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A (simplified) question 

• Given samples from random vector 𝑌 = 𝑋 + 𝜂 
where 𝑋 is uniform in a discrete set in 𝑅𝑛 and 
𝜂~𝑁(0, 𝐼), estimate the support of 𝑋. 

• Stability of recovery? From moments? 

• How many samples are needed? 

• Efficient algorithm? 



Computational learning 

• Efficient high dimensional inference:  

– Given samples from a distribution, estimate 
something about the distribution. 

• Learn = estimate. 



Questions 

• Identifiability in parameter estimation (uniqueness): 
different parameters imply different distributions. 

• Robust identifiability (stability and sample complexity): 
far in parameter space ⇒ far in distribution. Implies 
identifiability. 

• Efficient estimation (computational complexity). 
Implies robust identifiability. 

• Interested in polynomial v/s exponential dependencies.  
“Far” means 1/poly(.) while “close” means 1/exp(.). 
Efficient means polynomial time. 



“Easy” Example 

• 𝑛-dimensional Gaussians: family of distributions 
parameterized by mean and covariance matrix. 
Clearly identifiable. 

• Robustly identifiable: If two Gaussians have 
similar parameters, then they are close as 
distributions (say, via K-L divergence and Pinsker’s 
inequality). 

• Efficient estimation: empirical mean and 
covariance are close to true values with high 
probability given 𝑝𝑜𝑙𝑦(𝑛) samples. 



Harder Example 

• (Finite) Gaussian mixture:  
Given samples from 𝑛-dimensional density of the form 
𝑓 =  𝑤𝑖𝑓𝑖

𝑘
𝑖=1 , where 𝑓𝑖 is 𝑁(𝜇𝑖 , Σ𝑖), 𝑤𝑖 > 0,  𝑤𝑖 = 1, 

estimate 𝑤𝑖 , 𝜇𝑖 , Σ𝑖. 
• Identifiability [Teicher ‘61]: Yes, up to permutation and 

mixtures having two identical components. 
• Robust identifiability and complexity? Later. 

 



Example: Learn a parallelepiped 

• Given uniformly random points from a linear 
transformation of a hypercube, estimate the 
linear transformation (up to inherent 
ambiguities). 



Example: Learn a parallelepiped 

• [Frieze Jerrum Kannan] [Nguyen Regev] Learn 
a parallelepiped in polynomial time. 

• [FJK] Actually, Independent Component 
Analysis (ICA): Given 𝑑-dim samples from 
𝑌 given by 𝑌 = 𝐴𝑋 + 𝑏, can estimate 𝐴, 𝑏, for 
𝑋 with unknown 𝑑-dim. distribution having 
independent components. 



How to learn a parallelepiped? [FJK] 

• By estimating mean and covariance, can 
assume it is a rotated cube centered at 0 

• To estimate rotation: Enumerate all local 
minima of directional 4th moment on unit 
sphere. Normals to facets are a complete set 
of local minima. 



Actually… 

• For 𝑋 isotropic and having independent 
coordinates, [FJK] show: 

𝐸 (𝑣 ⋅ 𝑋 4) = 3 +  𝑣𝑖
4 𝐸 𝑋𝑖

4 − 3  

• Why “−3”? What if 𝐸 𝑋𝑖
4 = 3? (4th moment 

would be constant as 𝑣 varies, so local optima 
give nothing). 

• Let 𝜅4 𝑍 = 𝐸 𝑍
4 − 3𝐸 𝑍2 2. Then 

𝜅4 𝑣 ⋅ 𝑋 =  𝑣𝑖
4 𝜅4(𝑋𝑖) 

 



“Hidden” generalized characteristic 
function 

• Let 𝜓𝑋 𝑡 = log 𝐸(𝑒
𝑡⋅𝑋). Let 𝜅𝑗 𝑋  be given by the power series 

expansion of 𝜓: 

𝜓𝑋 𝑡 = 𝜅𝑗 𝑋
𝑡𝑗

𝑗!

∞

𝑗=1

 

 
• 𝜅𝑗 𝑋 : cumulants 
• 𝜓𝑋 𝑡 : cumulant generating function 
• 𝜅1 =mean, 𝜅2 =variance, 𝜅4 𝑋 = 𝐸 𝑋

4 − 3𝐸 𝑋2 2 (equating 
coefficient of CGF and MGF) 

• 𝜅𝑗 𝑎𝑋 = 𝑎
𝑗𝜅𝑗 𝑋  

• 𝜅𝑗 𝑋 + 𝑌 = 𝜅𝑗 𝑋 + 𝜅𝑗 𝑌  for independent 𝑋, 𝑌 
• If a real valued functional is continuous and additive in the space of 

random variables with moments, then it is a linear combination of 
cumulants. 



