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Abstract. We consider the problem of determining whether a given set
S in R

n is approximately convex, i.e., if there is a convex set K ∈ R
n such

that the volume of their symmetric difference is at most ε vol(S) for some
given ε. When the set is presented only by a membership oracle and a ran-
dom oracle, we show that the problem can be solved with high probability
using poly(n)(c/ε)n oracle calls and computation time. We complement
this result with an exponential lower bound for the natural algorithm
that tests convexity along “random” lines. We conjecture that a simple
2-dimensional version of this algorithm has polynomial complexity.

1 Introduction

Geometric convexity has played an important role in algorithmic complexity the-
ory. Fundamental problems (sampling, optimization, etc.) that are intractable
in general can be solved efficiently with the assumption of convexity. The al-
gorithms developed for these problems assume that the input is a convex set
and are often not well-defined for arbitrary sets. Nevertheless, sampling-based
approaches for optimization might be extendable to approximately convex sets,
since there is hope that approximately convex sets can be sampled efficiently.
This raises a basic question: How can we test if a given compact set in R

n is
convex? Similarly, do short proofs of convexity or non-convexity of a set exist?
Can one find these proofs efficiently?

To address these questions, we first need to decide how the set (called S
henceforth) is specified. At the least, we need a membership oracle, i.e., a black-
box that takes as input a point x ∈ R

n and answers YES or NO to the question
“Does x belong to S?” This is enough to prove that a set is not convex. We find 3
points x, y, z ∈ Rn such that x, z ∈ S, y ∈ [x, z] and y /∈ S. Since a set is convex
iff it is convex along every line, such a triple constitutes a proof of non-convexity.

On the other hand, how can we prove that a set is convex? Imagine the perverse
situation where a single point is deleted from a convex set. We would have to test
an uncountable number of points to detect the non-convexity. So we relax the goal
to determining if a set is approximately convex. More precisely, given 0 < ε ≤ 1,
either determine that S is not convex or that there is a convex set K such that

vol(S \ K) + vol(K \ S) ≤ ε vol(S) .
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In words, the condition above says that at most an ε fraction of S has to be
changed to make it convex. We will call this the problem of testing approximate
convexity.

This formulation of the problem fits the property testing framework developed
in the literature ([1]). In fact there has been some work on testing convexity of
discrete 1-dimensional functions ([2]), but the general problem is open.

Testing approximate convexity continues to be intractable if S is specified
just by a membership oracle. Consider the situation where a small part of S is
very far from the rest. How do we find it? To counter this, we assume that we also
have access to uniform random points in S, i.e., a random oracle1. (There are
other alternatives, but we find this to be the cleanest). In this paper, we address
the question of testing approximate convexity of a set given by a membership
oracle and a random oracle. The complexity of an algorithm is measured by the
number of calls to these oracles and the additional computation time.

We begin with a proof that the problem is well-defined, i.e., there exists a clos-
est convex set. Then we give a simple algorithm with complexity poly(n)(c/ε)n

for any set S in R
n. The algorithm uses random sampling from a convex polytope

as a subroutine. Next, we consider what is perhaps the most natural algorithm
for testing approximate convexity: get a pair of random points from the set and
test if the intersection of the line through them with S is convex. This is moti-
vated by the following conjecture: If the intersection of S with “most” lines is
convex, then S itself is approximately convex. Many property testing algorithms
in the literature have this flavor, i.e., get a random subset and test if the subset
has the required property. Surprisingly, it turns out that the number of tests
needed can be exponential in the dimension. We construct an explicit family of
sets for which the lines through most (all but an exponentially small fraction)
pairs of points have convex intersections with the set (i.e., they intersect S in
intervals), yet the set is far from convex. Finally, we conjecture that if “most”
2-dimensional sections of a set S are convex, then S is approximately convex.

2 Preliminaries

The following notation will be used. Let S ⊆ R
n. If S is measurable, vol(S)

denotes the volume of S. The convex hull of S is denoted conv(S). Let 〈x, y〉 =∑n
i=1 xiyi, the usual inner product in R

n.

