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A (simplified) question

Given samples from random vectorY = X + 7
where X is uniform in a discrete set in R™ and
n~N(0, ), estimate the support of X.

Stability of recovery? From moments?
How many samples are needed?
Efficient algorithm?

; '.*VW:Y&@



Computational learning

* Efficient high dimensional inference:

— Given samples from a distribution, estimate
something about the distribution.

e Learn = estimate.



Questions

|dentifiability in parameter estimation (uniqueness):
different parameters imply different distributions.

Robust identifiability (stability and sample complexity):
far in parameter space = far in distribution. Implies
identifiability.

Efficient estimation (computational complexity).
Implies robust identifiability.

Interested in polynomial v/s exponential dependencies.
“Far” means 1/poly(.) while “close” means 1/exp(.).
Efficient means polynomial time.



“Easy” Example

* n-dimensional Gaussians: family of distributions
parameterized by mean and covariance matrix.
Clearly identifiable.

* Robustly identifiable: If two Gaussians have
similar parameters, then they are close as
distributions (say, via K-L divergence and Pinsker’s
inequality).

e Efficient estimation: empirical mean and
covariance are close to true values with high
probability given poly(n) samples.



Harder Example

* (Finite) Gaussian mixture:
Given samples from n-dimensional density of the form

f =3k _ wf;, where f;is N(u;, Z;), w; > 0, Yw; = 1,
estimate w;, u;, X;.

* |dentifiability [Teicher ‘61]: Yes, up to permutation and
mixtures having two identical components.

* Robust identifiability and complexity? Later.
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Example: Learn a parallelepiped

e Given uniformly random points from a linear
transformation of a hypercube, estimate the
linear transformation (up to inherent
ambiguities).
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Example: Learn a parallelepiped

* [Frieze Jerrum Kannan] [Nguyen Regev] Learn
a parallelepiped in polynomial time.

* [FJK] Actually, Independent Component
Analysis (ICA): Given d-dim samples from
Y givenby Y = AX + b, can estimate A4, b, for
X with unknown d-dim. distribution having
independent components.




How to learn a parallelepiped? [FJK]

* By estimating mean and covariance, can
assume it is a rotated cube centered at O

* To estimate rotation: Enumerate all local
minima of directional 4th moment on unit
sphere. Normals to facets are a complete set

of local minima.
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Actually...

* For X isotropic and having independent
coordinates, [FIK] show:

E((v-X)" =3+ Yv}(E(X}) - 3)
* Why “—3”? What if E(X/*) = 3? (4t moment
would be constant as v varies, so local optima
give nothing).

e Letk,(Z) = E(Z*) — 3E(Z%)*%. Then
ACEPOEDN R N.€)



“Hidden” generalized characteristic

function
Let Y, (t) = log E(et™). Let K;(X) be given by the power series
expansion of Y: 0 j
x(® = ) 1500
j=1

K;(X): cumulants

Yy (t): cumulant generating function

K, =mean, k, =variance, k,(X) = E(X*) — 3E(X?)? (equating
coefficient of CGF and MGF)

kj(aX) = alk;(X)

ki (X +7Y) = ki (X) + k;(Y) for independent X, Y

If a real valued functional is continuous and additive in the space of
random variables with moments, then it is a linear combination of
cumulants.



Yeredor’s idea for ICA even if
E(X) =3

e IfY = AX where X has independent

coordinates, we have
M(t) =Py (t) = Ay (ATH)A"
where 3 (ATt) is a diagonal matrix.

* Then M(t;)M(t,)™* = ADA~1 for some
diagonal matrix D and diagonalization of a
sample estimate of M (¢t;)M(¢t,) ! (for
random unit t4, t,) recovers A up to scale and
permutation.



Another example: Simplex

 [Anderson Goyal R., “Efficient learning of
simplices”] Efficient algorithm from first 3
moments.
ldea: estimate first two moments to put the
simplex in (approximate) isotropic position. Then
maximize 3" directional moment over sphere. Set
of maxima = set of vertices.

 [Anandkumar, Foster, Hsu, Kakade, Liu]
[Anandkumar, Ge, Hsu, Kakade, Telgarsky] Similar
results, and for the more general Dirichlet
distribution.




Polytopes with few vertices?

Can one estimate a polytope with few vertices
efficiently? (by S. Vempala)

[Gravin Lasserre Pasechnik Robbins]

To reconstruct a polytope with d vertices in R™: Project
onto a line. Recover projection of vertices using first

O (dn) moments. Repeat for O(d) random lines.

In principle, moment dn implies unstable and
inefficient.

Open identifiability question: Identifiability of
(generic?) polytopes with poly(n) (say, “n?”) vertices
from first “100” moment tensors. Stability? (by N.
Goyal)



A simpler problem

e Convex hull is difficult...

 What about the recovery of a discrete
distribution via moments?

* Better motivated in practice: recover a
discrete distribution with additive Gaussian
noise. A special case of parameter estimation
of a Gaussian mixture.



