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Abstract
Given a set S of n points in R

d , a k-set is a subset of k points of S that can be
strictly separated by a hyperplane from the remaining n − k points. Similarly, one
may consider k-facets, which are hyperplanes that pass through d points of S and
have k points on one side. A notorious open problem is to determine the asymptotics
of the maximum number of k-sets. In this paper we study a variation on the k-set/k-
facet problem with hyperplanes replaced by algebraic surfaces. In stark contrast to
the original k-set/k-facet problem, there are some natural families of algebraic curves
for which the number of k-facets can be counted exactly. For example, we show that
the number of halving conic sections for any set of 2n + 5 points in general position

in the plane is 2
(n+2

2

)2
. To understand the limits of our argument we study a class

of maps we call generally neighborly embeddings, which map generic point sets into
neighborly position. Additionally, we give a simple argument which improves the best
known bound on the number of k-sets/k-facets for point sets in convex position.
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1 Introduction

The k-set problem aims to understand the following: given a set of n points in R
d ,

in how many ways can it be strictly separated into k and n − k points by an affine
hyperplane? More specifically, one wants to understand the asymptotics of the maxi-
mum number of such partitions as a function of n and d. The question of determining
the maximum number of k-sets for point sets in R

2 was first raised by Simmons in
unpublished work. Straus, also in unpublished work, gave a construction showing an
Ω(n log n) lower bound. Lovász [16] published the first paper on k-sets, establishing
an O(n3/2) upper bound. See also the paper [11] of Erdős et al.

The main challenge is that even for the basic k-set problem on the plane, the
asymptotics of the maximum number of k-sets is not well understood despite decades
of effort. The best known asymptotic bounds are neΩ(

√
log k) [18,23,24] and O(nk1/3)

[9,10].
It is natural to ask similar questions for families of surfaces different from all

hyperplanes. These sorts of questions have been studied in [2,4–6,15]. Ardila’s paper
[2] shows that for any set of 2n + 1 points in general position in the plane and any
0 ≤ k ≤ 2n − 2, the number of circles that go through three points and have k points
on one side is exactly 2(k + 1)(2n− k − 1). We call this phenomenon exact counting:
when for a family of curves (or surfaces), there exists an integer d such that given any
generic set of n points and any k, the number of curves which pass through d points
and have k points on one side depends only on n and k and not on the points. A result
essentially equivalent to Ardila’s was proven earlier in [15] by counting vertices of
certainVoronoi diagrams. Chevallier et al. extended the result to convex pseudo-circles
in [6].

Borrowing the language of set theory/computational geometry/learning theory, one
can think of the k-set problem as being formulated over a set system (also known as
a hypergraph, hypothesis class or range space), namely a universe and a family of
subsets of the universe. In the k-set problem the universe isRd and the family of subsets
is all halfspaces. This paper takes a step towards the understanding of the k-set problem
for general set systems.We focus on set systems induced bymaps in the followingway:
given a map ϕ : Rd → R

p, the set system induced by ϕ has universe Rd and family
of subsets {ϕ−1(H) : H is a closed halfspace in R

p}. Moreover, most of our results
involve maps ϕ with components that are polynomials, so that the separating surfaces
in the resulting set system are algebraic surfaces. One of our main examples is the
Veronese map (Definition 2.6) which induces separators that are algebraic surfaces
of degree at most m. The Veronese map is also known as the feature map of the
polynomial kernel in machine learning [22].

Our contributions:

– Exact count. We show that the exact count phenomenon of [2,15] (for halving
circles) holds for other natural set systems: conic sections (Theorem3.8) andhomo-
geneous polynomials of fixed even degree on the plane (Theorem 3.9). We prove
this by establishing a remarkable property of the corresponding maps: generic
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point sets are mapped to point sets that form the vertices of a neighborly polytope
(Theorems 3.4 and 3.5, see Sect. 2.5 for background). This is then combined with
the known fact that the number of k-facets of a neighborly point set is given by a
formula that depends only on the dimension, on k, and on the number of points
[7,8], [25, Prop. 4.1].

– Limits of the neighborliness argument.We study the limits of the neighborliness
argument above that provides exact counting.We show that, formapswhose image
is a variety, the argument onlyworks for points on the plane.Weproceed as follows:
For the argument to work, one needs the map ϕ : Rd → R

p to map a generic set of
points into a k-neighborly set of points for certain k. When ϕ is an embedding, we
call the image M := ϕ(Rd) a generally k-neighborly d-manifold (Definition 4.6).
We study the minimal dimension p such that M is a generally k-neighborly d-
manifold and show that p ≤ 2k + d − 1 (Theorem 4.4). For the same question
with manifolds replaced by algebraic varieties, we show that p = 2k + d − 1
(Theorem 4.15). This line of work relates to a problem of Perles on k-neighborly
embeddings (see Sect. 4.5).

– Convex position bound. We show an improved upper bound on the number of
k-sets/k-facets for points in convex position (Theorem 3.12). While our argument
is simple, we are not aware of any known bounds for the convex case better than
the general case in dimension higher than 3 (the convex case is well understood
in two and three dimensions).

– Degree of neighborliness. We study the degree of neighborliness of point sets
mapped by a ϕ with components “all monomials of degree at most m” or “all
monomials of degree exactly m” (Theorems 3.10 and 3.11). In particular, for
even m, point sets are mapped into point sets in convex position and the convex
position bound gives an improved bound on the number of k-facets.

– Weakly neighborly point sets.We leverage weakly k-neighborly point sets (Def-
inition 4.20), a notion that is better behaved for our purposes than generally
k-neighborly and Perles’ k-neighborly maps (Proposition 4.22). In particular, we
study weakly k-neighborly algebraic varieties, and resolve the question of the
minimal p such that Rp contains a weakly k-neighborly d-dimensional algebraic
variety. We show that the minimal dimension is 2k + d − 1 (Theorem 4.25).

Outline of the paper Section 2 introduces the k-facet problem and the generalization
to set systems that are induced by maps. In Sect. 3 we count k-facets for set systems
induced by maps. This amounts to studying k-facets of point sets of the form ϕ(S)

where ϕ : Rd → R
p is some map and S ⊂ R

d is a finite set of points. Section 4
concerns the limits of the neighborliness argument mentioned above. We conclude
with some open questions in Sect. 5.

2 Preliminaries

Let S be a set of points in R
d . A k-set of S is a subset A ⊂ S of size k that can be

strictly separated from S\A by a hyperplane.

123



Discrete & Computational Geometry

Definition 2.1 Let ak(S) be the number of k-sets of the set S ⊂ R
d and a(d)

k (n) be the
maximum number of k-sets that a set of n points in Rd can have.

When studying the k-set problem, one usually only considers point sets which are in
general linear position.

Definition 2.2 A set of at least d + 1 points in R
d is in general linear position if no

d + 1 (and thus, fewer) points are affinely dependent.

This reduction is justified by the observation that the maximum number of k-sets is
attained by a set of points in general linear position (see for example [25]). For point
sets in general linear position, one can study the closely related concept of k-facets.

Definition 2.3 Let S be a finite set of points in general linear position in R
d and let

Δ be a subset of d points from S. The subset Δ along with some orientation of the
hyperplane affΔ is a k-facet of S if the open halfspace on the positive side of affΔ
contains exactly k points from S.

Definition 2.4 Let ek(S) be the number of k-facets of the set S ⊂ R
d and e(d)

k (n) be
the maximum number of k-facets that a set of n points in general linear position inRd

can have.

It seems unlikely that one would be able to determine e(d)
k (n) or a(d)

k (n) precisely, so
instead efforts have focused on finding the asymptotic behavior of these functions. If
one is only concerned with the asymptotics, then it suffices to study either k-sets or
k-facets since for fixed d and n → ∞, a(d)

k (n) and e(d)
k (n) have the same asymptotic

behavior [25]. In this paper we focus on k-facets since our results which count k-facets
exactly cannot immediately be adapted to the setting of k-sets.