1 A non-trivial example where testing approximate convexity makes sense and the
oracles are naturally available is testing approximate convexity of the union of m
convex bodies given by membership oracles. In this case, the individual membership
oracles give a membership oracle for the union. Also, the membership oracles can
simulate random oracles for every convex set (approximately, see [3]), and allow
us to approximate the volumes of the convex bodies. Finally, by using a technique
similar to the one used to approximate the number of satisfying assignments of a
DNF formula (see [4], for example), one can simulate a random oracle for the union
(approximately) by means of the individual membership and random oracles and
the individual volumes, in time polynomial in m and the other parameters.
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Let A, B ⊆ R
n be measurable sets. The symmetric difference measure dis-

tance (or simply, distance) between A and B is

d(A, B) = vol(A∆B) .

Let K denote the set of all compact convex sets in R
n with nonempty interior,

and the empty set.

Proposition 1. Let S ⊆ R
n compact. Then infC∈K d(S, C) is attained.

Proof. The set K with distance d is a metric space. The selection theorem of
Blaschke (see the appendix) implies that {C ∈ K, C ⊆ conv S} is compact.
Moreover, d(S, ·) : K → R is continuous. Also, it is sufficient to consider convex
sets contained in conv S, that is,

inf
C∈K

d(S, C) = inf
C∈K,C⊆conv S

d(S, C) .

The last expression is the infimum of a continuous function on a compact set,
thus it is attained. ��

Definition 2. Given S ⊆ R
n compact, a set C ∈ argminC∈K d(S, C) is called a

closest convex set of S. S is said to be ε-convex iff d(S, C) ≤ ε vol(S).

3 Algorithms for Testing Approximate Convexity

We are interested in the following algorithmic problem:
Let S ⊆ R

n be compact. We are given a membership oracle that given x ∈ R
n

answers “YES” if x ∈ S and “NO” if x /∈ S; we also have access to a random
oracle that when called gives a uniformly sampled random point from S. For any
given ε > 0, our goal is to determine either that S is ε-convex (output “YES”)
or that S is not convex (output “NO”).

In this section, we will give a randomized algorithm for the problem. We will
prove that the algorithm works with probability at least 3/4. This can be easily
boosted to any desired 1 − δ while incurring an additional factor of O(ln(1/δ))
in the complexity.

3.1 The One-Dimensional Case

One-dimensional algorithm
Input: Access to membership and random oracles of S ⊆ R.

1. Get 12/ε points from the random oracle. Let C be their convex hull
(the interval containing them).

2. Choose 12/ε random points in C. Check if they are all in S using the
membership oracle. If so, output ‘‘YES’’, else output ‘‘NO’’.



472 L. Rademacher and S. Vempala

Theorem 3. With probability at least 3/4, the one-dimensional algorithm de-
termines that S is not convex or that S is ε-convex.

Proof. Clearly, if S is convex then the algorithm answers “YES”. So assume that
S is not ε-convex. We say that the first step succeeds if we get at least one point
in the leftmost ε/4 fraction of S and another point in the rightmost ε/4 fraction
of S. The first step fails with probability at most 2(1− ε/4)12/ε ≤ 2/e3. Suppose
the first step succeeds. Then,

vol(S \ C) ≤ vol(S)
ε

2
.

This implies that
vol(C \ S) ≥ vol(S)

ε

2
.

From this, we get

vol(C \ S) ≥ max
{ ε

2
vol(S), vol(C) − vol(S)

}

= vol(C) max
{

ε

2
vol(S)
vol(C)

, 1 − vol(S)
vol(C)

}

.
(1)

Given that ε > 0, the expression

max
{ ε

2
α, 1 − α

}

is minimized as a function of α when ε
2α = 1 − α, i.e., for α = 2

ε+2 . Thus, from
Equation (1) we get

vol(C \ S) ≥ ε

2 + ε
vol(C) .

That is, conditioned on the success of the first step, with probability at least
1 − (1 − ε/3)12/ε ≥ 1 − 1/e4 the algorithm answers “NO”. Thus, overall the
algorithm answers “NO” with probability at least (1 − 1/e4)(1 − 2/e3) ≥ 3/4.

