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ABSTRACT
Consider the problem of computing the centroid of a con-
vex body in R

n. We prove that if the body is a polytope
given as an intersection of half-spaces, then computing the
centroid exactly is #P -hard, even for order polytopes, a spe-
cial case of 0–1 polytopes. We also prove that if the body
is given by a membership oracle, then for any deterministic
algorithm that makes a polynomial number of queries there
exists a body satisfying a roundedness condition such that
the output of the algorithm is outside a ball of radius σ/100
around the centroid, where σ2 is the minimum eigenvalue of
the inertia matrix of the body.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling

General Terms
Algorithms, theory

Keywords
Centroid, convex body, completeness, hardness, approxima-
tion

1. INTRODUCTION
Given a convex body in R

n, the centroid is a basic prop-
erty that one may want to compute. It is a natural way
of representing or summarizing the set with just a single
point. There are also diverse algorithms that use centroid
computation as a subroutine (for an example, see [2], convex
optimization). The following non-trivial property illustrates
the power of the centroid: Any hyperplane through the cen-
troid of a convex body cuts it into two parts such that each
has a volume that is at least a 1/e fraction of the volume of
the body.
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There are no known efficient deterministic algorithms for
computing the centroid of a convex body exactly. In this
paper we will see that this is natural by proving the following
result:

Theorem 1. It is #P -hard to compute the centroid of
an polytope given as an intersection of halfspaces, even if
the polytope is an order polytope.

(Order polytopes are defined in Section 2)
By centroid computation being #P -hard we mean here

that for any problem in #P , there is a polynomial time Tur-
ing machine with an oracle for centroids of order polytopes
that solves that problem.

On the other hand, there are efficient randomized algo-
rithms for approximating the centroid of a convex body
given by a membership oracle (See [2]. Essentially, take
the average of O(n) random points in the body. Efficient
sampling from a convex body is achieved by a random walk,
as explained in [6]). We will see that no deterministic algo-
rithm can match this, by proving the following:

Theorem 2. There is no polynomial time deterministic
algorithm that when given access to a membership oracle of
a convex body K such that

1

8n
Bn ⊆ K ⊆ nBn

outputs a point at distance σ/100 of the centroid, where σ2

is the minimum eigenvalue of the inertia matrix of K.

(The inertia matrix of a convex body is defined in Section
2)

That the centroid is hard to compute is in some sense
folklore, but we are not aware of any rigorous analysis of its
hardness. The hardness is mentioned in [2] and [4] without
proof, for example.

2. PRELIMINARIES
Let K ⊆ R

n be a compact set with nonempty interior.
Let X be a random point in K. The centroid of K is the
point c = E(X). The inertia matrix of K is the n by n
matrix E

(

(X − c)(X − c)T
)

.
For K ⊆ R

n bounded and a a unit vector, let wa(K), the
width of K along a, be defined as:

wa(K) = sup
x∈K

a · x− inf
x∈K

a · x.

By canonical directions in R
n we mean the set of vectors

that form the columns of the n by n identity matrix.



For a, b, c ∈ R, a, b > 0 and c ≥ 1 we say that a is within
a factor of c of b iff

1

c
b ≤ a ≤ cb.

For a partial order ≺ of [n] = {1, . . . , n}, the order poly-
tope associated to it is

P (≺) = {x ∈ [0, 1]n : xi ≤ xj whenever i ≺ j}.
In [3], it is proven that computing the volume of order poly-
topes (given the partial order or, equivalently, the facets of
the polytope) is #P -complete. We will use this result to
prove Theorem 1.

The following well known hardness result for volume ap-
proximation combined with a reduction from volume com-
putation to centroid computation will prove Theorem 2.

Theorem 3 ([1]). For any deterministic algorithm mak-
ing at most nk queries there is a convex body K for which
the output is not within a factor

(

c0n

k log n

)n/2

of vol K, for some universal constant c0 > 0.

3. PROOFS
The idea of both proofs is to reduce volume computation

to centroid computation, given that it is know in several
senses that volume computation is hard.

A basic step in the proofs is the following key idea: if a
convex body is cut into two pieces, then one can know the
ratio between the volumes of the pieces if one knows the
centroids of the pieces and of the convex body. Namely,
if the body has centroid c and the pieces have centroids
c−, c+, then the volumes of the pieces are in proportion
‖c− c−‖/‖c− c+‖.

It is known that the volume of a polytope given as an
intersection of halfspaces can have a bit-length that is expo-
nential in the length of the input [5]. It is not hard to see
that the centroid of a polytope given in that form may also
need exponential space. Thus, to achieve a polynomial time
reduction from volume to centroid, we need to consider a
family of polytopes such that all the centroids that appear
in the reduction have a length that is polynomial in the
length of the input. To this end we consider the fact that it
is #P -hard to compute the volume of order polytopes.