2.1 Generic Properties and General Position

After defining k-sets and k-facets for set systems other than halfspaces, we will need
to use various notions of general position different from general linear position. A
generic property (of point sets) is one that holds for all but a relatively small number
of atypical point sets. The point sets which satisfy a generic property are said to be
in general position. We use the terms “generic point set” and “point set in general
position” interchangeably. In algebraic geometry a generic property is one that holds
for a dense and open set. In other fields, a generic property holds almost everywhere.
For concreteness in some of our statements we set “generic property” to mean a
property that holds in an open and dense set, but this choice is not always crucial.

2.2 Set Systems

A set system is a pair (X ,F)where X is a ground set (or universe) andF is a collection
of subsets of X .

We will restrict our attention to set systems that are induced by maps. Suppose we
have a map ϕ : Rd → R

p, that is, a map ofRd into some (usually higher dimensional)
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space. Any such map induces a set system on the ground set Rd in the following
way. Let Fϕ consist of all regions R ⊂ R

d of the form ϕ−1(H) where H is a closed
halfspace in Rp. We say that R is induced by the halfspace H and we say that the set
system (Rd ,Fϕ) is induced by ϕ. Many interesting set systems are induced by maps.

2.3 Set Systems Induced byVeronese-TypeMaps

Definition 2.5 A polynomial map is a map R
d → R

p defined by

x �→ ( f1(x), . . . , f p(x)),

where f1, . . . , f p are polynomials.

Here we introduce our primary examples of polynomial maps and set systems.

Definition 2.6 The degree m Veronese map of Rd is the map V d
m : Rd → R(d+m

m )−1

which maps (x1, . . . , xd) to the vector (in some order) of all non-constant monomials
of degree at most m in the d variables x1, . . . , xd .

Definition 2.7 The degree m homogeneous Veronese map of Rd is HVd
m : Rd →

R(d+m−1
m ) which maps (x1, . . . , xd) to the vector (in some order) of all monomials

of degree m in the d variables x1, . . . , xd .

Wewill use the notation (Rd ,Pd
m) for the set system induced by the degreem Veronese

map of Rd and (Rd ,Hd
m) for the set system induced by the degree m homogeneous

Veronese map of Rd .
As a concrete example, consider the degree 2 Veronese map of R2. This is the map

V 2
2 : R2 → R

5 where V 2
2 (x, y) = (x2, xy, y2, x, y). The set system induced by this

map is (R2,P2
2 ). Its subsets consist of all regions of the plane determined by some

conic section.

2.4 On k-Sets and k-Facets for Set Systems Induced byMaps

The natural notion of a k-set of a set system is a range that contains exactly k points. It
is often more convenient to work with k-facets but it is not clear how to define them for
set systems whose ranges lack a well-defined boundary. This motivates our restriction
to set systems induced by maps, as their ranges have a well-defined boundary and
interior.

Definition 2.8 Given a set system (X ,Fϕ) induced by a map ϕ : X → R
p and a finite

set S ⊂ X , an Fϕ-k-set of S is a subset A ⊂ S of size k such that ϕ(A) can be strictly
separated from ϕ(S\A) by a hyperplane.

Definition 2.9 Given a set system (X ,Fϕ) induced by a map ϕ : X → R
p and a finite

set S ⊂ X such that ϕ(S) is in general linear position, anFϕ-k-facet of S is a subset P
of p points from S, along with some orientation of the hyperplane aff ϕ(P), such that
the subset ϕ(P) along with the chosen orientation of affϕ(P) is a k-facet of ϕ(S).
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Observe that counting Fϕ-k-sets/facets simply amounts to counting k-sets/facets of

point sets of the form ϕ(S). Therefore, upper bounds for e(d)
k (n) and a(d)

k (n) immedi-
ately imply non-trivial upper bounds on the number of Fϕ-k-sets/facets that a set of
points may have:

Proposition 2.10 Given a set system (X ,Fϕ) induced by a map ϕ : X → R
p, and

a finite subset S ⊂ X such that ϕ(S) is in general linear position, the number of
Fϕ-k-facets of S is at most e(p)

k (n).

For Fϕ-k-sets, we do not need to assume that ϕ(S) is in general linear position since
k-sets are defined for any point set whether or not it is in general linear position.

Proposition 2.11 Given a set system (X ,Fϕ) induced by a map ϕ : X → R
p, the

number of Fϕ-k-sets that a set of n points in X may have is at most a(p)
k (n).

Proof In the casewhen ϕ is not injective, ϕ(S)may need to be considered as amultiset.
Therefore, we start with the observation that a(p)

k (n) is the maximum number of k-sets
even for point sets which have repeated points, i.e., multisets of points. To see this,
observe that perturbing a set of points can only increase the number of k-sets [25].
Therefore, if we start out with a multiset, we can perturb it slightly to create a set (in
general linear position) with the same number of points and at least as many k-sets.
Now, the number of Fϕ-k-sets of S is equal to the number of k-sets of ϕ(S), which is

at most a(p)
k (n). �	

2.5 Neighborly Polytopes

For a set of n points in convex position in the plane, the number of k-facets is precisely
n for all values of k. In R

3, a similar result is true: the number of k-facets for a
set S of n points in general position which form the vertex set of a 3-polytope is
2(k + 1)n − 4

(k+2
2

)
, see [25]. There is no such result in dimension d ≥ 4, i.e., convex

position does not force a point set inRd (d ≥ 4) to have a specific number of k-facets.
In fact, the k-set/k-facet problem for point sets in convex position inR4 is only slightly
better understood than the problem for arbitrary point sets, see Theorem 3.12.

However, if we assume that our point set is not only in convex position but is also
neighborly, then e(d)

k (S) is determined precisely by |S|. See [25,27] for an introduction
to neighborly polytopes.

Definition 2.12 A polytope is k-neighborly if any set of k or fewer vertices forms a
face. A d-polytope is neighborly if it is �d/2�-neighborly.
If we are talking about point sets instead of polytopes, we will say that a set of
points is k-neighborly (respectively, neighborly) if it is the vertex set of a k-neighborly
(respectively, neighborly) polytope.

One way of producing neighborly point sets is by choosing a finite set of points on
the moment curve M := {(x, x2, . . . , xd) : x ∈ R} ⊂ R

d .
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Proposition 2.13 ([7], [8], [25, Prop. 4.1]) Let S be a neighborly set of n points in
general linear position in R

d . Then

ek(S) = 2

(
k + �d/2� − 1

�d/2� − 1

)(
n − k − �d/2�

�d/2� − 1

)

if d is odd and

ek(S) =
(
k + d/2 − 1

d/2 − 1

)(
n − k − d/2

d/2

)
+

(
k + d/2

d/2

)(
n − k − d/2 − 1

d/2 − 1

)

if d is even.

3 Counting k-Facets via Maps

In this section we countFϕ-k-facets whenFϕ is a set system induced by a map. When
the map ϕ has certain properties, we can say more about the number of Fϕ-k-facets.

3.1 Counting k-Facets Exactly

It turns out that the maps associated to several families of polynomials we have dis-
cussed have the surprising property that they map generic point sets into the set of
vertices of a neighborly polytope. Given such a map ϕ, we are able to exactly count
the number of Fϕ-k-facets for point sets in general position.

Before stating the new results, we recall a result of [2,15] which served as motiva-
tion. A halving circle of a point set of size 2n + 1 is a circle which has three points on
its boundary and n−1 points on either side. In the following theorem general position
means that no three points are collinear and no four are concyclic.

Theorem 3.1 ([2,15]) Any set S of 2n + 1 points in general position in the plane has
exactly n2 halving circles. More generally, for any 0 ≤ k ≤ 2n − 2, the number of
circles that have three points of S on their boundary and k points on one side is exactly
2(k + 1)(2n − k − 1)1.

The proof of Theorem3.1 in [2] is by a continuousmotion argument.However, as noted
there, it is possible to give a shorter proof using the method of maps as follows. The
set system of all circles in the plane can be described as (R2,FC )whereC : R2 → R

3

is the map C(x, y) = (x, y, x2 + y2). Since C maps generic point sets into convex
position (on the surface of a paraboloid), Theorem 3.1 follows from an application of
the formula in Proposition 2.13 since any 3-polytope is neighborly.