��

3.2 The General Case

Here we consider the problem in R
n. It is not evident that the time complexity

of the problem can be made independent of the given set S (that is, depending
only on ε and the dimension). The following algorithm shows such independence
(m = m(ε, n) will be chosen later).

n-dimensional algorithm
Input: Access to membership and random oracles of S ⊆ R

n.

1. Get m random points from S. Let C be their convex hull.
2. Get 4/ε random points from S. If any of them is not in C, output ‘‘NO’’.
3. Get 6/ε random points from C. If each of them is in S according to the

membership oracle, then output ‘‘YES’’, else output ‘‘NO’’.
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Checking if a point y belongs to C is the same as answering whether y can be
expressed as a convex combination of the m points that define C. This can be
done by solving a linear program. The third step requires random points from C,
which is a convex polytope. Sampling convex bodies is a well-studied algorithmic
problem and can be done using O∗(n3) calls to a membership oracle (see [3], for
example).

To prove the correctness of the algorithm we will use the following lemmas
(the first is from [5] and the second is paraphrased from [6]).

Lemma 4. Let C = conv{X1, . . . , Xm}, where the Xi’s are independent uni-
form random samples from a convex body K. Then for any integer t > 0,
E

(
(vol(C)/ vol(K))t

)
is minimized iff K is an ellipsoid.

Lemma 5. Let Bn ⊆ R
n be the unit ball. Let C = conv{X1, . . . , Xm}, where the

Xi’s are independent uniform random samples from Bn. There exists a constant
c such that, for m = (cn/ε)n,

E
(
vol(Bn \ C)

) ≤ ε vol(Bn) .

Theorem 6. Using m = (224cn/ε)n random points and poly(n)/ε membership
calls, the n-dimensional algorithm determines with probability at least 3/4 that
S is not convex or that S is ε-convex.

Proof. First, assume that S is convex. We want to show that the algorithm
outputs “YES” with probability at least 3/4. Let X = vol(S \ C)/ vol(S). Then
by Lemma 4, E(X) is maximized when K is a ball and using Lemma 5 with our
choice of m, we get that

E(X) ≤ ε

224n
.

By Markov’s inequality, with probability at least 6/7,

vol(S \ C) ≤ ε

32
vol(S) .

Given this, Markov’s inequality implies that the algorithm will not stop at
step 2 with probability at least 3/4: in step 2, if we let Y be the number of points
not in C then

E(Y ) ≤ ε

32
4
ε

=
1
8

,

and therefore, by Markov’s inequality,

P(algorithm outputs “NO” in step 2) = P(Y ≥ 1) = P
(
Y ≥ 8E(Y )

) ≤ 1
8

.

Thus, the algorithm outputs “YES” with probability at least 6
7

7
8 = 3

4 .
Next, if S is not ε-convex, the analysis can be divided into two cases after

the first step: either vol(S \C) ≥ vol(S)ε/2 or vol(S \C) < vol(S)ε/2. In the first
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case, step 2 outputs “NO” with probability at least 1−(
1 − ε

2

)4/ε ≥ 1− 1
e2 ≥ 3

4 .
In the second case we have

vol(C \ S) ≥ ε

2
vol(S)

and by the same analysis as the one-dimensional case, vol(C \ S) ≥ ε
3 vol(C).

Thus, step 3 outputs “NO” with probability at least 1 − (1 − ε
3 )6/ε ≥ 3/4. ��

Note that, unlike the one-dimensional case, this algorithm has two-sided error.
The complexity of the algorithm is independent of S and depends only on n
and ε. It makes an exponential number of calls to the random oracle and this
dependency is unavoidable for this algorithm. It is known for example that the
convex hull of any subset of fewer than cn points of the ball, contains less than
half its volume [7].

The one-dimensional algorithm suggests another algorithm for the general
case: let �(x, y) be the line through x and y,

Lines-based algorithm
Input: Access to membership and random oracles of S ⊆ R

n compact.

