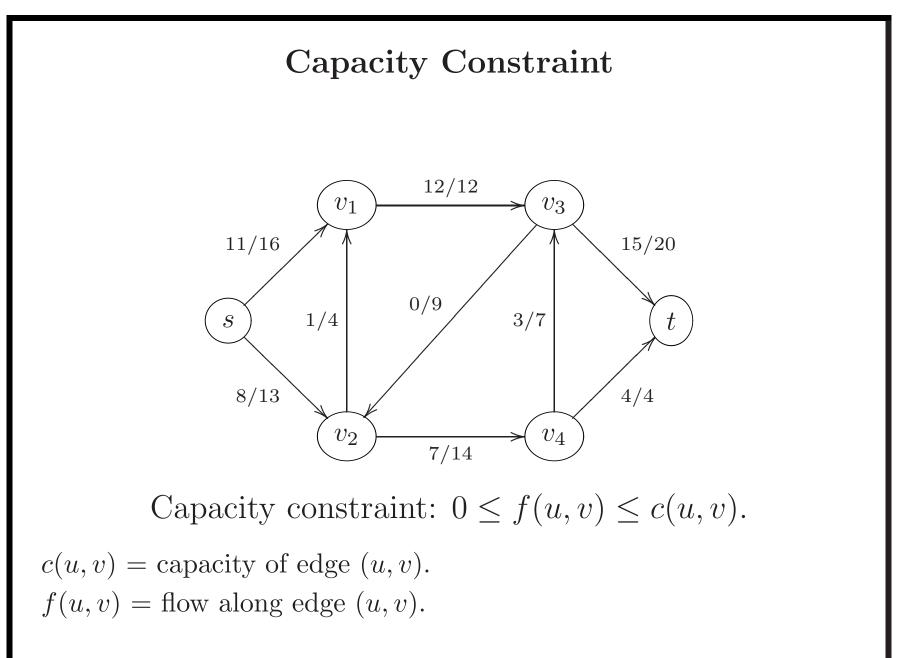
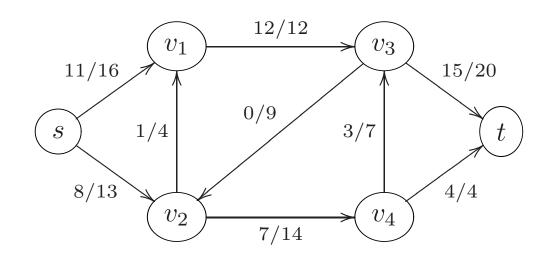
Maximum Flow







Flow Conservation

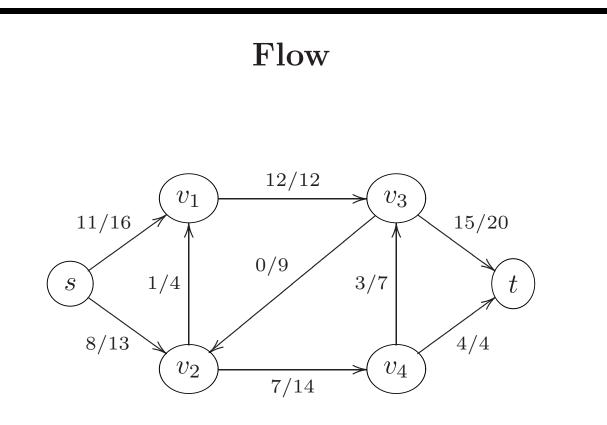


Flow conservation: For all $u \in G.V - \{s, t\}$,

flow in to u = flow out from u, or

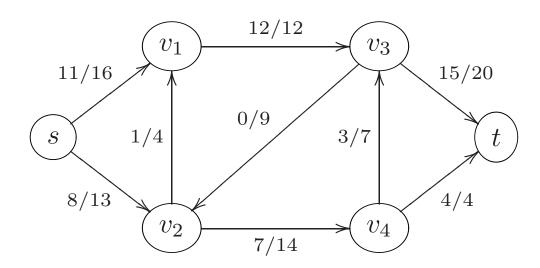
$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v).$$

f(u, v) =flow along edge (u, v).



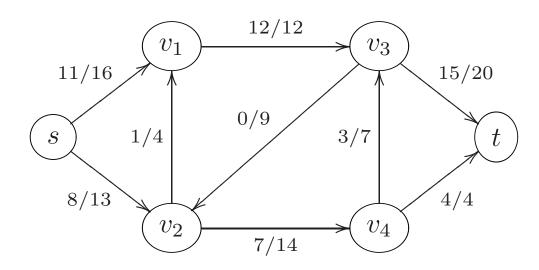
A flow is a function $f: G.E \to \mathbb{R}$ where

- 1. Capacity constraint: $0 \le f(u, v) \le c(u, v);$
- 2. Flow conservation: $\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$.



The value of the flow, |f|, is the amount flowing out of node s:

$$f| = \sum_{v \in G.V} f(s, v).$$

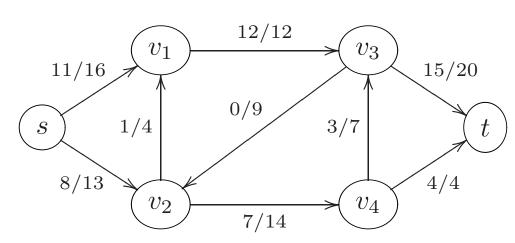


Lemma:

flow out of node s = flow in to node t, or

$$|f| = \sum_{v \in G.V} f(s, v) = \sum_{v \in G.V} f(v, t).$$

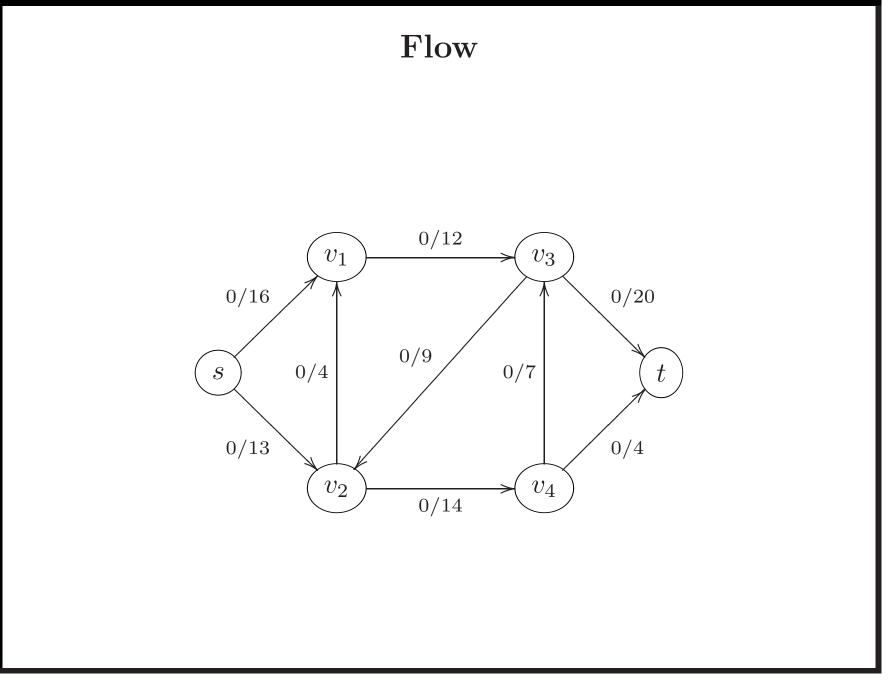
Max Flow Problem

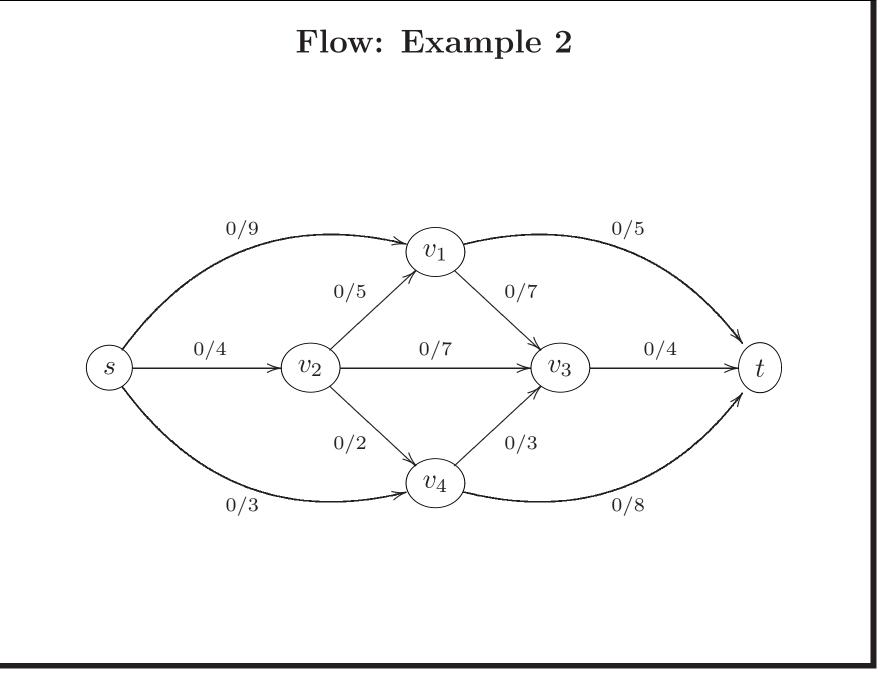


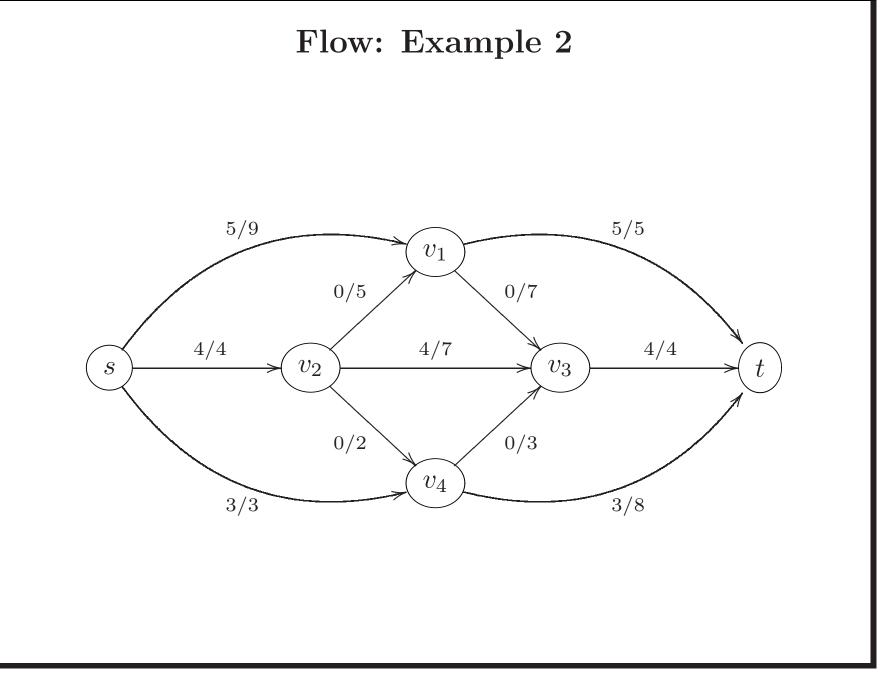
The value of the flow, |f|, is the amount flowing out of node s:

