Complexity of optimization problems

Generic optimization problem: For a (possibly infinite) set C and function $f: C \rightarrow \mathbb{R}$

$$
\begin{array}{ll}
\max _{x \in C} f(x) & (\text { MAX }-f) \\
\min _{x \in C} f(x) & (\text { MIN }-f)
\end{array}
$$

C and f are encoded in some (possibly implicit) way by a string. The computational problem is to either find the optimal value or to find an optimal solution. We focus on finding optimal values for concreteness.

Example: MAX-CLIQUE

$$
\max _{U \subseteq V \text { is a clique of } G=(V, E)}|U| \quad(M A X-C L I Q U E)
$$

MAX-CLIQUE (finding the optimal value) "reduces" to instances G, k of CLIQUE: try all values of k (or, even better, binary search to find optimal k). Obviously, CLIQUE reduces to MAX-CLIQUE.

One could say that CLIQUE is the decision version of MAX-CLIQUE and they are computationally equivalent up to polynomial time reductions.

More generally, given optimization problem MAX- f above, its decision version is

$$
\mathrm{D}-f=\{\langle C, f, k\rangle:(\exists x \in C) f(x) \geq k\}
$$

MAX- f and $\mathrm{D}-f$ can be equivalent in many specific cases via the same reduction argument (binary search).

Example: 0-1-IP (binary linear integer programming)

$$
\begin{aligned}
\max & \sum c_{i} x_{i} \\
\text { s.t. } A x & \leq b \\
x_{i} & \in\{0,1\}
\end{aligned}
$$

(where $A x \leq b$ is a shorthand for $(\forall j=1, \ldots, m) \sum_{i} a_{j i} x_{i} \leq b_{j}$). $A \in$ $\mathbb{Q}^{m \times n}, b \in \mathbb{Q}^{m}, c \in \mathbb{Q}^{n}$. Without loss of generality we can assume that A, b, c are integral. The decision version as above is

$$
\mathrm{D}-0-1-\mathrm{IP}=\left\{\langle A, b, c, k\rangle:\left(\exists x \in\{0,1\}^{n}\right) A x \leq b, c^{T} x \geq k\right\} .
$$

But the inequality $c^{T} x \geq k$ is just another linear inequality that can be appended to A, b to get the following computationally equivalent version:

$$
\text { D-0-1-IP }{ }^{\prime}=\left\{\langle\bar{A}, \bar{b}\rangle:\left(\exists x \in\{0,1\}^{n}\right) \bar{A} x \leq \bar{b}\right\} .
$$

Claim: D-0-1-IP is NP-complete. It is clearly in NP (the certificate is some $\left.x \in\{0,1\}^{n}\right)$. To see the completeness, many combinatorial optimization problems can be reduced in polynomial time to D-0-1-IP. For example, CLIQUE \leq_{p} D-0-1-IP: It is helpful to see first how to write MAX-CLIQUE as an equivalent binary integer program:

$$
\begin{aligned}
& \max \sum_{v \in V} x_{v} \\
\text { s.t. } \quad(\forall(i, j) \in V \times V \backslash E) \quad x_{i}+x_{j} & \leq 1 \\
x_{i} & \in\{0,1\}
\end{aligned}
$$

So, a polynomial time mapping reduction that shows CLIQUE \leq_{p} D-0-1-IP is to $\operatorname{map} G=(V, E)$ and k to a matrix A with a row for every $(i, j) \in V \times V \backslash E$. Row at (i, j) has length $|V|$ and has a one at positions i and j and zeros otherwise. Similarly $b_{(i, j)}=1$ and $c_{v}=1$ for all $v \in V$. Value k is the same.

Example: LINEAR-IP

$$
\begin{gathered}
\max c^{T} x \\
\text { s.t. } A x \leq b \\
\quad x_{i} \in \mathbb{Z}
\end{gathered}
$$

$$
\text { D-L-IP }=\left\{\langle A, b, c, k\rangle:\left(\exists x \in \mathbb{Z}^{n}\right) A x \leq b, c^{T} x \geq k\right\}
$$

Clearly D-0-1-IP \leq_{p} D-L-IP. One can show with some work that D-L-IP \in NP, to conclude that D-L-IP is NP-complete.

Example: LINEAR-PROGRAMMING

$$
\begin{array}{r}
\max c^{T} x \\
\text { s.t. } A x \leq b \\
x_{i} \in \mathbb{Q}
\end{array}
$$

Decision version can be show to be in P . One way is via the ellipsoid algorithm.