Now we define halving polynomials for other families of polynomials. Informally,
for a finite set S ⊆ R

2, a halving conic section of S is a conic section inequality having
five points on its boundary and half of the remaining points of S in its interior. Unlike
Theorem 3.1 on the circle problem above, we count halving conic sections twice, once

1 This formula counts each halving circle twice, once for each orientation.
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for each orientation. This is to be consistent with the standard definition of k-facets
(Definition 2.9). More precisely,

Definition 3.2 For a set S of 2n + 5 points in R2, a halving conic section is an FV -n-
facet of S where V := V 2

2 is the degree 2 Veronese map of R2.

Definition 3.3 For a set S of 2n + m + 1 points in R
2, a halving homogeneous poly-

nomial of degree m of S is an H2
m-n-facet of S.

The halving case is a particular case of the more general problem of counting k-facets.
It is generally believed that the maximum number of k-facets is maximized by the
halving case, so it is considered the most important. However, we state our results
counting H2

m-k-facets and FV -k-facets for arbitrary values of k.

Theorem 3.4 Assume a finite set of points S ⊆ R
2 is in general linear position. Then

the image of S by the degree 2 Veronese map V 2
2 is neighborly.

Proof First we verify that V 2
2 (S) is the set of vertices of a polytope. There is a bijection

between conic sections passing through points of S and hyperplanes passing through
the images of those points by V 2

2 . Therefore, for every point v ∈ S we need to find a
conic section inequality passing through v and with all other points on one side. We
can use an inequality of the form (x − a)2 + (y − b)2 ≤ r and adjust the constants
a, b, r so that (x − a)2 + (y − b)2 ≤ r defines a circle that contains v on its boundary
and has radius small enough so that no other point in S is in the circle. Now we show
that V 2

2 (S) is neighborly. For every two points v1, v2 of S we need to find a conic
section inequality passing through those points and with all other points on one side.
One way to accomplish this is to use the line ax + by = c through v1 and v2. Then
(ax + by − c)2 ≤ 0 is the required conic section inequality. �	
In terms of the terminology defined in Sect. 4.1, the above result says that V 2

2 is a
“generally neighborly embedding”. The same result holds for the even degree homo-
geneous Veronese map of the plane.

Theorem 3.5 Assume m is even and S ⊆ R
2 is in general position, meaning that no

two points of S lie on a common line through the origin. Then the image of S by HV 2
m

is neighborly.

Proof The proof is similar to that of Theorem 3.4. For any set {v1, . . . , vk} of k ≤ m/2
points of S we need to find a degree m homogeneous polynomial inequality which
passes through all the vi and has all other points of S on one side. Let vk+1, . . . , vm/2
be points in the plane that belong to no line passing through the origin and a point
of S. For each i , 1 ≤ i ≤ m/2, let ai x + bi y = 0 be the line through the origin and vi .
Then

∏m/2
i=1 (ai x + bi y)2 ≤ 0 is a polynomial inequality with the required properties.

�	
The next results require us to strengthen our general position assumptions from The-
orems 3.4 and 3.5.

Definition 3.6 A set S ⊂ R
2 is in general position with respect to conics if S is in

general linear position and V 2
2 (S) is in general linear position.
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Definition 3.7 A set S ⊂ R
2 is in general position with respect to degree m homoge-

neous polynomials if no two points in S lie on a common line through the origin and
HV 2

m(S) is in general linear position.

Theorem 3.8 Any set of n points of R2 in general position with respect to conics has
exactly 2

(k+2
2

)(n−k−3
2

) FV -k-facets where V := V 2
2 is the degree 2 Veronese map of

the plane.

Proof Let S ⊂ R
2 be a set of n points in general position with respect to conics. There

is a bijection between conic sections passing through five points of S and hyperplanes
passing through five points of V (S). Furthermore, there is a bijection between FV -k-
facets of S and k-facets of V (S). By Theorem 3.4, V (S) is neighborly. Also, since S is
in general position with respect to conics, V (S) is in general linear position. Therefore
the number of FV -k-facets of S is given by the formula from Proposition 2.13. �	
Theorem 3.9 Assume m is even. Any set of 2n+m+1 points ofR2 in general position
with respect to degree m homogeneous polynomials has exactly 2

(k+m/2
m/2

)(n−k−m/2−1
m/2

)

H2
m-k-facets.

Proof Let S ⊂ R
2 be a set of 2n + m + 1 points in general position with respect to

degree m homogeneous polynomials. As in the last proof, there is a bijection between
H2

m-k-facets of S and k-facets of HV 2
m(S). By Theorem 3.5, HV 2

m(S) is neighborly.
Also, since S is in general positionwith respect to degreem homogeneous polynomials,
HV 2

m(S) is in general linear position. Since HV 2
m : R2 → R

m+1, the formula from
Proposition 2.13 in the case d = m + 1 completes the proof. �	

3.2 Lifting theMoment Curve

We say that a set system (X ,F) has the exact count property if the number of F-k-
sets for any set of n points in general position depends only on n and k and not on
the configuration of points. We can generate many more set systems with the exact
counting property by a lifting of the moment curve. Let f : Rd → R be a function
such that {(x, x ′) ∈ R

2d : f (x) �= f (x ′)} is open and dense and let g : Rd → R

be any function. We will say that a set S = {si }i∈[n] of n points in R
d is in general

position if
∏

i, j∈[n],i �= j ( f (si ) − f (s j )) �= 0. Note that this is a reasonable definition

of general position since if we are considering n-point sets, then point sets (in R
nd )

in general position are open and dense in R
nd . Assume that m ≥ 2 is even. The map

ϕ : Rd → R
m+1 given by

ϕ(x) = (
f (x), ( f (x))2, . . . , ( f (x))m, g(x)

)
(1)

satisfies that, for any set S of n points in general position in R
d , ϕ(S) is neighborly.2

To see this, note that, since m is even, �(m + 1)/2� = m/2. The projection of ϕ(S)

2 This is saying that ϕ is generally neighborly, using the terminology of Sect. 4.1. However, note that ϕ

may not be an embedding of Rd . Furthermore, if d > 2, any map ϕ constructed as in (1) cannot be an
embedding of Rd .
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to the first m coordinates is m/2-neighborly since it is a set of n distinct points on
the moment curve in R

m . We claim that this implies that ϕ(S) is m/2-neighborly as
well: Let π(ϕ(S)) denote the projection to the first m coordinates. The points of ϕ(S)

all project to distinct vertices of π(ϕ(S)). By neighborliness of π(ϕ(S)), every subset
F of at most m/2 vertices of π(ϕ(S)) forms a face. For any such face, there is a
supporting hyperplane H . The preimage π−1(H) of H under the projection π is a
hyperplane with normal having last coordinate 0. Moreover, π−1(H) is the supporting
hyperplane for a face of ϕ(S) formed by the lifted vertices π−1(F). This shows that
ϕ(S) is neighborly.

Given any admissible choice of functions f , g, the map above induces a set system
(Rd ,Fϕ) with the exact count property.

3.3 Improved Bounds forPd
m-k-Facets andHd

m-k-Facets

Results like Theorems 3.8 and 3.9 are not possible for any of the other polynomial set
systems we have discussed. However, some progress can be made.

Recall that in Proposition 2.10 we proved a non-trivial upper bound for the number
of F-k-facets where (X ,F) is any set system induced by a map. In this section we
show how to improve this result for the set system (Rd ,Pd

m) for all values of m and d
and for the set system (Rd ,Hd

m) form even.We show that themaps inducing (Rd ,Pd
m)

and (Rd ,Hd
2m), although not neighborly, still map into convex position with a high

degree of neighborliness. Since thesemaps come up often inmany fields, the following
results may be useful in other contexts.

Theorem 3.10 For a finite set S of points in R
d , V d

m (S) is the set of vertices of an
�-polytope where � ≤ (m+d

m

) − 1. If V d
m/2(S) is in general linear position and m ≥ 2

is even, then V d
m (S) is a

((m/2+d
m/2

) − 1
)
-neighborly �-polytope.