Yeredor’s idea for ICA even if 

𝐸 𝑋𝑖
4 = 3  

• If 𝑌 = 𝐴𝑋 where 𝑋 has independent 
coordinates, we have 
𝑀 𝑡 ≔ 𝜓𝑌

′′ 𝑡 = 𝐴𝜓𝑋
′′ 𝐴𝑇𝑡 𝐴𝑇 

where 𝜓𝑋
′′ 𝐴𝑇𝑡  is a diagonal matrix. 

• Then 𝑀 𝑡1 𝑀 𝑡2
−1 = 𝐴𝐷𝐴−1 for some 

diagonal matrix 𝐷 and diagonalization of a 
sample estimate of 𝑀 𝑡1 𝑀 𝑡2

−1 (for 
random unit 𝑡1, 𝑡2) recovers 𝐴 up to scale and 
permutation. 



Another example: Simplex 

• [Anderson Goyal R., “Efficient learning of 
simplices”] Efficient algorithm from first 3 
moments. 
Idea: estimate first two moments to put the 
simplex in (approximate) isotropic position. Then 
maximize 3rd directional moment over sphere. Set 
of maxima = set of vertices.  

• [Anandkumar, Foster, Hsu, Kakade, Liu] 
[Anandkumar, Ge, Hsu, Kakade, Telgarsky] Similar 
results, and for the more general Dirichlet 
distribution. 



Polytopes with few vertices? 

• Can one estimate a polytope with few vertices 
efficiently? (by S. Vempala) 

• [Gravin Lasserre Pasechnik Robbins]  
To reconstruct a polytope with 𝑑 vertices in 𝑅𝑛: Project 
onto a line. Recover projection of vertices using first 
𝑂(𝑑𝑛) moments. Repeat for 𝑂(𝑑) random lines. 
In principle, moment 𝑑𝑛 implies unstable and 
inefficient. 

• Open identifiability question: Identifiability of 
(generic?) polytopes with 𝑝𝑜𝑙𝑦(𝑛) (say, “𝑛2”) vertices 
from first “100” moment tensors. Stability? (by N. 
Goyal) 
 



A simpler problem 

• Convex hull is difficult… 

• What about the recovery of a discrete 
distribution via moments? 

• Better motivated in practice: recover a 
discrete distribution with additive Gaussian 
noise. A special case of parameter estimation 
of a Gaussian mixture. 



Robustness and efficiency in 
estimation of Gaussian mixtures 

• Consider mixtures of 𝑘 Gaussians in 𝑅𝑛. 
Given samples from 𝑛-dimensional density of the form, 𝑓 =  𝑤𝑖𝑓𝑖

𝑘
𝑖=1 , where 𝑓𝑖 is 

𝑁(𝜇𝑖 , Σ𝑖), 𝑤𝑖 > 0,  𝑤𝑖 = 1, estimate 𝜇𝑖 , 𝑤𝑖. 
For simplicity, focus on estimation of means and weights and assume convenient 
structure of covariance matrices (identical, spherical). 

• Efficient algorithm implies low sample complexity and robust identifiability. 
• Two kinds of results until recently: 

– With separation assumption:  
[Dasgupta] [Arora Kannan] [...] 
[Vempala Wang]  If means are at distance 𝜎max 𝑘, can learn efficiently in 𝑛, 𝑘. 

– Without separation: 
[Belkin Sinha ‘10] [Moitra Valiant ‘10] Can learn in time poly(𝑛) for any fixed 𝑘. 
Superexponential in 𝑘. 

• [Moitra Valiant ‘10] Lower bound: exponential dependence in 𝑘 necessary for 
𝑛 = 1. More precisely: 
Theorem: There exist two mixtures in 𝑅 with 𝑞 components at 𝐿1 distance ≤ 𝑒−𝑐𝑞 
and parameter distance ≥ 𝑐′/𝑞 . 

• Algorithms with and without separation are very different. What’s between? Is 
there a unified view? 



“Determined” (𝑘 ≤ 𝑛) mixture with 
arbitrary separation 

• [Hsu Kakade ‘12] Efficient learning of 𝑘 ≤ 𝑛 
Gaussians in 𝑅𝑛. To quantify closeness to 1-
dim hard case, complexity depends on 𝜎𝑘(𝐴), 
the min singular value of the matrix of the 

means (complexity is  poly
1

𝜎𝑘
). 



“Underdetermined” (𝑘 > 𝑛) mixture 

• What about 𝑘 > 𝑛? What could play the role 
of 𝜎𝑘? 



Our Results 

• For any fixed 𝑞, learn 𝑛𝑞 Gaussians in 𝑅𝑛 in smoothed 
polynomial time. More precisely: 
 
For any fixed 𝑞, for Gaussian mixtures in 𝑅𝑛 with 
𝑘 ≤ 𝑂(𝑛𝑞) (known) components and know identical 
covariance: can estimate means and weights in time 
polynomial in 1/𝑠, 𝑛, (and other obvious 
dependencies). 
– 𝑠 is a conditioning parameter for the means. E.g. for 𝑛 

means, s = 𝜎𝑚𝑖𝑛 of matrix of means. 