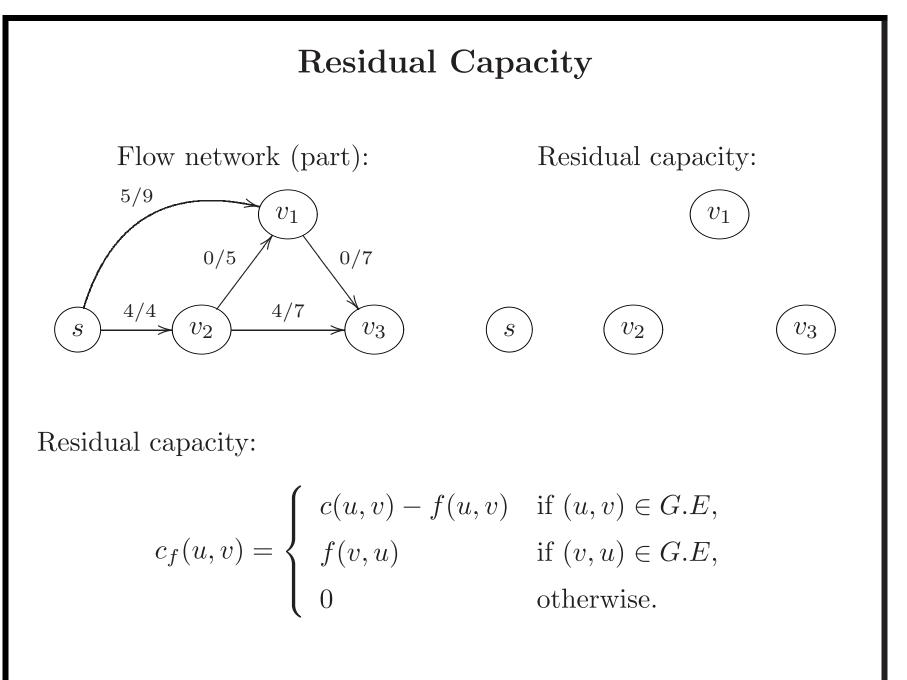
$$|f| = \sum_{v \in G.V} f(s, v).$$

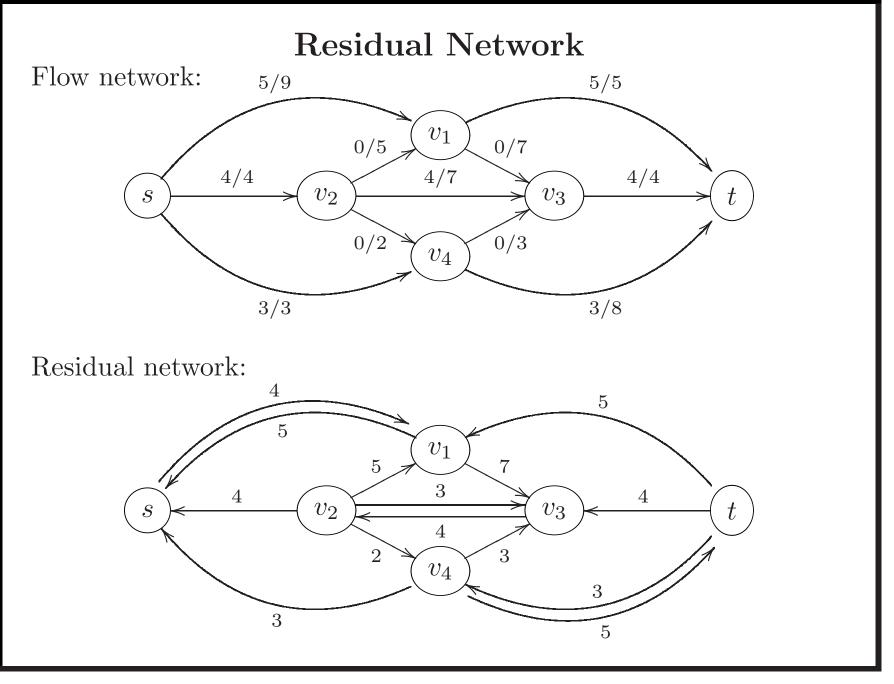
max flow problem: Given a flow network G, find max |f| over all flows f in G.

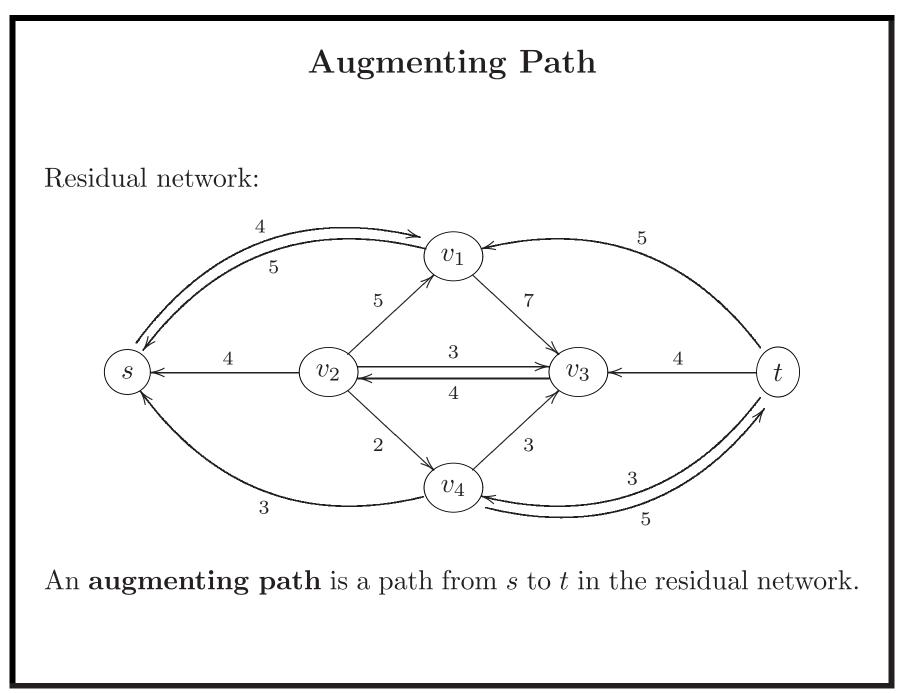






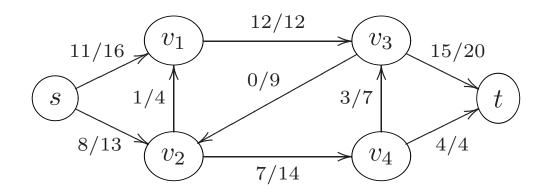






Residual Network

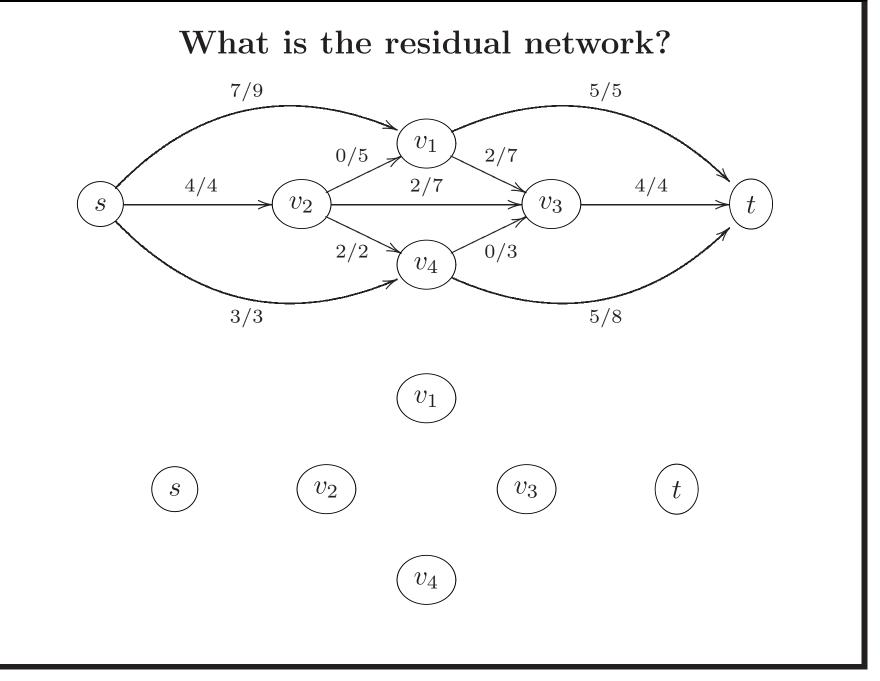
Flow network:

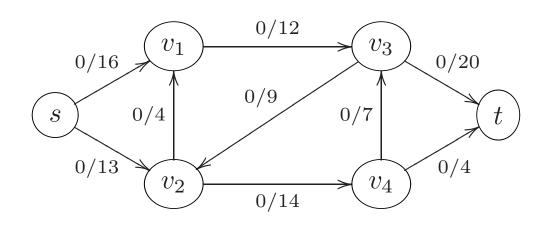


Residual capacity:

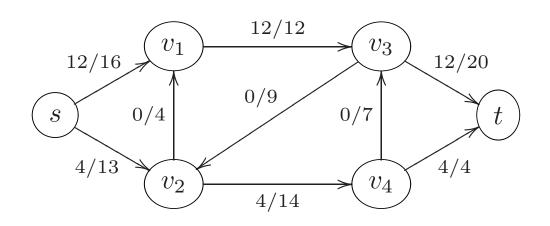
$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in G.E, \\ f(v,u) & \text{if } (v,u) \in G.E, \\ 0 & \text{otherwise.} \end{cases}$$

Assume that G.E never contains both (u, v) and (v, u).