Proof For v ∈ S, choose coefficients ai , R so that
{
x ∈ R

m : ∑m
i=1(xi − ai )2 ≤ R

}

is a ball with v on its boundary and with radius small enough so that no points of
S\v are inside. By the Veronese map V d

m , this ball corresponds to a hyperplane in

R(m+d
m )−1 containing v and with all other points of S on one side. This shows that

V d
m (v) is a vertex of conv V d

m (S). For the second claim, let T ⊂ S, |T | ≤ (m/2+d
m/2

)− 1.
Let p(x) = 1 be a degree m/2 polynomial passing through each point of T and no
points of S\T . To show that such a polynomial exists, recall we are assuming that
V d
m/2(S) is in general position. Therefore, for any |T | points in V d

m/2(S) there is a
hyperplane passing through precisely those |T | points. This hyperplane corresponds
to a degree m/2 polynomial passing through each point of T and no points of S\T .
Then (p(x) − 1)2 = 0 is a polynomial surface which corresponds to a hyperplane in

R(m+d
m )−1 which supports conv T as a face of conv S. �	

Theorem 3.11 Assume m ≥ 2 is even. For a finite set S of points inRd , HV d
m (S) is the

set of vertices of an �-polytope where � ≤ (m+d−1
m

)
. If HV d

m/2(S) is in general position,

meaning no hyperplane through the origin in the image space of HV d
m/2 contains more
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than
(m/2+d−1

m/2

)−1 points of HV d
m/2(S), then HV d

m (S) is a
((m/2+d−1

m/2

)−1
)
-neighborly

�-polytope.

Proof For v ∈ S, let H = {x ∈ R
d : a · x = 0} be a plane through the origin

which contains v and contains no other point of S. Then (a · x)m ≤ 0 is a degree m
homogeneous polynomial inequalitywhich, by the homogeneousVeronesemap HV d

m ,

corresponds to a hyperplane in R(m+d−1
m ) containing v and with all other points of S

on one side. This shows that HVd
m (v) is a vertex of conv HVd

m (S). For the second
claim, let T ⊂ S, |T | ≤ (m/2+d−1

m/2

) − 1. Let p(x) = 0 be a degree m/2 homogeneous
polynomial passing through each point of T and no points of S\T . To show that such
a polynomial exists, recall we are assuming that HVd

m/2(S) is in general position.

Therefore, for any |T | points in HVd
m/2(S) there is a hyperplane passing through the

origin and precisely those |T | points. And this hyperplane corresponds to a degree
m/2 homogeneous polynomial passing through each point of T and no points of S\T .
Then (p(x))2 = 0 is a degreem homogeneous polynomial surface which corresponds

to a hyperplane in R(m+d−1
m ) which supports conv T as a face of conv S. �	

These k-neighborliness results are of interest to us because convex position is a special
case of the k-set/k-facet problem for which we can improve the best known upper
bound:

Theorem 3.12 For a set S of n points in convex position in R
d , one has ek(S) ≤

(n/d)e(d−1)
k (n − 1).

Proof Let v ∈ S. Choose a hyperplane H containing v and with all other points of S
on one side of it. Choose another hyperplane H ′ parallel to H and with all points of S
between H and H ′. Let S′ be the stereographic projection (using v as the “pole”) of
S\v onto H ′. We claim that the number of k-facets of S containing v is equal to the
number of k-facets of S′ (as a subset of H ′, a (d − 1)-dimensional subspace).

Assume that conv (v1, . . . , vd−1, v) is a k-facet of S. We claim that for each s ∈ S,
the stereographic projection s′ is on the positive side of aff (v′

1, . . . , v
′
d−1) if and only

if s is on the positive side of aff (v1, . . . , vd−1, v). This is seen to be true by observing
that aff(s, v) does not intersect aff (v1, . . . , vd−1, v) anywhere else than at the point v.
This shows that conv (v′

1, . . . , v
′
d−1) is a k-facet of S

′. For the converse, assume that
conv (v′

1, . . . , v
′
d−1) is a k-facet of S

′. Then conv (v1, . . . , vd−1, v) is a k-facet of S
for the same reason as above.

Since S′ lies in a hyperplane, it can have at most e(d−1)
k (n−1) k-facets. Performing

this projection on each point of S and noticing that every k-facet is counted d times
shows the desired result. �	
As far as we know, the best known bound for k-facets of n-point sets in R4 in convex
position is the same as for general point sets, which is O(n2k2−2/45) [17]. In R

3 the
best known bound for general point sets is O(nk2−1/2) [20,21]. This combined with
Theorem 3.12 gives a bound of O(n2k2−1/2) for the number of k-facets of point sets
in convex position in R

4.
An argument similar to the proof of Theorem 3.12 shows the following generaliza-

tion (we state it without proof):
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Proposition 3.13 For a set S of n points in m-neighborly position in R
d , ek(S) ≤(n

m

)
e(d−m)
k (n − m)/

(d
m

)
.

In dimensions higher than 4, the best known bound for k-facets is e(d)
k (n) = O(nd−εd )

where εd = (4d − 3)−d [1]. Because of the fast decay of the constant εd , Proposi-
tion 3.13 gives an improvement in the best known upper bound which depends on the
degree of neighborliness of the point set in question.

Proposition 3.13 can be used to improve the bounds for Pd
m-k-facets and Hd

2m-k-
facets as follows. Recall that the set system (Rd ,Pd

m) is induced by the map V d
m and

(Rd ,Hd
2m) is induced by the map HVd

2m . Therefore Theorems 3.10 and 3.11 along
with Proposition 3.13 give an improvement in the bound.

4 Limits of the Neighborliness Argument

In this section we study under what conditions exact count phenomenon can occur for
arbitrary set systems induced by a map.

The crucial observation that allows us to exactly count F-k-facets for the conic
sections and even degree homogeneous polynomials on the plane is that the maps
which induce these set systems map generic point sets to neighborly point sets. In this
section we define a generally neighborly embedding to be an embedding that maps
generic point sets to neighborly point sets (Definition 4.2). The moment curve map is
an example of a generally neighborly embedding ofR1.Moving up one dimension, the
degree 2Veronesemapof the planeV 2

2 shows that a generally neighborly embedding of
the plane exists (byTheorem3.4).Weconjecture that generally neighborly embeddings
ofRd do not exist for d > 2. In order to provide support for this conjecture, in Sect. 4.3
we prove a closely related result about algebraic varieties. More evidence that the
conjecture may be true is provided in Sect. 4.4.

Apart from its relation to the F-k-facets, the problem of determining the existence
of generally neighborly embeddings is interesting in its own right. Our definition of
generally neighborly embeddings is similar to and inspired byMicha Perles’ definition
of neighborly embeddings which we discuss in Sect. 4.5.

4.1 Generally Neighborly Embeddings

Definition 4.1 (embedding) An embedding is a map which is a homeomorphism onto
its image.

Definition 4.2 (generally k-neighborly embedding) Let ϕ : Rd → R
p be an embed-

ding. For each n ∈ N, let Gn ⊂ R
dn consist of all configurations of n points in R

d

which are mapped to k-neighborly sets by ϕ. Then ϕ is generally k-neighborly if Gn

contains a set that is open and dense in R
dn for all n. A generally �p/2�-neighborly

embedding is called a generally neighborly embedding.

We choose “open and dense” in Definition 4.2 for concreteness and readability. For
part of our discussion (in particular, Problem 4.3 below), it may be reasonable to
substitute it by an alternative version of a generic property as discussed in Sect. 2.1.
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Observe that the even degree homogeneous Veronese map of the plane, i.e., HV 2
m ,

is not an embedding because it is not injective. Since the homogeneous Veronese
map is one of our prime examples throughout we need to justify why we are now
only talking about embeddings. The reason is that all of the polynomial maps we
have considered have the property that they are an embedding of some open subset of
Euclidean space. Thus, for the purposes of this section it suffices to assume that our
maps are embeddings.

The main question concerning generally k-neighborly embeddings is:

Problem 4.3 What is the smallest dimension p := pg(k, d) of the image space for
which a generally k-neighborly embedding ϕ : Rd → R

p exists?

Theorem 4.4 There exists a generally k-neighborly embedding of Rd into R
2k+d−1

and so pg(k, n) ≤ 2k + d − 1.

Proof Consider the embedding ϕ : Rd → R
2k+d−1 defined by

ϕ(x1, x2, . . . , xd) = (x1, x
2
1 , x

3
1 , . . . , x

2k
1 , x2, . . . , xd).

For each n ∈ N, let Gn ⊂ R
dn consist of all configurations of n points inRd such that

no two points in the configuration have the same x1-coordinate. One can verify that
Gn is open and dense in Rdn . For any n, let S ∈ Gn be some configuration of n points
in Gn .