• Our algorithm reduces the problem to Independent 
Component Analysis. 



Related work 

• [Bhaskara Charikar Moitra Vijayaraghavan ‘13] 
Similar, simultaneous results: can learn 
mixtures of axis-aligned Gaussians with 
unknown covariance. Worse running time. 
Better smoothed analysis. 



Conditioning parameter “𝑠” for a 
mixture 

• Given 𝑞, tensorize normalized means 𝑞 times: 

Consider the set of tensors 𝜇 𝑖
×𝑞

. Then 

𝑠 = 𝜎𝑘(𝜇 1
×𝑞
, … , 𝜇 𝑘

×𝑞
) 

 



Our Results 

• Conditioning parameter 𝑠 is at least inverse 
polynomial (in the smoothed analysis sense). 

E.g. for 𝑘 = 𝑛
2

 (and 𝑞 = 2), (𝜇𝑖) any fixed set 

of 𝑘 means in 𝑅𝑛 and (𝐸𝑖) independent 
vectors with entries 𝑁(0, 𝜎2), 

𝑃 𝜎𝑘( 𝜇𝑖 + 𝐸𝑖
×2) ≤

𝜎2

𝑛7
= 𝑂
1

𝑛
 

 



Our Results 

• Problem is generically hard in low dimension: 
Given 𝑘2 random points from 0,1 𝑛, there 
exists two disjoint subsets 𝐴, 𝐵 of 𝑘 points and 
two mixtures 𝑀,𝑁 with means in 𝐴, 𝐵 
respectively and identical covariances so that 

𝑀 −𝑁 1 = 𝑑𝑇𝑉 𝑀,𝑁 ≤ 𝑒
−𝑘1/𝑛  

• This lower bound for GMM also applies to 
Independent Component Analysis (via the 
reduction). 

 



Curse and blessing of dimensionality 

• Concentration of mass can be good for estimation. Say, estimators 
concentrate around their means. 

• It can be very bad: robust identifiability requires things to look different, 
distinguishable. 
– Powerful interpolation results for smooth functions in low dimension make 

the problem generically hard there. 

• We want conditioning parameter 𝑠 to be away from 0: need 
anticoncentration. 

• Two forces – tradeoff: 

Ill-conditioning 
in low 

dimension 

Curse of (high) 
dimensionality 



Idea: Reduction to ICA 

• Underdetermined ICA: 
Given samples from 𝑋 = 𝐴𝑆, where  
– 𝑆 is random in 𝑅𝑛 with independent coordinates, 
– 𝐴 is 𝑚-by-𝑛 matrix with unit columns (think 𝑚 ≤ 𝑛). 
Estimate 𝐴 (up to inherent ambiguities: sign and permutation of columns). 
“Recover a linear mapping of a random vector having independent coordinates”. 

• [Goyal Vempala Xiao ‘13]: Algorithm with provable sample and time guarantees. 
Also robust against additive independent Gaussian noise 𝜂: 

𝑋 = 𝐴𝑆 + 𝜂. 
It is a sophisticated generalization of Yeredor’s cumulant generating function 
approach. 



Idea: Reduction to ICA 

• Basic Poissonization Lemma: 
𝑋𝑖~Uniform{𝑒1, … , 𝑒𝑛} 
𝑌 = 𝑋1 +⋯+ 𝑋𝑅 
𝑅~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆  

Then 𝑌 has independent coordinates (𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆/𝑛 ). 



Idea: Reduction to ICA 

• Poissonization for Gaussian Mixture Model: 

𝑋~GMM  𝑤𝑖𝑁(𝜇𝑖 , Σ)
𝑘

𝑖=1
 

𝑌 = 𝑋1 +⋯+ 𝑋𝑅 
𝑅~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆  

Then 𝑌 is a linear image of a vector 𝑆 having independent coordinates 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆/
𝑛)  plus noise 𝜂 𝑅 : 

𝑌 = 𝐴𝑆 + 𝜂 𝑅  
where 𝜂 𝑅 ~N 0, 𝑅2Σ , i.e. not independent of S. 𝐴 = (𝜇1, … , 𝜇𝑘). 
Solution: pick threshold 𝜏, reject 𝑅 ≥ 𝜏, add noise 𝜂(𝜏 − 𝑅) to make it 
independent and get: 

𝑌′ = 𝐴𝑆 + 𝜂 𝜏  
 
 

𝜏 



Conclusion-Summary 

• Estimation of GMM hard in low dimension 
even for generic instances. It gets generically 
easier in higher dimension. 