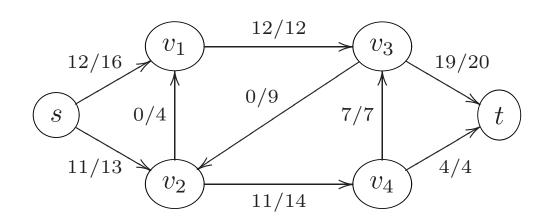
S



 $\left(v_{2}\right)$

S

10.19



S

Residual Network

G is a directed graph where G.E never contains both (u, v) and (v, u).

f is a flow network on G.

Residual capacity:

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in G.E, \\ f(v,u) & \text{if } (v,u) \in G.E, \\ 0 & \text{otherwise.} \end{cases}$$

 G_f is the residual network whose edges have capacities $c_f(u, v)$.

Ford-Fulkerson Max Flow Algorithm

procedure FFMaxFlow(G)

- 1 foreach edge $(u, v) \in E(\mathsf{G})$ do $f(u, v) \leftarrow 0$;
- **2** Compute residual network G_f ;
- **3** Search for path P in residual network G_f ;
- 4 while there exists a path P from s to t in G_f do

5
$$| x \leftarrow \min\{c_f(u,v)|(u,v) \in P\};$$

6 Increase flow in **G** by x along path P;

7 Compute residual network
$$G_f$$
;

- 8 Search for path P in residual network G_f ;
- 9 end

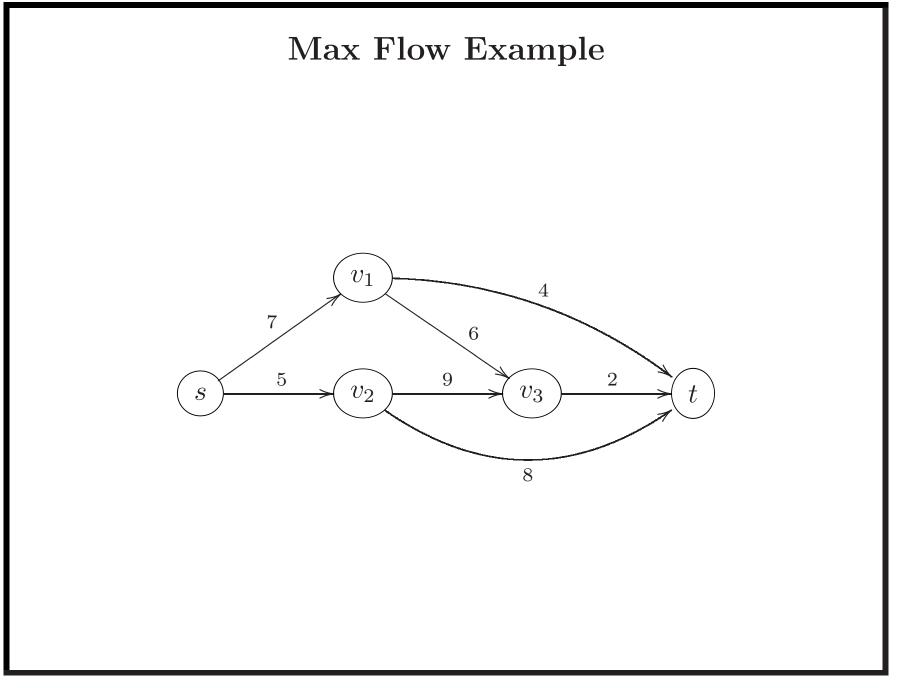
Ford-Fulkerson Max Flow Algorithm (Detailed)

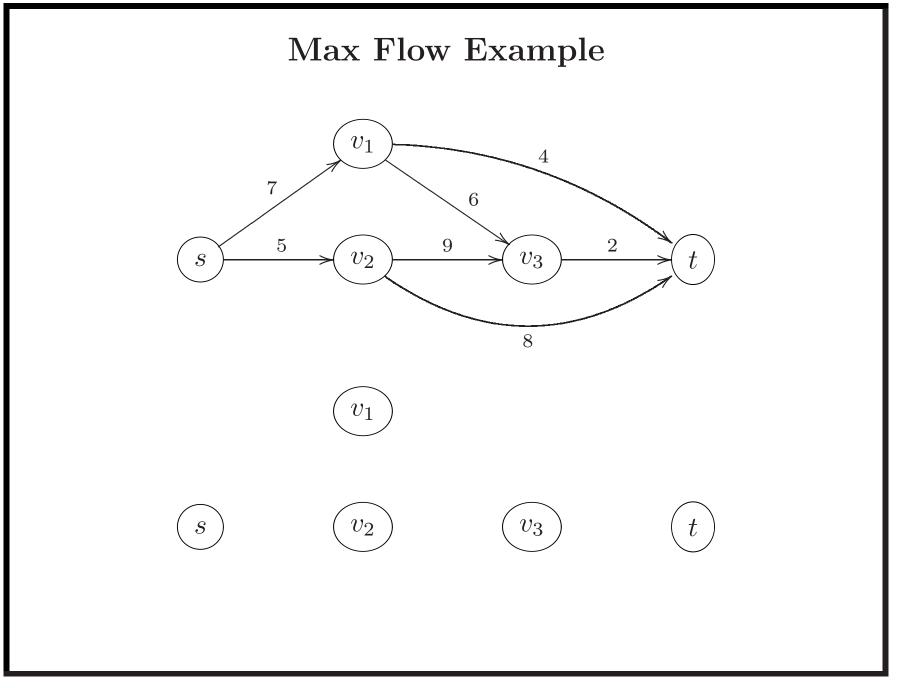
procedure FFMaxFlow(G)

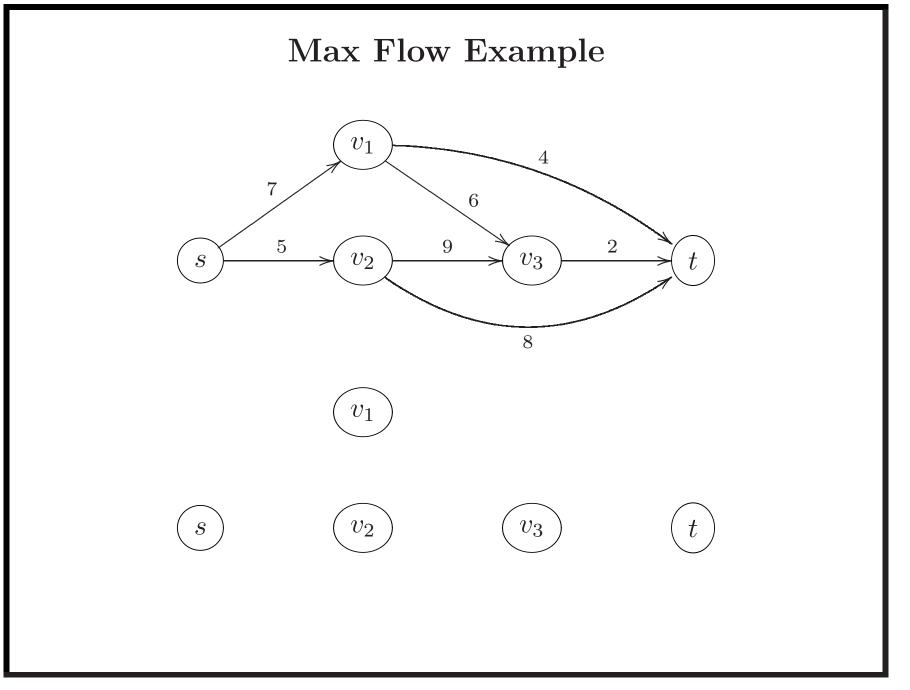
- 1 for each edge $(u, v) \in E(\mathsf{G})$ do $f(u, v) \leftarrow 0$;
- **2** Compute residual network G_f ;
- **3** Search for path P in residual network G_f ;
- 4 while there exists a path P from s to t in G_f do