To show that ϕ(S) is k-neighborly, let v1, . . . , vk be k points from S. Consider in
the domain of the embedding, Rd , the surface

k∏

i=1

(x1 − vi1)
2 = 0. (2)

By expanding (2) we see that this surface corresponds via ϕ to a hyperplane
H in R

2k+d−1. Note that v1, . . . , vk satisfy (2) and all other points in S satisfy∏k
i=1(x1 − vi1)

2 > 0. Using ϕ, we get that H is a face-defining hyperplane that
makes ϕ(v1), . . . , ϕ(vk) a face of conv ϕ(S). Therefore, ϕ(S) is k-neighborly. This
shows that pg(k, d) ≤ 2k + d − 1. �	
We believe that the bound in the above theorem is actually tight.

Conjecture 4.5 pg(k, d) = 2k + d − 1.

Observe that for d ≥ 3, if ϕ : Rd → R
p is a generally k-neighborly embedding then,

according to Conjecture 4.5, p ≥ 2k + 2. This means the conjecture implies that
generally neighborly embeddings of Rd do not exist for d ≥ 3.

In the context of the k-set problem, this would mean that set systems like the conic
sections do not exist in dimension d ≥ 3. More precisely, it would imply that, for
d ≥ 3, there is no set system (Rd ,F) induced by an embedding (of Rd ) for which
F-k-facets can be counted by using Proposition 2.13.
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4.2 Generally Neighborly Manifolds

Here we define generally k-neighborly manifolds which are, for our purposes, equiv-
alent to generally k-neighborly embeddings. The sense in which they are equivalent
is made precise below.

Definition 4.6 A manifold M ⊂ R
p is generally k-neighborly if the set Gn ⊂ Mn of

configurations of n points on M which are k-neighborly contains a set that is open and
dense in Mn for all n. A generally �p/2�-neighborly manifold is called a generally
neighborly manifold.

We ask the same question for manifolds as we did for embeddings:

Problem 4.7 What is the smallest dimension p of the ambient space in which a gen-
erally k-neighborly d-manifold M ⊂ R

p exists?

Observe that an open subset of a generally k-neighborly d-manifold is still generally
k-neighborly. Therefore, in the context of Problem 4.7 it suffices to assume that the
manifold M is (globally) homeomorphic to Rd , that is, M = ϕ(Rd) for some embed-
ding ϕ. This observation, alongwith the following proposition, shows that Problem 4.7
is equivalent to Problem 4.3.

Proposition 4.8 An embedding ϕ : Rd → R
p is generally k-neighborly if and only if

M := ϕ(Rd) is a generally k-neighborly d-manifold.

Proof If ϕ : Rd → R
p is generally k-neighborly, then for each n the set of configura-

tions of n points which are mapped by ϕ to k-neighborly point sets contains a set O
that is open and dense in Rdn . Let N ⊂ Mn be the set of k-neighborly configurations
of n-points in Mn . The set N contains (ϕ×· · ·×ϕ)(O)which is open and dense since
ϕ × · · ·×ϕ is a homeomorphism. Therefore M := ϕ(Rd) is a generally k-neighborly
d-manifold. The other direction is similar. �	

4.3 On k-Neighborly Algebraic Varieties

Recall that Problem 4.7 asks for the minimal dimension of the ambient space in which
a generally k-neighborly d-manifold exists. In this section we introduce an algebraic
version of this problem.We ask a similar questionwithmanifolds replaced by algebraic
varieties. The problem we study concerns generally k-neighborly algebraic varieties.
Before defining such varieties, we review some necessary background material from
algebraic geometry.

4.3.1 Preliminaries on Classical Algebraic Geometry

Given polynomials f1, f2, . . . , fr ∈ R[x1, . . . , xp], the affine algebraic variety
defined by the fi ’s is the set

V (C) = {x ∈ C
p : f1(x) = . . . = fr (x) = 0}.
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For a given variety V (C) ⊂ C
p, we are mainly interested in the subset V (R) :=

V (C)∩R
p of real points. We refer to V (R) as an affine real algebraic variety. Unless

otherwise stated, by an algebraic variety or simply variety we mean an affine real
algebraic variety. Since we are mainly interested in the set of real points, we will
write V for V (R) and will write V (C) to indicate when the complex points are also
considered. See [3,13] for more definitions from real algebraic geometry.

Definition 4.9 A variety V ⊂ R
p (resp. V (C) ⊂ C

p) is non-degenerate if it is not
contained in any hyperplane in Rp (resp. Cp).

Definition 4.10 An algebraic variety is irreducible if it cannot be written as the union
of two proper algebraic subvarieties.

A well-known fact from algebraic geometry is that every variety can be written as a
finite union of irreducible components.

We will use facts about the smooth and singular points of a variety. Suppose V (C)

is a variety and the ideal of V (C) is generated by the polynomials f1, . . . , fr . The
smooth points of V (C) are those points where the Jacobian matrix of the fi ’s has
maximal rank. A singular point of a variety is a point that is not smooth.

Definition 4.11 WeuseVsm to denote the set of smoothpoints of an algebraic varietyV ,
Vsing is the set of singular points.

Given a real variety V ⊂ R
p, let VC denote the smallest complex variety which

contains V . It is well known that VC is unique and furthermore that there is a bijection
between irreducible components of V and irreducible components of VC, see [26].
Note that V (C) is not always equal to VC. However, it is a useful fact that whenever
V contains a smooth real point, V is Zariski dense in V (C) and so V (C) = VC, see
[3, Sect. 2.8]. We will always assume that our varieties contain smooth real points.

By the dimension of a real algebraic variety V wewill mean the dimension of V (C).
There is another notion of dimension for real algebraic varieties.

Definition 4.12 The real dimension of a real algebraic variety V is themaximal integer
d such that there is a homeomorphism of [0, 1]d into some subset of V .

The real dimension of V does not always equal the dimension of V . However, the real
dimension of V is never more than the dimension of V (see [3, Prop. 2.8.14]) and if V
contains a smooth real point, then these dimensions do agree. This is because around
any smooth real point of a d-dimensional variety V ⊂ R

p, there is a neighborhood
which is a smooth d-dimensional submanifold of Rp [3, Prop. 3.3.11].

In one of the proofs in Sect. 4.3.4 we will also consider projective varieties, see
[13] for background on projective algebraic geometry. We use P

p(K ) to denote p-
dimensional projective space over the field K = C or K = R.

4.3.2 Generally k-Neighborly Algebraic Varieties

Definition 4.13 Let V ⊂ R
p be an irreducible real algebraic variety with a smooth real

point. For each n, let Gn ⊂ V n
sm consist of all configurations of n points on Vsm which

are k-neighborly. Then V is generally k-neighborly if Gn contains a set that is open
and dense in V n

sm for all n. It is generally neighborly if it is generally �p/2�-neighborly.
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We make one clarifying remark regarding the above definition. One could replace
Vsm everywhere in the above definition with V . However, only requiring the property
to hold for the smooth points strengthens our results below and does not change
the proofs. Another reason for only considering the smooth points is the following.
Loosely speaking, a generally k-neighborly algebraic variety V is supposed to be a
variety such that every generic configuration of points on V is k-neighborly. A generic
configuration of points should never contain non-smooth points, so the non-smooth
points should be ignored when defining generally k-neighborly algebraic varieties.

The question we are dealing with in this section is the following.

Problem 4.14 What is the smallest dimension p := pg,V (k, d) of the ambient space
in which a generally k-neighborly d-dimensional algebraic variety V ⊂ R

p exists?

Observe that the image of the map ϕ in Theorem 4.4 is a d-dimensional generally
k-neighborly variety in R

2k+d−1. This shows that pg,V (k, d) ≤ 2k + d − 1.

We will prove the following result which completely resolves Problem 4.14.

Theorem 4.15 Let V ⊂ R
p be a generally k-neighborly d-dimensional algebraic

variety3. Then p ≥ 2k + d − 1.

Theorem 4.15 combined with Theorem 4.4 show that pg,V (k, d) = 2k + d − 1. In
order to prove Theorem 4.15 we will first establish a connection between generally
k-neighborly varieties and weakly k-neighborly sets. Weak neighborliness is a more
usable property that holds for all subsets of points, not just those satisfying a gen-
eral position assumption. This connection is established in Sect. 4.3.3. The proof of
Theorem 4.15 is then completed in Sect. 4.3.4.