Lemma 4. Let P be an order polytope. Then the centroid
of P and the volume of P have a bit-length that is polynomial
in the bit-length of P .

Proof. Call “total order polytope” an order polytope
corresponding to a total order. Such a polytope is actu-
ally a simplex with 0–1 vertices, its volume is 1/n! and its
centroid has polynomial bit-length. The set of total order
polytopes forms a partition of [0, 1]n into n! parts, and any
order polytope is a disjoint union of at most n! total order
polytopes. The lemma follows.

Proof Proof (of Theorem 1).. Let P ⊆ [0, 1]n be an
order polytope, given as a set of halfspaces of the form Hk =
{x : xik

≤ xjk
}, k = 1, . . . , K. Suppose that we have

access to an oracle that can compute the centroid of an order
polytope. Then we can compute vol P in the following way:

Consider the sequence of bodies that starts with [0, 1]n, and
then adds one constraint at a time until we reach P . That
is, P0 = [0, 1]n, Pk = Pk−1 ∩ Hk. In order to use the key
idea, for every k, let Qk = Pk−1 \ Pk, compute the centroid
ck of Pk and the centroid dk of Qk. We have Pk−1 = Pk⊎Qk

and

vol Qk

vol Pk
=
‖ck−1 − dk‖
‖ck−1 − ck‖

.

Thus,

vol Pk−1

vol Pk
=
‖ck−1 − dk‖
‖ck−1 − ck‖

+ 1.

This implies, multiplying over all k,

vol P =

K
∏

k=1

(

‖ck−1 − dk‖
‖ck−1 − ck‖

+ 1

)−1

.

The reduction costs 2K centroid oracle calls. Even though
some expressions involve norms, all the intermediate quanti-
ties are rational (as the volumes of order polytopes are ratio-
nal). Moreover, the bit-length of the intermediate quantities
is polynomial in n (Lemma 4).

Proof Proof (of Theorem 2).. Suppose for a contra-
diction that there exists an algorithm that finds a point at
distance Cσ of the centroid. Then the following algorithm
would approximate the volume in a way that contradicts
Theorem 3, for a value of C to be determined. Theorem 3
is actually proved for a family of convex bodies restricted in
the following way: We can assume that the body contains
the axis-aligned cross-polytope of diameter 2n and is con-
tained in the axis-aligned hypercube of side 2n. Let P be a
convex body satisfying that constraint, given as a member-
ship oracle.

Algorithm
1. Let M = 1, i = 0, P0 = P .

2. For every canonical direction a:

(a) While wa(P ) ≥ 1:

i. i← i + 1.

ii. Compute an approximate centroid ci−1 of Pi−1.
Let H be the hyperplane through c orthogo-
nal to a.

iii. Let Pi be (as an oracle) the intersection of
Pi−1 and the halfspace determined by H con-
taining the origin (if H contains the origin,
pick any halfspace).

iv. Let Qi be (as an oracle) Pi−1 \ Pi.

v. Compute an approximate centroid di of Qi.

vi. M ←M
‖ci−1−ci‖

‖di−ci‖

3. Let V be the volume of Pi. Output V/M .

To see that the algorithm terminates, we will show that
the “while” loop ends after O(n log n) iterations. Assuming
that C ≤ 1/2, at every iteration wa(Pi) decreases at most
by a factor of 1/(4n) (Lemma 8). Thus, Pi always contains
a hypercube of side 1/(4n), and vol Pi ≥ 1/(4n)n. Initially,
vol P0 ≤ (2n)n, and every iteration multiplies the volume



by a factor of at most 1 − 1

e
+ C (Lemma 7). Thus, the

algorithm runs for at most

2n log(n
√

8)

log
(

1− 1

e
+ C

)−1

iterations.
We will now argue that for all the centroids that the al-

gorithm computes, it knows a ball contained in the corre-
sponding body. Let σ2

i be the minimum eigenvalue of the
inertia matrix of Pi. Initially, the algorithm knows that
P0 contains a ball of radius

√
n around the origin. Also,

for every i, Pi contains a ball of radius σi around the cen-
troid. Because Pi contains a hypercube of side 1/(2n),
we have that σi ≥ 1/(2

√
3n). Thus, after we compute

ci, the algorithm knows that Pi contains a ball of radius
(1 − C)σi ≥ (1 − C)/(2

√
3n) around ci, and this implies

that the algorithm knows that Pi+1, Qi+1 contain balls of
radius (1− C)/(4

√
3n) around known points.