Robustness and efficiency in
estimation of Gaussian mixtures

Consider mixtures of k Gaussians in R™.

Given samples from n-dimensional density of the form, f = Y% . w; f;, where f; is
N(u;, Z;), w; > 0, Yw; =1, estimate u;, w;.

For simplicity, focus on estimation of means and weights and assume convenient
structure of covariance matrices (identical, spherical).

Efficient algorithm implies low sample complexity and robust identifiability.

Two kinds of results until recently:

— With separation assumption:
[Dasgupta] [Arora Kannan] [...]
[Vempala Wang] If means are at distance amaX\/E, can learn efficiently in n, k.

— Without separation:
[Belkin Sinha “10] [Moitra Valiant ‘10] Can learn in time poly(n) for any fixed k.
Superexponential in k.
[Moitra Valiant ‘10] Lower bound: exponential dependence in k necessary for
n = 1. More precisely:
Theorem: There exist two mixtures in R with ¢ components at L! distance < e~¢4
and parameter distance > ¢’ /q .

Algorithms with and without separation are very different. What’s between? Is
there a unified view?



“Determined” (k < n) mixture with
arbitrary separation

* [Hsu Kakade ‘12] Efficient learning of k < n
Gaussians in R™. To quantify closeness to 1-

dim hard case, complexity depends on g, (A4),
the min singular value of the matrix of the

means (complexity is poly( - )).

Ok



“Underdetermined” (k > n) mixture

 What about k > n? What could play the role
of O'k?



Our Results

* For any fixed g, learn n? Gaussians in R™ in smoothed
polynomial time. More precisely:

For any fixed g, for Gaussian mixtures in R™ with

k < 0(n4) (known) components and know identical
covariance: can estimate means and weights in time
polynomial in 1/s, n, (and other obvious
dependencies).

— S is a conditioning parameter for the means. E.g. forn
means, S = 0,,,;,, Of matrix of means.

e Qur algorithm reduces the problem to Independent
Component Analysis.



Related work

e [Bhaskara Charikar Moitra Vijayaraghavan ‘13]
Similar, simultaneous results: can learn
mixtures of axis-aligned Gaussians with
unknown covariance. Worse running time.
Better smoothed analysis.



Conditioning parameter “s” for a
mixture

* Given g, tensorize normalized means g times:

Consider the set of tensors ,L“leq Then

S=O—k(u1 ) = uuk )



Our Results

* Conditioning parameter s is at least inverse
polynomial (in the smoothed analysis sense).

E.g. for k = (’21) (and g = 2), (u;) any fixed set
of k means in R™ and (E;) independent
vectors with entries N(0, 02),

o 1
P (o + B < %) =0 (3]



Our Results

* Problem is generically hard in low dimension:
Given k? random points from [0,1]", there
exists two disjoint subsets A, B of k points and
two mixtures M, N with meansin A, B
respectively and identical covariances so that

IM — N||{ =dry(M,N) < L

* This lower bound for GMM also applies to
Independent Component Analysis (via the
reduction).




Curse and blessing of dimensionality

Concentration of mass can be good for estimation. Say, estimators
concentrate around their means.

It can be very bad: robust identifiability requires things to look different,
distinguishable.

— Powerful interpolation results for smooth functions in low dimension make
the problem generically hard there.

We want conditioning parameter s to be away from 0: need
anticoncentration.

Two forces — tradeoff:

lll-conditioning Curse of (high)

in low

: : dimensionality
dimension




ldea: Reduction to ICA

Underdetermined ICA:
Given samples from X = AS, where

— Sisrandom in R™ with independent coordinates,

— A is m-by-n matrix with unit columns (think m < n).

Estimate A (up to inherent ambiguities: sign and permutation of columns).

“Recover a linear mapping of a random vector having independent coordinates”.
[Goyal Vempala Xiao ‘13]: Algorithm with provable sample and time guarantees.
Also robust against additive independent Gaussian noise 71:

X =AS +n.

It is a sophisticated generalization of Yeredor’s cumulant generating function
approach. .
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ldea: Reduction to ICA

* Basic Poissonization Lemma:
X;~Uniform{ey, ..., ,,}
Y — Xl + -+ XR
R~Poisson(A)
Then Y has independent coordinates (Poisson(A/n)).



ldea: Reduction to ICA

Poissonization for Gaussian Mixture I\/,I(odeI:

X~GMM ' WiN(,ui,Z)
Y =X, + -+ Xp
R~Poisson(A)

Then Y is a linear image of a vector S having independent coordinates Poisson(A/
n) plus noise n(R):
Y =AS +n(R)
where n(R)~N(0, R?Y), i.e. not independent of S. A = (Uy, ..., Hi).
Solution: pick threshold 7, reject R > 1, add noise n(t — R) to make it

independent and get:
v/
|

Y' = AS + n(1)

T
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Conclusion-Summary

* Estimation of GMM hard in low dimension
even for generic instances. It gets generically
easier in higher dimension.