Below we list some more examples of generally k-neighborly algebraic varieties.

Example 4.16 The image of the degree 2 Veronese map of the plane is a generally
2-neighborly 2-dimensional algebraic variety in R5.

Example 4.17 The image of the map ϕ from the proof of Theorem 4.4 is a generally
k-neighborly d-dimensional algebraic variety in R2k+d−1.

Example 4.18 The moment curve is a generally neighborly 1-dimensional algebraic
variety. The same is true of any order d curve which is also an algebraic variety.

Example 4.19 Theorem 4.15 shows that generally neighborly d-dimensional algebraic
varieties do not exist for d ≥ 3.

4.3.3 Weakly k-Neighborly Sets

It turns out that all generally k-neighborly algebraic varieties satisfy aweaker neighbor-
liness property that holds for all subsets of points (not just those satisfying a general
position assumption). We call this property weakly k-neighborly (Definition 4.20).

3 Note that “generally k-neighborly” requires V to be irreducible and contain a smooth real point.
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In the proof of Theorem 4.15, we only need to use the fact that Vsm is weakly k-
neighborly. In this sectionweprove some lemmas concerningweakly k-neighborly sets
and the relationship between generally k-neighborly manifolds/varieties and weakly
k-neighborly sets.

Definition 4.20 A set S ⊆ R
p is weakly k-neighborly if for any set T of k points

from S, there exists a closed halfspace H with boundary bd H such that S ⊂ H and
T ⊂ bd H .

Wewill now show that a generally k-neighborly algebraic variety ormanifold isweakly
k-neighborly. In order to do so, we first show that every finite subset of such a variety
or manifold is weakly k-neighborly. We actually state and prove a stronger result
(Lemma 4.21) that only uses as assumption the “dense” part of “open and dense” in
the definition of generally k-neighborly. We then establish a compactness property of
weakly k-neighborly sets. The property is that an arbitrary subset of Rp is weakly k-
neighborly if and only if every finite subset is weakly k-neighborly. These two results
together establish that generally k-neighborly algebraic varieties and manifolds are
weakly k-neighborly.

Lemma 4.21 Let M ⊂ R
p be a manifold or the set of smooth points of an algebraic

variety. If the set N ⊂ Mn of configurations of n points on M which are k-neighborly
is dense in Mn for all n, then every finite set of points on M is weakly k-neighborly.

Proof Assume not, so that there exist some finite set S ⊂ M and a set T of k points
from S such that no closed halfspace contains S and contains T on its boundary. This
means that aff T ∩ relint conv (S\T ) �= ∅ (from the separating hyperplane theorem
[19, Thm. 1.3.8]). We can pick |S| small open balls in Rp as follows. For each t ∈ T ,
let Bt be a ball centered at t and for each s ∈ S\T , let As be a ball centered at s.
The radii of the balls can be chosen small enough so that any collection of points
consisting of one point from each Bt and one point from each As has the property that
the affine hull of the points from the Bt intersects the relative interior of the convex
hull of the points from the As . This means that any such configuration of points is not
k-neighborly. Therefore, the subset of Rp|S| of configurations of points of size |S| on
M which are not k-neighborly contains

∏
t∈T (Bt ∩ M) × ∏

s∈S\T (As ∩ M) which is

an open subset of M |S|. Therefore, the set of configurations of |S| points on M which
are k-neighborly is not dense in M |S|. �	
Proposition 4.22 (compactness) Let S ⊆ R

p be a (possibly infinite) set. Then for any
k ≥ 1 we have that S is weakly k-neighborly if and only if every finite subset of S is
weakly k-neighborly.

Proof Fix k ≥ 1. The “only if” direction is clear. We will now prove the “if” direction.
Let T ⊆ S be a set of k points. Let U = {U ⊆ S : U ⊇ T and U is finite}. ForU ⊆ S
such that U ⊇ T , we will define N (U ) ⊆ S p−1 to be the set of unit outer normals to
possible halfspaces H such that T ⊆ bd H andU ⊆ H . More precisely, let N (U ) be

{a ∈ S p−1 : (∀x, y ∈ T ) a · x = a · y and (∀x ∈ T )(∀y ∈ U ) a · x ≥ a · y}.
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Clearly the set N (U ) is closed. Let V ⊆ U be any finite subfamily. Then we
have

⋂
U∈V N (U ) = N

(⋃
U∈V U

) �= ∅ by assumption. We have established that
{N (U )}U∈U is a family of closed sets with the finite intersection property in compact
space S p−1. This implies

⋂
U∈U N (U ) �= ∅. We also have N (S) = N

(⋃
U∈U U

) =⋂
U∈U N (U ) �= ∅. That is, there is a halfspace H such that T ⊆ bd H and S ⊆ H .

As T ⊆ S was arbitrary, this completes the proof. �	
We require two more lemmas concerning intersections and weak separation of convex
sets in R

p. Two sets Q, R ⊆ R
p can be weakly separated if there exist a non-zero

a ∈ R
p and t ∈ R such that Q ⊆ {x ∈ R

p : a · x ≤ t} and R ⊆ {x ∈ R
p : a · x ≥ t}.

We say that the hyperplane {x ∈ R
p : a · x = t} weakly separates Q from R. This

separation is said to be proper if Q and R are not both contained in {x ∈ R
p : a ·x = t}.

Lemma 4.23 (Radon-type theorem) Let P be a set of p + 2 points in R
p in general

linear position. Then there is a partition Q, R of P into two non-empty sets such that
relint convQ∩ relint conv R �= ∅.
Proof Let P = {q1, . . . , qp+2}. P is affinely dependent and therefore there exist

λ1, . . . , λp+2 such that
∑p+2

i=1 λi qi = 0,
∑p+2

i=1 λi = 0, and at least one λi is non-
zero. Because of the general position assumption, all λi are non-zero. Let I = {i :
λi > 0}, J = {i : λi < 0}. Both I and J are non-empty. By dividing λi s by∑

i∈I λi we can assume without loss of generality that
∑

i∈I λi = −∑
i∈J λi = 1.

Let Q = {qi : i ∈ I }, R = {qi : i ∈ J }. Let q = ∑
i∈I λi qi ∈ relint conv Q,

r = −∑
i∈J λi qi ∈ relint conv R. We have q = r , which completes the proof. �	

Lemma 4.24 Let Q, R ⊆ R
p be disjoint sets. Suppose that aff (Q ∪ R) = R

p and
relint conv Q ∩ relint conv R �= ∅. Then Q, R cannot be weakly separated.

Proof Assume Q, R can be weakly separated. If the separation is not proper then
aff (Q ∪ R) �= R

p. If the separation is proper, then by the separating hyperplane
theorem [19, Thm. 1.3.8], relint conv Q ∩ relint conv R = ∅. �	

4.3.4 Weakly k-Neighborly Varieties

In the previous section we established the connection between generally k-neighborly
varieties/manifolds and weakly k-neighborly sets. In this section, we use this connec-
tion to prove Theorem 4.15. Given a (real) algebraic variety V of dimension d such
that Vsm is weakly k-neighborly, we prove a sharp lower bound on the dimension of
the ambient space.

Theorem 4.25 Assume V ⊂ R
p is a non-degenerate d-dimensional irreducible real

algebraic variety with a smooth real point. If V \U is weakly k-neighborly for some
proper closed subvariety U, then p ≥ 2k + d − 1.

Before proving Theorem 4.25 we prove the special case of algebraic curves and then
generalize to higher dimensional varieties.
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Lemma 4.26 Assume C ⊂ R
p is a non-degenerate irreducible real algebraic curve

with a smooth real point. If C\U is weakly k-neighborly for some proper closed
subvariety U, then p ≥ 2k.

Proof First we will show that one can find arbitrarily large point sets in general linear
position onC\U . In order to accomplish this, first observe thatC\U is non-degenerate.
Indeed, if it were the case that C\U is contained in a hyperplane H , then we would
have C = (C ∩ H) ∪U which is impossible since C is irreducible.