Generate m pairs of random points (x, y) and test if �(x, y) ∩ S is convex.

How large does m need to be? Somewhat surprisingly, we show in the next
section that this algorithm also has an exponential complexity. Testing if �(x, y)∩
S is convex is not a trivial task (note that we have a membership oracle for
�(x, y) ∩ S from the oracle for S, but simulating a random oracle is not so
simple). However, for the purpose of showing a lower bound in m we will assume
that the one-dimensional algorithm checks exactly whether �(x, y) ∩ S is convex
(that is, it is an interval).

4 The Lines-Based Algorithm Is Exponential

In this section, we construct an explicit family of compact sets each of which
has the following properties: (i) the set is far from convex, and (ii) for all but an
exponentially small fraction of pairs of points from the set, the line through the
pair of points has a convex intersection with the set. This implies that the lines-
based algorithm (described at the end of Section 3.2) has exponential worst-case
complexity. Thus, although exact convexity is characterized by “convex along
every line,” the corresponding reduction of approximate convexity to “convex
along most lines” is not efficient.

The proof of the lower bound is in two parts, first we show that the algorithm
needs many tests and then that the test family is far from convex (i.e., ε is large).

4.1 The Family of Sets: The Cross-Polytope with Peaks

The n-dimensional cross-polytope is an n-dimensional generalization of the oc-
tahedron and can be defined as the unit ball with the norm |x|1 =

∑n
i=1|xi|. Let
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Tn be the “cross-polytope with peaks”, that is, the union of the cross-polytope
and, for each of its facets i ∈ {1, . . . , 2n}, the convex hull of the facet and a
point vi = λd, where d is the unit outer normal to the facet and λ ≥ 1/

√
n

is a parameter (that may depend on the dimension). Informally, one adds an
n-dimensional simplex on top of each facet of the cross-polytope. The volume of
the cross-polytope is a 1

λ
√

n
fraction of the volume of Tn. We will choose λ =

√
n

n−2 .
In that case, the cross-polytope as a convex set shows that Tn is O( 1

n )-convex.
We will prove that Tn is not 1

12n2 -convex, i.e., for any convex set K, we have
d(K, Tn) > 1

12n2 vol Tn.

4.2 The Non-convexity of the Family Cannot be Detected by the
Lines-Based Algorithm

Proposition 7. If λ ≤
√

n
n−2 then the one-dimensional test has an exponentially

low probability of detecting the non-convexity of the cross-polytope with peaks.

Proof. First, we will prove the following claim:

Under the hypothesis, every peak is contained in the intersection of the
half-spaces determining the n facets of the cross-polytope adjacent to
the peak.

It is enough to see that the point vi = λd (a vertex of the peak) is contained in
that intersection. Because of the symmetry, we can concentrate on any particular
pair of adjacent facets, say those having normals d = (1, 1, . . . , 1)/

√
n and d′ =

(−1, 1, . . . , 1)/
√

n. The halfspace determining the facet with normal d is given
by {x ∈ R

n : 〈x, d′〉 ≤ 1/
√

n}. Then vi = λd is contained in the halfspace
associated to the facet with normal d′ (which is sufficient) if

〈λd, d′〉 ≤ 1√
n

.

That is,

λ ≤
√

n

n − 2
.

This proves the claim.
It is sufficient to note that, for the algorithm to answer “NO”, we need to

choose a line whose intersection with Tn is not convex. Suppose that a line L
shows non-convexity. Then it does not intersect the cross-polytope part of Tn a.s.
(almost surely), otherwise L intersects exactly 2 facets of the cross-polytope a. s.,
and intersects only the peaks that are associated to those facets, because of the
claim (if one follows the line after it leaves the cross-polytope through one of the
facets, it enters a peak, and that peak is the only peak on that side of the facet,
because of the claim), and thus L∩Tn would be convex. Now, while intersecting
a peak, L intersects two of its facets at two points that are not at the same
distance of the cross-polytope, a.s. The half of L that leaves the peak through
the farthest point cannot intersect any other peak because of the claim (the
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halfspace determined by the respective facet of the cross-polytope containing
this peak contains only this peak, and this half of L stays in this halfspace). The
half of L that leaves the peak through the closest point will cross the hyperplane
determined by one of the adjacent peaks2 before intersecting any other peak, a.s.;
after crossing that hyperplane it can intersect only one peak, namely, the peak
associated to that hyperplane, because of the claim. Thus, L has to intersect
exactly 2 peaks that have to be adjacent a. s., and L does not intersect the
cross-polytope. In other words, the two random points that determine L are in
the same peak or in adjacent peaks. The probability of this event is no more
than n+1