At step 3, Pi contains the origin and has width at most 1
along all canonical directions. This implies that it is com-
pletely contained in the input body, as the input body con-
tains the cross-polytope of diameter 2n. Thus, the volume
of Pi is easy to compute because it is a hypercube that we
know explicitly at this point, the intersection of all the half-
spaces chosen by the algorithm.

At every cut, ‖ci−1 − ci‖ is within a constant factor of
the true value, as the following argument shows: Let δ2

i be
the minimum eigenvalue of the inertia matrix of Qi. Let c̄i,
d̄i be the centroids of Pi, Qi, respectively. We have that
‖ci − c̄i‖ ≤ Cσi ≤ Cσi−1 and ‖di − d̄i‖ ≤ Cδi ≤ Cσi−1.
That is,

‖c̄i−1 − c̄i‖ − 2Cσi−1 ≤ ‖ci−1 − ci‖ ≤ ‖c̄i−1 − c̄i‖+ 2Cσi−1

and we also have that the true distance satisfies (by Lemma
5)

‖c̄i−1 − c̄i‖ ≥ σi−1/2.

Thus, the estimate satisfies:

(1− 4C)‖c̄i−1 − c̄i‖ ≤ ‖ci−1 − ci‖ ≤ (1 + 4C)‖c̄i−1 − c̄i‖.

A similar argument shows:

(1− 4C)‖d̄i − c̄i‖ ≤ ‖di − ci‖ ≤ (1 + 4C)‖d̄i − c̄i‖.

Thus, M , as an estimate of V/ vol P , is within a factor of

(

1 + 4C

1− 4C

)

2n log(n
√

8)

log(1− 1
e
+C)−1

of the true value, and so is the estimate of the volume, V/M ,
with respect to vol P . The choice of C = 1/100 would give
the contradiction.

Lemma 5 (centroid versus σ). Let K ⊆ R
n be a con-

vex body with centroid at the origin. Let a be a unit vector.
Let K+ = K ∩ {x : a · x ≥ 0}. Let X be random in K. Let
c be the centroid of K+. Let σ2 = E

(

(X · a)2
)

. Then

c · a ≥ σ/2.

Proof. Let X+ be random in K+, let K− = K \ K+,
let X− be random in K−. Let σ2

+ = E((X+ · a)2), σ2
− =

E((X− · a)2). Lemma 6 implies c · a ≥ σ+/
√

2. To relate σ

and σ+, we observe that σ is between σ+ and σ−, and we
use Lemma 6 again:

σ+ ≥ E(X+ · a) = −E(X− · a) ≥ σ−/
√

2.

This implies σ+ ≥ σ/
√

2 and the lemma follows.

The following is a particular case of Lemma 5.3 (c) in [7].

Lemma 6 (E(X) versus E(X2)). Let X be a non-neg-
ative random variable with logconcave density function f :
R

+ → R. Then

2(E X)2 ≥ E(X2).

The next lemma follows from the proof of Theorem 1 in
[2]:

Lemma 7 (volume lemma). Let K ⊆ R
n be a convex

body with centroid at the origin, let σ2 be the minimum
eigenvalue of the inertia matrix of K, let c ∈ R

n. Let a
be a unit vector. Let K+ = K ∩ {x : a · x ≥ a · c}. Then

vol K+ ≥
(

1

e
− |c · a|

σ

)

vol K.

Lemma 8 (width lemma). Let K ⊆ R
n be a convex

body with centroid at the origin, let σ2 be the minimum
eigenvalue of the inertia matrix of K, let c ∈ R

n. Let a
be a unit vector. Let K+ = K ∩ {x : a · x ≥ a · c}. Then

wa(K+) ≥
(

1− |c · a|
σ

)

wa(K)

2n
.

Proof. Consider an ellipsoid E centered at the origin
such that E ⊆ K ⊆ nE (Löwner-John pair). We have that
1

2
wa(E) ≥ σ. Then

wa(K+) ≥ 1

2
wa(E)− |c · a|

≥
(

1− |c · a|
σ

)

1

2
wa(E)

≥
(

1− |c · a|
σ

)

1

2n
wa(K).

4. CONCLUSION
We proved two hardness results for the computation of the

centroid of a convex body. Some open problems suggested
by this work are the following:

• Find a substantial improvement of Theorem 2, that is,
is the centroid hard to approximate even within a ball
of radius superlinear in σ?

• Prove a lower bound on the query complexity of any
randomized algorithm that approximates the centroid.
A possible approach may be given by the lower bound
for volume approximation in [8].
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