Now assume that S is a set of j points in general linear position on C\U . If it
were not possible to find another point s such that S ∪ {s} is in general linear position,
it would have to be the case that C\U is contained in the union of all hyperplanes
spanned by p points from the set S. LetH be the collection of all hyperplanes spanned
by p points in S. Note that H is finite. We have

C =
(

⋃

H∈H
((C\U ) ∩ H)

)

∪U .

Since C\U is non-degenerate, the above formula would be a representation of C as a
union of proper subvarieties. This is impossible since C is irreducible. Therefore we
know that C\U is not contained in the union of all hyperplanes spanned by points in
S and so we can always find s so that S ∪ {s} is in general linear position. It follows
that we can find arbitrarily large point sets in general linear position on C\U .

Let P be a set of p + 2 points in general linear position on C\U . By Lemmas 4.23
and 4.24, there is a partition of P into non-empty sets Q and R such that Q and R
cannot be weakly separated.

However, because C\U is weakly k-neighborly, we know that for any set T of
k points on C\U there exists a closed halfspace that contains C\U and contains T
in its boundary. In other words, any such T can be weakly separated from C\U .
Therefore, it must be that k < min (|Q|, |R|), i.e., k ≤ min (|Q|, |R|) − 1. Now since
min (|Q|, |R|) ≤ �(p + 2)/2�, we have that k ≤ �(p + 2)/2� − 1 and so p ≥ 2k. �	
The idea of the proof for higher dimensional varieties is to take successive hyperplane
sections in order to reduce to the case of curves. So we first need to establish the
following lemma concerning hyperplane sections of varieties.

Lemma 4.27 Assume that V ⊂ R
p is a non-degenerate d-dimensional, d ≥ 2, irre-

ducible variety with a smooth real point and that U is some proper closed subvariety
of V . Then for any given open ball B in conv (V \U ) there exists a hyperplane H such
that H ∩ B �= ∅ and V ∩ H is a non-degenerate, irreducible, (d − 1)-dimensional
variety with a smooth real point which is not contained in U.

Proof We identify the set of hyperplanes in R
p with a proper subset of Pp(R). This

identification works as follows. We identify a hyperplane a0 + a1x1 + · · · + apxp =
0 in R

p with the point with homogeneous coordinates (a0, a1, . . . , ap) in P
p(R).

Therefore, the set of hyperplanes inRp is identifiedwithPp(R)\{(a0, a1, a2, . . . , ap) :
a1 = a2 = . . . = ap = 0}.
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Recall from Sect. 4.3.1 that around any smooth real point of V there is a neighbor-
hood which is a smooth d-dimensional submanifold of Rp. Let T ⊂ P

p(R) be the set
of hyperplanes H for which there exist a smooth point of V \U and a neighborhood
of that smooth point which has nonempty transversal intersection with H . We know
that T is open and that for any H ∈ T , H ∩ V contains an open subset which is a
smooth (d − 1)-dimensional submanifold of Rp [12, Sects. 1.5 and 1.6]. Let H be
any hyperplane in T . Clearly the dimension of H ∩ V is at most d − 1. We claim
that H ∩ V is a variety of dimension precisely d − 1 and that it contains a smooth
real point. Recall from Sect. 4.3.1 that if a variety has real dimension d then it has
dimension at least d. Therefore, the dimension of H ∩ V is d − 1. Now we show that
H ∩V contains a smooth real point. Indeed, assume not, so that H ∩V (C) contains no
smooth real points.4 This means that H ∩ V is contained in the set of singular points
of the (d − 1)-dimensional variety H ∩ V (C). By [3, Prop. 3.3.14], the set of singular
points of H ∩ V (C) is a variety of dimension at most d − 2. Since H ∩ V has real
dimension d − 1 and is contained in a variety of dimension at most d − 2, this is a
contradiction. So H ∩ V contains smooth real points.

Let I be the subset of T consisting of hyperplanes H such that H ∩V is irreducible
and non-degenerate. We will show that I is open and dense in the standard topology
in T . Let V (C) ⊂ P

p(C) be the projective closure of V (C). This means that V (C) =
V (C) ∩ {x0 �= 0}. Because V contains a smooth real point, V is Zariski dense in
V (C), that is, V (C) is the smallest complex variety containing V , see [3, Sect. 2.8].
Therefore, since V is irreducible, by [26, Lem. 7], V (C) is irreducible. Because V (C)

is irreducible, it is then a standard fact that V (C) is irreducible. By projective duality,
we can identify the set of all projective hyperplanes with real coefficients in P

p(C)

withPp(R). Let I ′ ⊂ P
p(R) consist of all projective hyperplanes with real coefficients

that have irreducible and non-degenerate intersectionwith V (C). By [13, Thm. 18.10],
I ′ is Zariski open and dense.5

We will now show that the fact that I ′ is Zariski open and dense implies that I
is also Zariski open and dense in T . Given a hyperplane H defined by a0 + a1x1 +
· · · + apxp = 0 in R

p, there is a corresponding projective hyperplane H defined
by a0x0 + a1x1 + · · · + apxp = 0 which is the homogenization of H . Let H be a
hyperplane in T and assume that the homogenization H is in I ′. We claim that this
implies that H ∈ I . To establish this claim, we need to verify that H ∩V is irreducible
and nondegenerate. Observe that H ∩ V (C) = H ∩ V (C) ∩ {x0 �= 0}, i.e., H ∩ V (C)

is an open subset of H ∩ V (C). It is a standard fact that a nonempty open subset
of an irreducible space is irreducible and dense. Therefore H ∩ V (C) is irreducible.
Now, since H ∩V (C) is Zariski dense in H ∩V (C), if H ∩V (C) were contained in a
hyperplane, H∩V (C)wouldbe aswell. So H∩V (C) is nondegenerate.Wehave shown
that H ∩ V (C) is non-degenerate and irreducible. We claim that because the section
H ∩ V (C) contains smooth real points, then the non-degeneracy and irreducibility of

4 By a minor abuse of notation, H ∩ V (C) is the complex variety defined by the polynomials defining
V along with the polynomial defining H . Similarly, H ∩ V is the real variety defined by the polynomials
defining V along with the polynomial defining H . So H ∩ V is the real part of H ∩ V (C).
5 [13, Thm. 18.10] says that the set of hyperplanes intersecting V (C) in a non-degenerate irreducible
variety is the complement of a proper subvariety of Pp(C). The intersection of a proper subvariety of
P
p(C) with P

p(R) is a proper subvariety of Pp(R). So I ′ is Zariski open dense in P
p(R).
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H ∩V (C) implies non-degeneracy and irreducibility of H ∩V . This relies on the fact
mentioned above that if an irreducible variety W contains a smooth real point, then
the set of real points is Zariski dense inW (C). This means that H ∩V is Zariski dense
in H ∩ V (C). Now by [26, Lem. 7], irreducibility of H ∩ V (C) implies that H ∩ V
is irreducible. Finally, observe that because H ∩ V is Zariski dense in H ∩ V (C), if
H ∩ V is degenerate, H ∩ V (C) must be as well. Thus H ∩ V is non-degenerate.

Recall that T is open (in the standard metric topology) and that I ′ is Zariski open
and dense in Pp(R) which implies that I ′ is open and dense in the standard topology.
We established that I contains I ′ ∩ T . Therefore, we have shown that I is open and
dense in the standard topology in T .

Let O ⊂ P
p(R) be the set of hyperplanes that intersect B. The set O is open (in

the standard topology). We claim that all of this means that I ∩ T ∩ O is non-empty.
To establish this, we need to verify that T ∩ O is non-empty. To find H ∈ T ∩ O , let
v be a smooth point of V \U and let F be a (p − 2)-flat having non-empty transversal
intersection with a neighborhood of v. Such a flat exists because V has real dimension
at least 2. For any point p in B, the hyperplane aff (F ∪ p) is in T ∩ O .

Therefore, T ∩O is open and non-empty. Since I is open and dense in T , it follows
that I ∩ T ∩ O �= ∅. We claim that any H ∈ I ∩ T ∩ O completes the proof. To show
this, it remains to show that for any H ∈ I ∩ T ∩ O , H ∩ V has a smooth real point
which is not inU . We already know that H ∩V has smooth real points and that H ∩V
is not contained in U . So assume for a contradiction that all the smooth real points
are contained in U . Then letting S denote the singular points of H ∩ V , we have that
H ∩ V = (H ∩ V ∩U )∪ S is the decomposition of H ∩ V as the union of two proper
closed subvarieties, a contradiction to irreducibility of H ∩ V . �	
The lemma established above allows us to generalize Lemma 4.26 to higher dimen-
sional varieties.