2n . ��

4.3 The Sets in the Family Are Far from Convex

To prove that Tn is far from being convex, we will prove that a close convex set
must substantially cover most peaks, and because of this, a significant volume
of a close convex set must lie between pairs of adjacent substantially covered
peaks, outside of Tn, adding to the symmetric difference. The following lemma
will be useful for this part. For A ⊆ R

n and H a hyperplane and v ∈ R
n a unit

normal for H, let
wH(A) = sup

x∈A
〈v, x〉 − inf

x∈A
〈v, x〉 .

Lemma 8. Let A, B ⊆ R
n compact. Let H be a separating hyperplane3 for A, B.

Let C = H ∩ conv(A ∪ B). Then

Vn−1(C) ≥ min
{

vol A
wH(A)

,
vol B

wH(B)

}

.

Proof. There exist sections, parallel to H, of A and B that have (n−1)-volumes
at least (vol A)/wH(A) and (volB)/wH(B), respectively. That is, there exist
a, b ∈ R

n such that A′ = (H + a) ∩ A, B′ = (H + b) ∩ B satisfy Vn−1(A′) ≥
(vol A)/wH(A) and Vn−1(B′) ≥ (vol B)/wH(B). Clearly H ∩ conv(A′ ∪ B′) ⊆ C
and therefore

Vn−1(C) ≥ Vn−1(H ∩ conv(A′ ∪ B′))
≥ min{Vn−1(A′), Vn−1(B′)}

≥ min
{

vol A
wH(A)

,
vol B

wH(B)

}

.

��
This bound is sharp: consider a cylinder with a missing slice in the middle,

that is, consider in the plane as A a rectangle with axis-parallel sides and non-

2 “The hyperplane determined by a peak” is the unique hyperplane that contains the
facet of the cross-polytope associated to the peak.

3 That is, a set of the form H = {x ∈ R
n : 〈x, y〉 = α} for some y ∈ R

n and α ∈ R,
such that for all x ∈ A we have 〈x, y〉 ≤ α and for all x ∈ B we have 〈x, y〉 ≥ α.
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adjacent vertices (1, 0) and (2, 1), as B the reflection of A with respect to the
y-axis and as the separating line, the y-axis.

A

E

O

B

FD

C � vi C� � v j

A�

F�

E�R

Α

Β

x

y

Fig. 1. Projection of the peaks (i, j) of the cross-polytope with peaks onto vi, vj for
n = 4

Lemma 9. For λ =
√

n
n−2 , Tn is not 1

12n2 -convex.

Proof. Let Cn be a closest convex set to Tn.
Consider a pair of adjacent peaks (i, j). Figure 1 shows the projection of

the pair onto the plane containing the vertices vi, vj and the origin. B is the
projection of the intersection of the two peaks, an (n−2)-dimensional simplex. A
and C are the other two vertices of one of the peaks, A′ and C ′ are the respective
vertices of the other peak. The plane is orthogonal to the two respective facets
of the cross-polytope, the segment AB is the projection of one of them and A′B
is the projection of the other facet. D is such that DB is orthogonal to OB,
where O is the origin.

First, we will prove that the volume of the preimage (with respect to the
projection) of the triangle DBC is a 1

n−1 fraction of the volume of the peak. To
see this, let Q be the preimage of DB in the peak, which is a (n−1)-dimensional
simplex. Let α be the height of the triangle ABD with respect to A, and let β
be the height of the triangle DBC with respect to C. Then the volume of the
peak is

1
n

Vn−1(Q)(α + β) .