5
$$x \leftarrow \min\{c_f(u,v)|(u,v) \in P\};$$

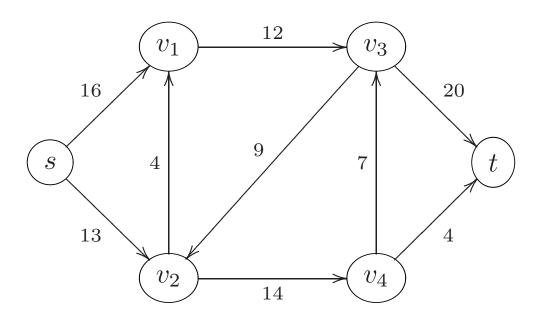
7 $foreach edge (u,v) \in P$ do
7 $if (u,v) \in E(G)$ then $f(u,v) \leftarrow f(u,v) + x;$
8 $else f(v,u) \leftarrow f(v,u) - x;$ /* $(v,u) \in E(G)$ */
9 $foreach edge (u,v) \in P$ do
7 $f(v,u) \in E(G)$ then $f(u,v) \leftarrow f(u,v) + x;$
8 $f(v,u) \leftarrow f(v,u) - x;$ /* $(v,u) \in E(G)$ */
9 $f(v,u) \in E(G)$ then $f(v,u) = x;$ /* $(v,u) \in E(G)$ */
9 $f(v,u) \in E(G)$ then $f(v,u) = x;$ /* $(v,u) \in E(G)$ */
10 Compute residual network G_f ;
11 Search for path P in residual network G_f ;
12 end



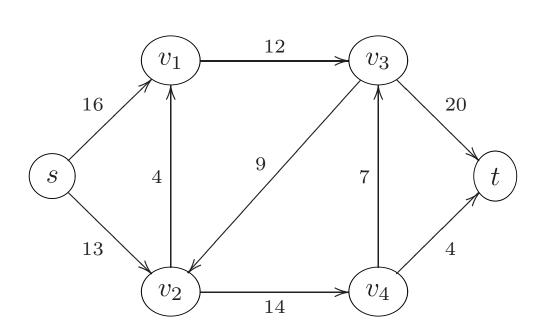




Minimum Cut



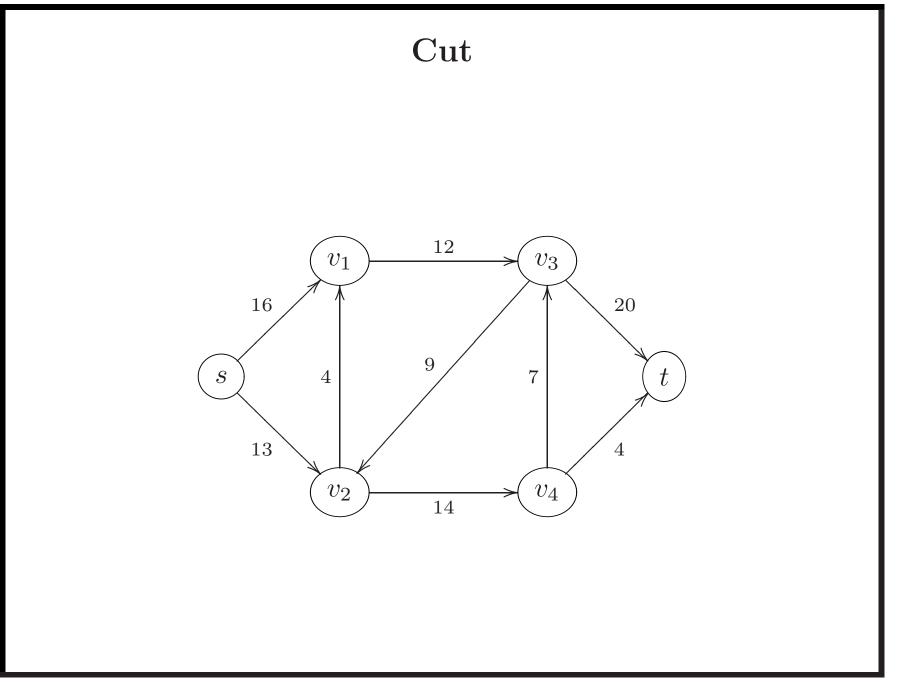
A cut (S,T) of a flow network G is a partition of G.V into S and T = G.V - S such that $s \in S$ and $t \in T$.

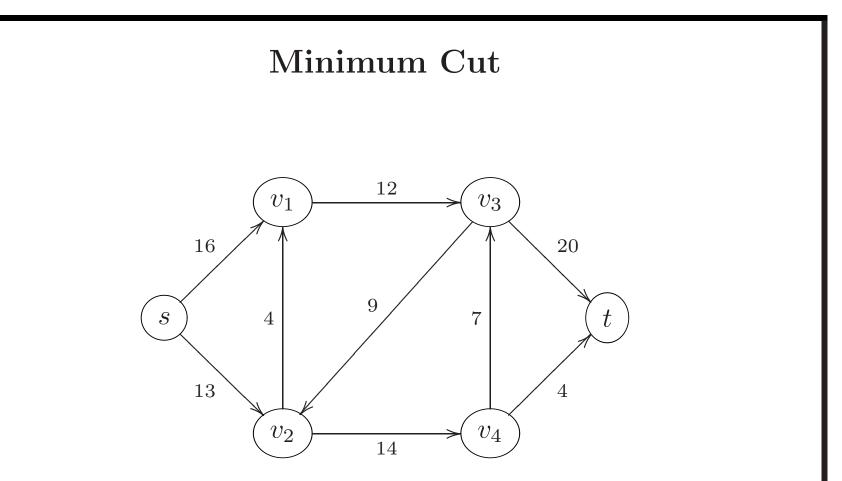


A cut (S,T) of a flow network G is a partition of G.V into S and T = G.V - S such that $s \in S$ and $t \in T$.