Proof of Theorem 4.25 First we show that by making repeated applications of Lemma
4.27,wecan inductively construct a (p−d+1)-flat L that intersects int conv (V \U ) and
such that L∩V is a non-degenerate irreducible algebraic curvewith a smooth real point
which is not contained in U . Say we have some flat F that intersects int conv (V \U )

and such that F ∩ V is a non-degenerate irreducible d ′-dimensional, d ′ ≥ 2, variety
with a smooth real point not contained in U . Since F ∩ V is not contained in U ,
F ∩ U is a proper subvariety of F ∩ V . Let B be an open ball in F that is contained
in int conv (V \U ). By Lemma 4.27, there exists a hyperplane H in F that intersects
B and such that H ∩ V is a non-degenerate irreducible (d ′ − 1)-dimensional variety
with a smooth real point not contained in F ∩U and hence not contained in U . Since
B is contained in int conv (V \U ), H intersects int conv (V \U ). We can repeat this
process until we obtain a (p − d + 1)-flat L that intersects int conv (V \U ) and such
that C := L ∩ V is a non-degenerate irreducible algebraic curve with a smooth real
point not contained in U .

Now we will show that C\U is weakly k-neighborly in L , meaning6 that C\U is
weakly k-neighborly as a subset of its affine hull L .

6 Note that a subset of Rp whose affine hull is a proper subset of Rp is automatically weakly k-neighborly
according to Definition 4.20, so the requirement here is that halfspace H in that definition is a halfspace
of L .
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Because V \U is weakly k-neighborly, we know that for any set T of k points on
C\U there exists a closed halfspace H (in R

p) which contains C\U and contains T
in bd H . In other words, any such T can be weakly separated from C\U . Notice that
we are talking about weak separation in R

p, while we are really interested in weak
separation in L . We claim that our assumption that L intersects the interior of the
convex hull of V \U allows us to pass from weakly separating hyperplanes in R

p to
weakly separating hyperplanes in L . Indeed, the fact that L intersects int conv (V \U )

means that any closed halfspace H satisfying V \U ⊂ H cannot contain L in its
boundary. Therefore L ∩ bd H is a proper hyperplane in L . To summarize, given a
set T of k points on C\U , by the assumption that any finite set on V \U is weakly
k-neighborly, there exists a hyperplane bd H that weakly separates T from V \U . This
and the way we chose L allows us to conclude that L ∩ bd H is a hyperplane in L that
weakly separates T from C\U . Therefore, C\U is weakly k-neighborly in L . Since C
is not contained in U , C ∩U is a proper subvariety. By Lemma 4.26, p−d+1≥2k. �	
We can now prove the lower bound for generally k-neighborly varieties.

Proof of Theorem 4.15 We can, without loss of generality, assume that V is non-
degenerate since otherwise we could consider V in aff V . By Lemma 4.21, every
finite set of points on Vsm is weakly k-neighborly. Therefore by Proposition 4.22,
Vsm is weakly k-neighborly. Since Vsing is a proper closed subvariety (see [3, Prop.
3.3.14]), by Theorem 4.25, p ≥ 2k + d − 1. �	

4.4 Additional Evidence

We give some additional comments on the validity of Conjecture 4.5. Although we
could not resolve the conjecture, the previous result on algebraic varieties is evidence
that it is likely true. In the following we provide more evidence for the conjecture by
showing that any manifold violating the conjecture would have to have a property that
appears fairly restrictive to us.

Proposition 4.28 If a set M ⊂ R
p is weakly k-neighborly then for any set S of 2k

points in general linear position in M, M ∩ aff S is contained in the union of all
hyperplanes supporting facets of the simplex conv S.

Proof Assume not, so that S is a set of 2k points in M such that M ∩ aff S is not
contained in the union of all hyperplanes supporting facets of conv S. Then identifying
aff S with R

2k−1, we can find a set S′ of 2k + 1 points in general position in R
2k−1

which areweakly k-neighborly.However, byLemmas 4.23 and 4.24, there is a partition
Q, R of S′ into two non-empty sets such that Q, R cannot be weakly separated. Since
min (Q, R) ≤ �(2k + 1)/2� = k, this is a contradiction to weakly k-neighborliness
of S′. �	
Proposition 4.28 is inspired by the following illustrative example: the possibility of
a non-degenerate 2-neighborly curve in R

3. By non-degeneracy, pick four affinely
independent points on the curve. Then by Proposition 4.28 the curve would have to be
contained in the union of the four hyperplanes defined by any three of those points.
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Assume M ⊂ R
p is a weakly k-neighborly embedded d-manifold and S any

set of 2k points in general position on M . Notice that if p < 2k + d − 1, we
would expect aff S to intersect M in a manifold of dimension 1 or greater. However,
the previous proposition implies that M ∩ aff S is contained in a finite number of
hyperplanes, which is not true of most embedded 1-manifolds.

One approach to proving Conjecture 4.5 appears to be showing that, in fact, there
is no non-degenerate d-manifold in R

2k+d−2 satisfying the conclusion of Proposi-
tion 4.28.

4.5 Neighborly Embeddings

Our definition of generally k-neighborly embeddings is similar to the concept of
k-neighborly embeddings introduced by Perles in 1982 and studied by Kalai and
Wigderson [14].

An embedding of a d-dimensional manifold M intoRp is k-neighborly if for every
k points on the embedding of M there is a hyperplane H that contains the k points and
such that all remaining points of the embedded manifold are on the (strictly) positive
side of H . Requiring that an embedding be k-neighborly is clearly stronger than
requiring that it be generally k-neighborly. That is, if an embedding is k-neighborly
then it is generally k-neighborly. However, the reverse implication is certainly not true.
For example, the degree two Veronese embedding V 2

2 (x, y) = (x, y, x2, xy, y2) is
only a 1-neighborly embedding while it is a generally 2-neighborly embedding.

In 1982 Perles posed the following problem concerning neighborly embeddings.

Problem 4.29 What is the smallest dimension p(k, d) of the ambient space in which
a k-neighborly d-dimensional manifold exists?

As in the case of generally neighborly embeddings, for the purposes of this question,
it suffices to assume that M = R

d . Kalai and Wigderson proved

Theorem 4.30 ([14]) k(d + 1) ≤ p(k, d) ≤ 2k(k − 1)d.

Improving the bounds in Theorem 4.30 appears to be difficult compared to the case
of generally k-neighborly embeddings where we were able to conjecture a precise
formula for pg(k, d).

Comparing the two definitions, k-neighborly embeddings appear to be the more
natural and fundamental class of embeddings to investigate. However, there may be
some applications for which the notion of generally k-neighborly embeddings is more
appropriate. For example, the authors of [14]were interested in neighborly embeddings
in part because they may lead us to important examples of k-neighborly polytopes. In
particular, by picking points on the embeddedmanifold, onemayproduce k-neighborly
nonsimplicial polytopes perhaps with other interesting properties. Since both types of
embeddings produce k-neighborly polytopes, our version may be more useful in this
context as it is less restrictive.
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5 Conclusion and Open Questions

The main question left open concerns the validity of Conjecture 4.5. Of course resolv-
ing the conjecture in full generality would be ideal, but it may be worthwhile to focus
on other special cases instead. For example, one might be able to prove the conjecture
for analytic manifolds or for smooth manifolds using tangency properties.

Another open question concerns lower bounds for the algebraic k-set problem. In
analogy with the original k-set problem we ask: Is there a polynomial map of the
plane into some higher dimensional space which induces a natural set system (R2,F)

for which the maximum number of F-k-sets for a set of n points is n�eΩ(
√
log n) and

o(n�+1) for some integer � ≥ 2? Or justΩ(n� log n) and o(n�+1)? A candidate that we
do not fully understand in this context is the map (x, y) �→ (x, y, xy) (or, equivalently
up to a linear transformation, (x, y) �→ (x, y, x2 − y2)).
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