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Slicing problem 

• Slicing conjecture (Bourgain 1986): 
“Every d-dimensional convex body of volume 
one has a hyperplane section of area at least a 
universal constant” 



More about slicing conjecture 

• For K a d-dim convex body, define “isotropic constant”: 
(A(K) = covariance matrix = 𝐸𝑋∈𝐾 𝑋 − 𝜇 𝑋 − 𝜇 𝑇) 

 

 

• Equivalent to slicing conjecture: 𝐿𝐾 has a universal 
constant upper bound. 

• Known: 
– 𝐿𝐾 = Ω(1), ellipsoids are the only minimizers. 

– Bourgain:   

– Klartag-Paouris:  



Connection with Sylvester’s problem 

• 𝑃𝐾
𝑑+1: convex hull of 𝑑 + 1 random points in 𝐾 

• (Sylvester) Maximizer of  
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• Simplex is conjectured maximizer for Sylvester. 
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Questions-discussion 

• Can we understand maximizers of 𝐿𝐾? Is it the 
simplex? What about 3-D? 

• Why slicing instead of Sylvester first? Because 
second moment (square) should be much 
easier than first (absolute value). 



Certain known cases with bounded 𝐿𝐾 

• 1-unconditional: 𝑥 ∈ 𝐾 ⇔ abs(𝑥) ∈ 𝐾 
[Bourgain 1986] [V. Milman Pajor 1991] 

• Zonoids [Ball] 



Other relevant results about 𝐿𝐾 

• [Campi Colesanti Gronchi 1999] If K has a non-
empty subset of the boundary of class 𝐶2 with 
positive principal curvatures, then it cannot 
maximize 𝐿𝐾. 
 (more generally, same for 𝑝th moment 
Sylvester’s problem) 



In other words 

• If K has “symmetry X or Y” or if K smooth we have “some 
understanding”. 

• But what if K is not smooth or doesn’t have symmetries? What can 
we say? Can we argue that maxima must have certain symmetries? 
After all, the proposed maximizer, (isotropic) simplex, is regular. 

(isotropic: 𝐸(𝑋) = 0, 𝐸(𝑋 𝑋𝑇) = 𝐼 for 𝑋 random in 𝐾) 

• Inspiration: Similar gap in Mahler’s problem: 
– [Saint Raymond], [Meyer] Cube is minimizer among unconditional 

bodies, generalized to other symmetries in [Barthe Fradelizi]. 
– [Reisner Schütt Werner] improving [Stancu]: If K has a boundary point 

with positive generalized Gauss curvature, then K cannot minimize the 
volume product. 
(isotropic: 𝐸(𝑋) = 0, 𝐸(𝑋 𝑋𝑇) = 𝐼 for 𝑋 random in 𝐾) 



My result 

• Let 𝑃 be a 𝑑-dimensional isotropic simplicial 
polytope that is a maximizer of 𝑃 ↦ 𝐿𝑃. Then 𝑃 is 
isohedral. 

• Isohedral = For any two facets 𝐹, 𝐹’, there is an 
orthogonal transformation that maps 𝐹 to 𝐹’ and 
maps 𝑃 to itself. 

• Actually, for two adjacent facets the 
transformation is just reflection around the 
hyperplane spanned by their intersection (a 
(𝑑 − 2)-face) 

• Implies that all facets are congruent. 



Proof 

• Fix a facet 𝐹 = 𝑐𝑜𝑛𝑣{𝑣1, … , 𝑣𝑑}, and a facet 𝐺 
of 𝐹. 

• Consider perturbation: “Hinging” of 𝐹 around 
𝐺. “Derivative=0” gives one equation on 
vertices of 𝐹. 

• Varying 𝐺, gives 𝑑 equations. 



Derivative w.r.t. hinging, isotropic 

• 𝑡: parameter, angle 

• 𝐾𝑡: perturbation of polytope 𝐾 

• 𝜌: distance to affine hull of 𝐺. 

• 𝑆0: facet 

• 𝑋 ← 𝐷: random vector in facet 
𝑆0 with density proportional to 
radius 𝜌(𝑋).  

 



Resulting equations from explicit 
derivative 

• Easy: for derivative, integrate homogeneous 
polynomial over arbitrary simplex using 
formula of [Lasserre Avrachenkov], with 
𝐻 𝑥, 𝑦 = 𝑥 ⋅ 𝑦: 



Now what? 

• Idea: 𝑑 equations on 𝑣1 given 𝑣2, … , 𝑣𝑑. 

• In 2-D implies regular polygon. 



Now what? 

• In 3D: “fix edge 𝑣2, 𝑣3”, what are the possible 
adjacent triangular facets?  
Computational experiments suggest only one 
triangle possible (on each side of edge). 
Would imply adjacent facets are congruent. 



Proof of uniqueness 

• Rename our unknown 𝑣1 
as 𝑥, and write 𝑥 = 𝑥𝐼𝑁 +
𝑥𝑂𝑈𝑇, 
𝑥𝐼𝑁 ∈ 𝑠𝑝𝑎𝑛{𝑣2, … , 𝑣𝑑}, 
𝑥𝑂𝑈𝑇 ∈ 𝑠𝑝𝑎𝑛 𝑣2, … , 𝑣𝑑

⊥. 

• Enough to show: 
– 𝑥𝐼𝑁 unique. 

– 𝑥𝑂𝑈𝑇  unique 



Proof of uniqueness 

• Rename our unknown 𝑣1 as 𝑥, and write 𝑥 = 𝑥𝐼𝑁 + 𝑥𝑂𝑈𝑇, 
𝑥𝐼𝑁 ∈ 𝑠𝑝𝑎𝑛{𝑣2, … , 𝑣𝑑}, 𝑥𝑂𝑈𝑇 ∈ 𝑠𝑝𝑎𝑛 𝑣2, … , 𝑣𝑑

⊥. 

• 𝑥 2 is the only non-linearity. Use (1) to 
eliminate it from (2): 



Proof of uniqueness 

• In basis {𝑣2, … , 𝑣𝑑} the (𝑑 − 1) × (𝑑 − 1) 
matrix of the system on 𝑥𝐼𝑁 is 𝐼 + 𝟏𝟏𝑇/3, 
which is invertible. 

• So, 𝑥𝐼𝑁 unique. 

• Given 𝑥𝐼𝑁, (1) determines ||𝑥𝑂𝑈𝑇|| uniquely. 