The capacity of the cut (S, T) is:

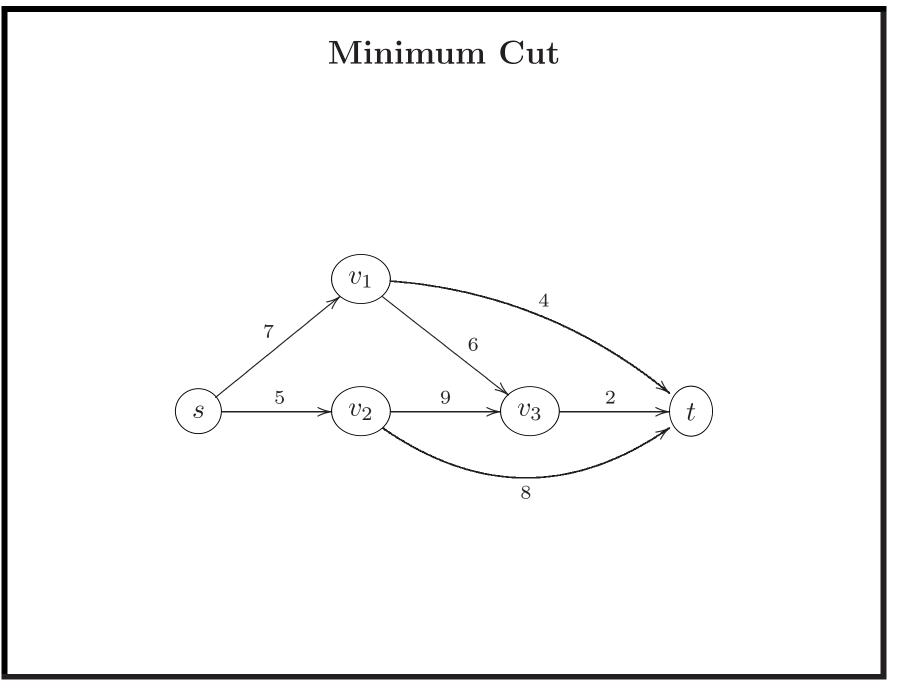
$$c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v).$$

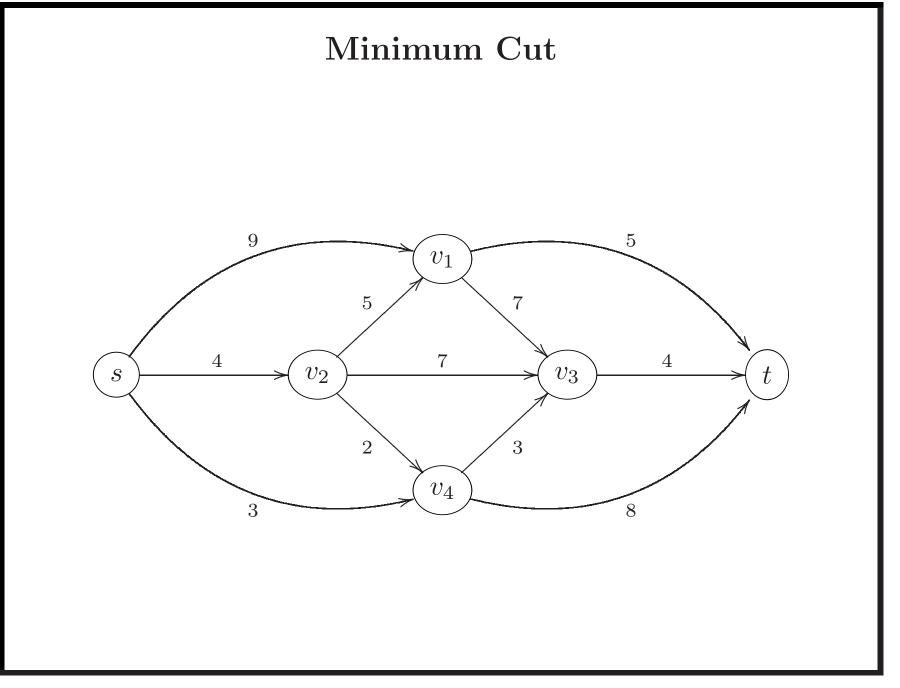


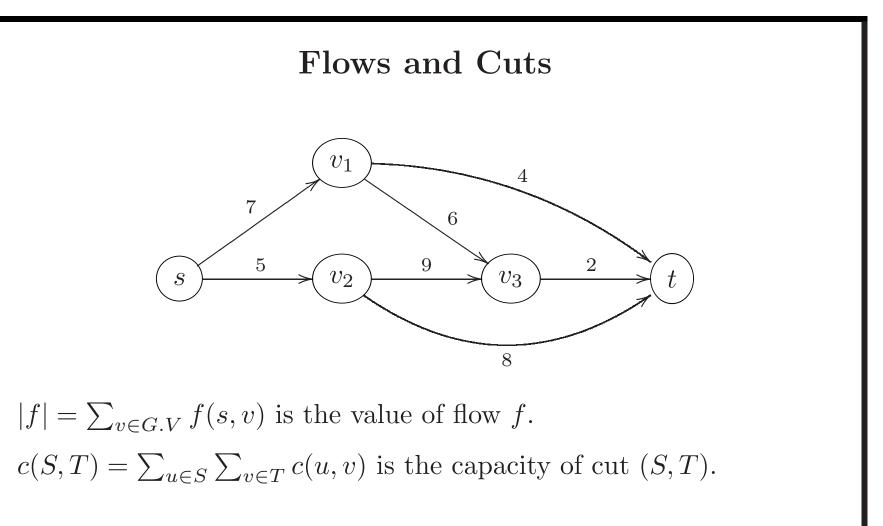


The capacity of the cut (S,T) is $c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$.

A minimum cut of G is a cut whose capacity is minimum over all cuts of G.







Lemma (Cut Lemma). For any flow f and any cut (S, T),

 $|f| \le c(S,T).$

max-flow min-cut theorem

Theorem. For any flow network G, max flow of $G = \min$ cut of G!

Max-flow min-cut theorem

Proof: The following three conditions are equivalent:

- 1. f is a maximum flow of G.
- 2. There are no augmenting paths in the residual network G_f .
- 3. |f| = c(S, T) for some cut (S, T) of G.

Max-flow min-cut theorem: $(1) \Rightarrow (2)$.

The following three conditions are equivalent:

- 1. f is a maximum flow of G.
- 2. There are no augmenting paths in the residual network G_f .

3.
$$|f| = c(S,T)$$
 for some cut (S,T) of G.

(1) \Rightarrow (2): If G_f had an augmenting path P, then we could increase |f| by adding flow along P to f.

Max-flow min-cut theorem:
$$(2) \Rightarrow (3)$$
.

The following three conditions are equivalent:

- 1. f is a maximum flow of G.
- 2. There are no augmenting paths in the residual network G_f .
- 3. |f| = c(S,T) for some cut (S,T) of G.

(2) \Rightarrow (3): Assume G_f has no augmenting path. Let $S = \{v \in G.V : \text{there is a path from } s \text{ to } v \text{ in } G_f\}.$ Let T = G.V - S.

Since there is no edge in G_f from any $u \in S$ to any $v \in T$:

- the flow from S to T is $\sum_{u \in S} \sum_{v \in T} c(u, v) = c(S, T);$
- there is no flow from T to S.

