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Centroid computation

◮ Given K ⊆ R
n compact, find its centroid, given by E(X ),

where X is random in K .



Our results

◮ Two hardness results, similar to hardness for volume
computation.

volume centroid

exact #P-hard #P-hard
(Dyer, Frieze)

(Brightwell, Graham) (this paper)

approximate, Elekes; Bárány and Füredi this paper

oracle polytime =⇒ error of nn/2

◮ We only deal with deterministic algorithms.



Our results: exact

◮ It is #P-hard to compute the centroid of a convex body given
as an intersection of halfspaces (even when the input is
restricted to 0–1 polytopes, even order polytopes).



Our results: approximate and oracle

◮ There is no polynomial time algorithm that, when given access
to a well-rounded convex body K by a membership oracle,
finds a point within distance σ/100 of the centroid, where σ2

is the minimum eigenvalue of the inertia matrix of K .
(Inertia matrix: For X ∈ K random, E(XXT ), i.e., covariance
matrix of X .)

Small correction to paper, roundness condition is

1

17n2
Bn ⊆ K ⊆ 2n2Bn.



Proof idea

◮ Reductions from volume problem to centroid, key idea:
knowing c , c1, c2 we know
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Proof idea: exact

◮ For hardness of exact centroid:

Theorem (Brightwell, Graham (1991))

It is #P-hard to compute the volume of order polytopes.

◮ For a partial order ≺ of [n] = {1, . . . , n}, the order polytope

associated to it is

P(≺) = {x ∈ [0, 1]n : xi ≤ xj whenever i ≺ j}.

Why order polytopes: because then centroid is “strongly”
#P-hard, i.e., even when the numbers in the input polytope
are small.



Proof idea: exact

x1 ≤ x2

x1

x2

◮ Add constraints “{xi ≤ xj}” one by one to get sequence of
polytopes P1, P2, . . . ,Pk , using “key idea” to keep track of
ratios of volumes: volPi+1/ vol Pi . P1 = [0, 1]n, vol P1 = 1,
want vol Pk , given by

vol Pk = volP1

vol P2

vol P1

· · ·
vol Pk

volPk−1

.

◮ Another reason for order polytopes: intermediate centroids in
the reduction better have polynomial bit-length; not true for
arbitrary polytopes, but true for order polytopes.



Proof idea: approximate

◮ For hardness of approximate centroid:

Theorem (Elekes; Bárány and Füredi)

Any algorithm that makes a polynomial number of membership

queries fails to approximate the volume up to a factor of ∼ nn/2.



Proof idea: approximate

◮ Make a sequence of cuts to reach a shape whose volume is
easy to compute, while keeping track of the ratios of the
volumes, given by centroids and “key idea”.

. . .

P1
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◮ Reduction approximates volume as a product of the form

vol P1 = vol Pk

vol Pk−1

vol Pk

· · ·
volP1

volP2

.

where vol Pk is easy, P1 is input.

◮ Difficulty: need to keep volume’s ratios bounded and need to
keep each piece well-rounded.



Proof idea: approximate

Why dependence on σ?

◮ Error (distance) of approximate centroids should depend on σ
to approximate ratios volPi−1/ vol Pi up to a multiplicative
constant.

◮ Ratios need to be bounded by poly(n), this happens if cut
near true centroid, “near” depends on σ.



Discussion

◮ Proved: two hardness results for exact and approximate
computation of the centroid.

◮ Open: Is the centroid hard to approximate in a ball of radius
superlinear in σ?

◮ Open: Lower bound for randomized approximation of the
centroid, maybe along the lines of lower bound for the volume
by R. and Vempala.


