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Red-Black Trees

Definition. A red-black tree is a binary search tree with the

following properties:

e Lvery node is either red or black;
The root is black;
Every leaf is NIL and is black;
If a node is red, then both its children are black;

For each node, all simple paths from the node to descendant
leaves contain the same number of black nodes.

(Note: Every node in a binary tree is either a leaf or has BOTH a
left AND right child.)
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Red-Black Tree: Example

@ 5\\20\\35\ \39

ANIS SN AN
%




CSE 2331

Red-Black Tree: Example
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NOT a Red-Black Tree
This tree is NOT a red-black tree. Why not?
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Red-Black Tree Exercise

Color the following tree so that it is a red-black tree:
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Red-Black Tree Height

Definition. A red-black tree satisfies the following properties:

e Every node is either red or black;
The root is black;
Every leaf is NIL and is black;
If a node is red, then both its children are black;

For each node, all simple paths from the node to descendant

leaves contain the same number of black nodes.

Theorem. A red-black tree with n internal nodes has height at
most 2logy(n + 1).




CSE 2331

Complete Binary Tree Size

Theorem 1. A complete binary search tree of height h has
2h+1 _ 1 nodes.

Proof. Level i has 2 nodes (i = 0,1,...,h).
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Red-Black Tree Size

Theorem 2. A red-black tree of height h has at least 2/7*/21 — 1
internal nodes.

Proof. (By Dr. Y. Wang.)

Let T be a red-black tree of height h.

Remove the leaves of T' forming a tree 1" of height h — 1.

Let r be the root of T".

Since no child of a red node is red and r is black, the longest path
from r to a leaf has at least [h/2] black nodes.

Since every path from r to a leaf has the same number of black
nodes, every path from r to a leaf has at least [h/2] black nodes.

Thus, T contains a complete binary tree of height at least [h/2]—1.
(Note: height = Number of EDGES on longest path from root to
leaf.)

By Theorem 1, tree T” has at least 2/"/21=1+1 _ 1 nodes so tree T
has at least 2!"/21 — 1 internal nodes. O
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Red-Black Tree Height

Theorem. A red-black tree with n internal nodes has height at
most 2log,(n + 1).

Proof. Let h be the height of a red-black tree with n nodes.
By Theorem 2, n > 2/7/21 — 1.
Thus, logo(n+1) > [h/2] > h/2 so h < 2logy(n + 1).
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Red-Black Tree: Insert
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Red-Black Tree Insert

function RBLocateParent (7', z)
/* Return future parent of z in tree
Y — NIL;

x «— 1.root;

while (z is not a leaf) do
Yy — &

if (z.key < x.key) then x « x.left;

else = < x.right;

end

return (y);
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Red-Black Tree Insert
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function RBTreeInsert (1, z)

y < RBLocateParent (T, z);

zZ.parent < y;

if (y = NIL) then T.root « z; /* tree T was empty™/
else if (z.key < y.key) then y.left «— z;

else y.right «— z;

z.left « leaf;

z.right <+ leaf;

z.color +— Red;

RBInsertFixup(T,z);
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Insert Fixup: Case I

Recolor
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If the parent and “uncle” of z are Red:

e Color the parent of z Black;
e Color the uncle of z Black;
e Color the grandparent of z Red;

e Repeat on the grandparent of z.
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Red-Black Tree Insert Fixup: Case I
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Sibling

function Sibling(x)

/* Return sibling of x */
1 if (x.parent = NIL) then error “Root has no siblings.”;
2 p «— x.parent;
3 if (p.left = x) then return (p.right);

4 else return (p.left);
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Red-Black Tree Insert Fixup: Case I
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function RBInsertFixupA (7', alters z)

while (z # T.root) and (z.parent.color # Black) do
y < Sibling(z.parent);

if (y.color = Black) then return;
z.parent.color < Black;

y.color «+— Black;

z «— z.parent.parent;

z.color «+— Red;
end
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Insert Fixup: Case III
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If the parent of z is red and its “uncle” is black:
If z is a left child and its parent is a left child:

e Right Rotate on the grandparent of z;
e Color the parent of z Black;
e Color the sibling of z red.
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Red-Black Tree Insert Fixup: Case III
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Red-Black Tree Insert Fixup: Case III
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function RBInsertFixupC(7', alters z)

if (z = T'.root) or (z.parent.color = Black) then return;
T «— z.parent;

w <— x.parent;

if (z = z.left) and (z = w.left) then
RightRotate (T ,w);

x.color +— Black;
w.color «+— Red;

Ise if (z = z.right) and (x = w.right) then
Handle same as above with “right” and “left” exchanged
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Insert Fixup: Case 11
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If the parent = of z is red and its “uncle” is black:
If z is a right child and its parent x is a left child:

® 2 «— X
e Left Rotate on x;
e Apply algorithm for Case III.
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Red-Black Tree Insert Fixup: Case Il
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Red-Black Tree Insert Fixup: Case 11
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function RBInsertFixupB (7', alters z)
if (z = T'.root) or (z.parent.color = Black) then return;
T «— z.parent;
w <— x.parent;
if (z = z.right) and (z = w.left) then
2 — T
LeftRotate (1, x);
Ise if (z = z.left) and (z = w.right) then
Handle same as above with “right” and “left” exchanged
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Red-Black Tree Insert Fixup

function RBInsertFixup (T, z)
1 RBInsertFixupA (7T,z2);
2 RBInsertFixupB (7,z);
3 RBInsertFixupC (7,z);
a T'.root.color +— Black;
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Red-Black Tree Insert Fixup
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Running Time Analysis: RBInsertFixup

function RBInsertFixup (T, z)
1 RBInsertFixupA (7T,z2);
2 RBInsertFixupB (7,z);
3 RBInsertFixupC (7,z);
a T'.root.color +— Black;
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