Thus |f| = c(S, T).

Max-flow min-cut theorem: $(3) \Rightarrow (1)$.

The following three conditions are equivalent:

- 1. f is a maximum flow of G.
- 2. There are no augmenting paths in the residual network G_f .
- 3. |f| = c(S,T) for some cut (S,T) of G.

(3) \Rightarrow (1): Assume |f| = c(S, T). By the cut lemma (slide 10.34), $|f'| \leq c(S, T)$ for any flow f' in G. Thus, $|f'| \leq c(S, T) = |f|$ so |f| is a maximum flow.

Ford-Fulkerson Max Flow Algorithm Running Time Analysis

```
procedure FFMaxFlow(G)
```

- 1 foreach edge $(u, v) \in E(\mathsf{G})$ do $f(u, v) \leftarrow 0$;
- **2** Compute residual network G_f ;

3 Search for path P in residual network G_f ;

4 while there exists a path P from s to t in G_f do

5
$$x \leftarrow \min\{c_f(u,v)|(u,v) \in P\};$$

6 Increase flow in **G** by x along path P;

7 Compute residual network
$$G_f$$
;

8 Search for path P in residual network G_f ;

9 end

Lemma. If all capacities are integers, then FFMaxFlow increases the flow value by a positive integer at each iteration.

Lemma. If all capacities are integers, then FFMaxFlow increases the flow value by a positive integer at each iteration.

Apply induction for formal proof.

FF Max Flow Algorithm: Time Analysis

```
procedure FFMaxFlow(G)
```

- 1 foreach edge $(u, v) \in E(\mathsf{G})$ do $f(u, v) \leftarrow 0$;
- **2** Compute residual network G_f ;

3 Search for path P in residual network G_f ;

4 while there exists a path P from s to t in G_f do

5
$$x \leftarrow \min\{c_f(u,v)|(u,v) \in P\};$$

6 Increase flow in **G** by x along path P;

7 Compute residual network
$$G_f$$
;

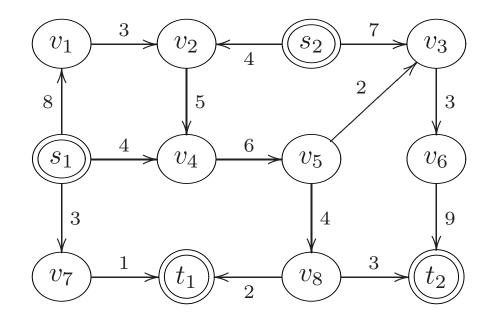
8 Search for path P in residual network G_f ;

9 end

m = # graph edges.

Proposition. If all capacities are integers, then the Ford-Fulkerson Algorithm runs in $O(m|f^*|)$ time where f^* is the max flow.

Multi-Source/Sink Max-Flow



Sources: s_1 and s_2 . Sinks: t_1 and t_2 . Flow value $|f| = \sum_{s_i} \sum_{v_j} f(s_i, v_j)$.

Reduction

Multi-Source/Sink Max-Flow Problem: Given a flow network G with multiple sources and sinks, find max |f| over all flows f in G.

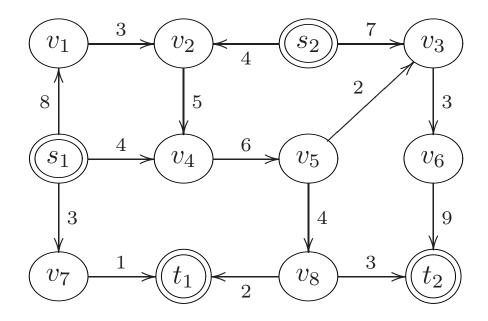
Single Source/Sink Max-Flow Problem: Given a flow network G with one source and sink, find max |f| over all flows f in G.

Reduce the Multi-Source/Sink Max-Flow Problem to the Single Source Max Flow Problem.

Reduce P to Q: Turn problem P into Q such that the solution to Q gives the solution to P.

Multi-Source/Sink Max-Flow Problem

Reduce Multi-Source/Sink Max-Flow Problem to Single Source/Sink Max-Flow Problem:



Multi-Source/Sink Max-Flow Problem

Reduce the Multi-Source/Sink Max-Flow Problem to the Single Source Max Flow Problem:

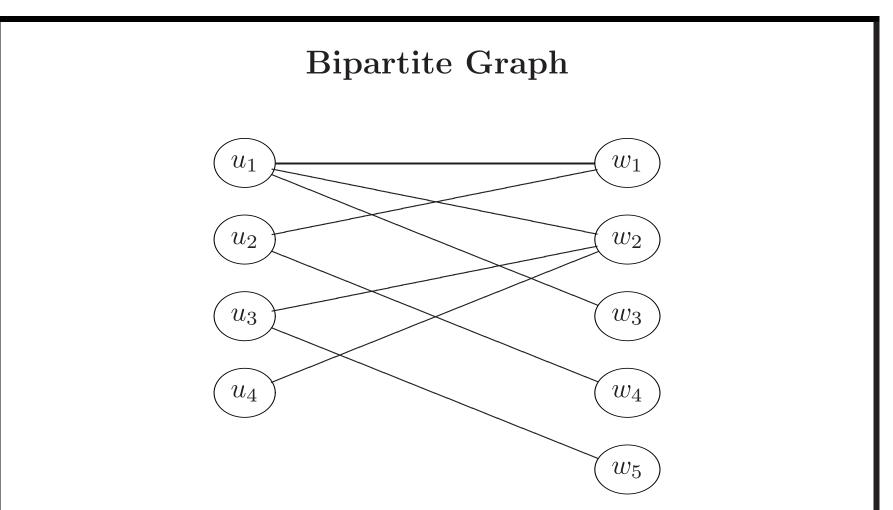
Let G be a flow network with multiple sources s_i and sinks t_i .

Create flow network G' from G with a single source and sink as follows:

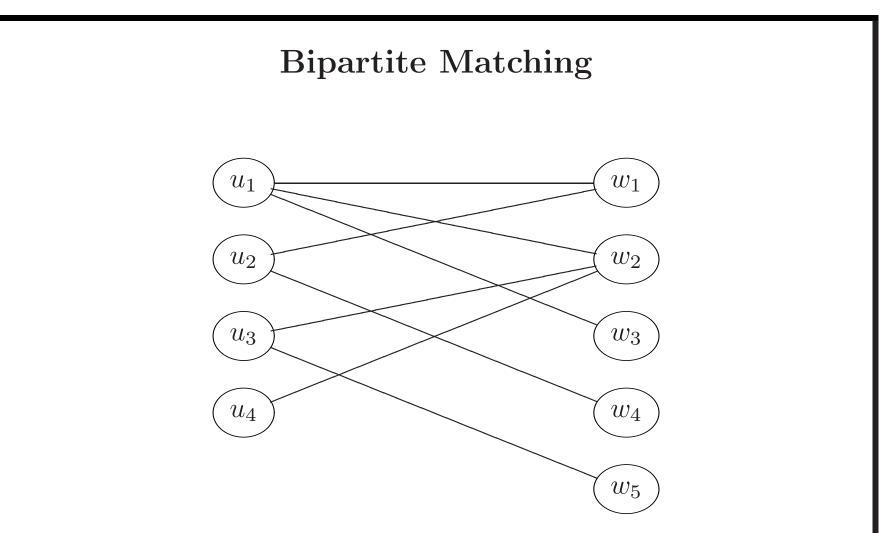
- Add new source s^* and new sink t^* ;
- Add directed edges from s^{*} to each s_i.
 Set capacity of each new edge to ∞.
- Add directed edges from each t_i to t^* . Set capacity of each new edge to ∞ .

G' has flow with value F from s^* to t^* if and only if G has flow with value F from the s_i to the t_i .

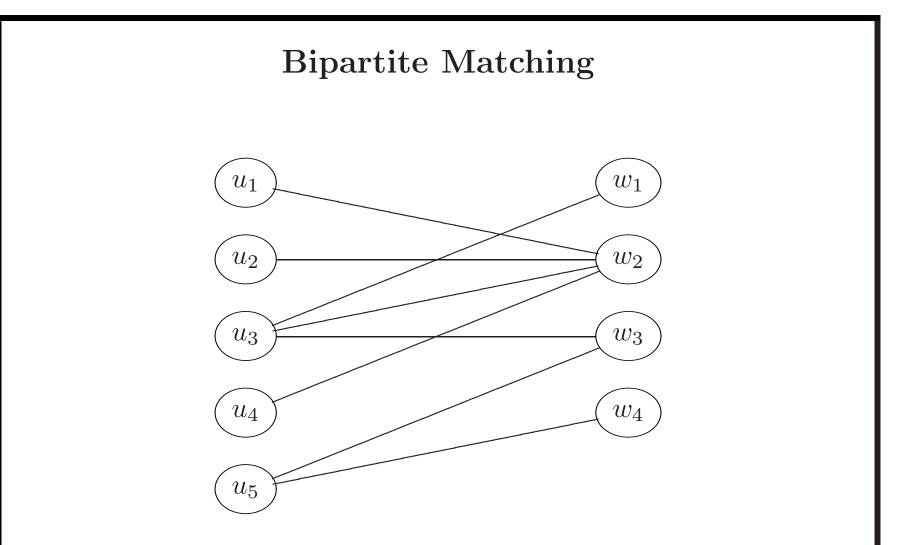
Bipartite Matching



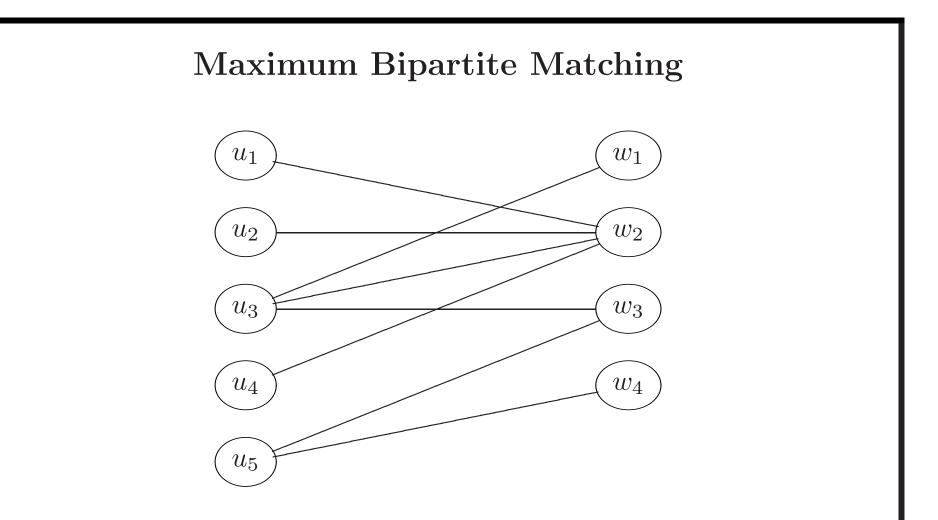
Definition. An undirected graph G is **bipartite** if its vertices can be partitioned into two sets U and W such that every graph edge $e \in G.E$ has one endpoint u_i in U and one endpoint w_j in W.



Definition. A matching of a bipartite graph G is a subset M of the edges G.E of G such that no two edges share an endpoint.



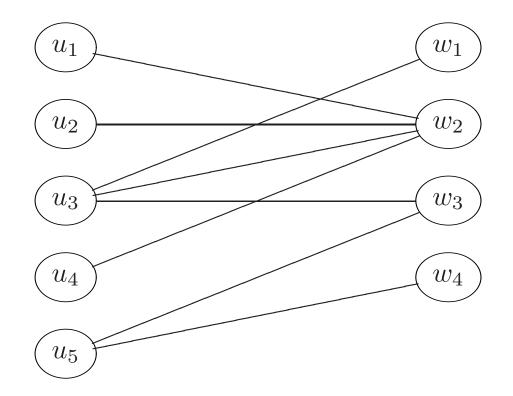
Definition. A matching of a bipartite graph G is a subset M of the edges G.E of G such that no two edges share an endpoint.



Definition. A maximum matching of a bipartite graph G is a matching with greatest number of edges.

Note: A maximum matching has at most $\min(|U|, |W|)$ edges. (Why?)

Maximum Bipartite Matching



Bipartite Matching Problem: Given a bipartite graph G, find a maximum matching of G.

Reduction

Bipartite Matching Problem: Given a bipartite graph G, find a maximum matching of G.

(Single Source/Sink) Max-Flow Problem: Given a flow network G with one source and sink, find max |f| over all flows f in G.

Reduce the Bipartite Matching Problem to the (Single Source) Max Flow Problem.

Reduce P to Q: Turn problem P into Q such that the solution to Q gives the solution to P.

Bipartite Matching Problem

Reduce the Bipartite Matching Problem to the (Single Source) Max Flow Problem.

Let G be the bipartite graph whose edges connect $U \subset G.V$ to $W \subset G.V$.

Create a flow network G' from G as follows:

- Add source node s and sink node t;
- Replace each undirected edge (u_i, w_i) of G.E with a directed edge (u_i, w_i) ;
- Add directed edges from s to each $u_i \in U$;
- Added directed edges from each $w_i \in W$ to t;
- Set the capacity of every edge to 1.

G' has flow with value F from s to t if and only if G has a matching of size F.

m = # graph edges.

Proposition. If all capacities are integers, then the Ford-Fulkerson Algorithm runs in $O(m|f^*|)$ time where f^* is the max flow.

Bipartite Matching: Time

m = # graph edges.

Proposition. If all capacities are integers, then the Ford-Fulkerson Algorithm runs in $O(m|f^*|)$ time where f^* is the max flow.

In the reduction of bipartite matching to max flow:

- All edge capacities are 1;
- The max flow $|f^*| \le n$.

Proposition. Reducing bipartite matching to max flow and applying the Ford-Fulkerson Algorithm takes O(nm) time.