Also, the volume of the preimage of DBC is

1
n

Vn−1(Q)β .

Thus, the volume of the preimage of the triangle DBC is a β
α+β fraction of

the volume of the peak. We can compute α and β. Without loss of generality
we can assume that vi is parallel to (−1, 1, . . . , 1) and vj is parallel to (1, . . . , 1).
Then (0, 1

n−1 , . . . , 1
n−1 ) is a vector in the preimage of B that is in the projection
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plane, and α is the norm of that vector, that is, α = 1/
√

n − 1. An orthonormal
basis of the projection plane corresponding to the x, y axes of Figure 1 is

{(1, 0, . . . , 0), (0, 1/
√

n − 1, . . . , 1/
√

n − 1)}.

Then, α + β is the length of the projection of vj onto (0, 1/
√

n − 1, . . . , 1/√
n − 1), that is, α + β =

√
n−1

n−2 and β = 1
(n−2)

√
n−1 . Thus, β

α+β = 1
n−1 , as

claimed.
EF is a segment parallel to DB and at a distance β

n+1 from it. That way,
the volume of the preimage of the triangle EFC is a (1 − 1

n+1 )n ≥ 1
e fraction

of the volume of the preimage of the triangle DBC, which, as we saw, is a 1
n−1

fraction of the volume of the peak. That is, the preimage of the triangle EFC
is at least a 1

e(n−1) fraction of the volume of the peak.
Given a particular peak, we will say that it is substantially covered (by Cn)

iff the volume of the intersection of Cn and the peak is at least a 1 − 1
2e(n−1)

fraction of the volume of the peak. Because of the choice of EF , if a peak is
substantially covered, then at least a 1

2e(n−1) fraction of its volume is covered in
the preimage of the triangle EFC (that is, above the segment EF ).

Now we will prove that every pair of adjacent substantially covered peaks
contributes to Cn \ Tn at least with a 1

6n2 fraction of the volume of a peak,
disjoint from the contribution of other pairs. To see this, let U be the subset of
Cn intersected with peak i that projects onto EFC and let V be the subset of
Cn intersected with peak j that projects onto F ′E′C ′. We will apply Lemma 8
to U , V and every hyperplane which is a preimage of a vertical line intersecting
the rectangle R. Moreover, for any such hyperplane H we have that wH(U) and
wH(V ) are no more than the length of DB, which is a β

α+β = 1
n−1 fraction of

the length of AA′ (which is 2), i.e., 2
n−1 . Certainly W = R ∩ conv(U ∪ V ) is

contained in Cn and disjoint from Tn. Because of the choice of EF , the width
of the rectangle R is a 1

n+1 fraction of the distance between C and C ′, that
is, 2

(n+1)(n−2) . Also, volU and volV are no less than a 1
2e(n−1) fraction of the

volume of a peak. Lemma 8 gives that

vol W
vol(one peak)

≥ (width of R) min

{
vol U

2
n−1

,
vol V

2
n−1

}
1

vol(one peak)

≥ 2
(n + 1)(n − 2)

n − 1
2

1
2e(n − 1)

≥ 1
2e(n − 2)(n + 1)

≥ 1
6n2 .

Let ε(n) = d(Cn, Tn). We claim that the number of peaks that are not sub-
stantially covered is a fraction that is at most en2ε(n) of the total number of
peaks. To see this, let q(n) be the fraction of the volume of Tn that the peaks
contain. Clearly
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q(n) =
λ − 1√

n

λ
=

2
n

.

Let X be the number of peaks that are not substantially covered. Then,

X
1

2e(n − 1)
q(n) ≤ ε(n) ,

that is,
X ≤ en(n − 1)ε(n) ≤ en2ε(n) . (2)

We will see now that eventually (as n grows) the number of pairs of adjacent
peaks that are substantially covered is a substantial fraction of the total num-
ber of adjacent pairs. For a contradiction, assume that, for some subsequence,
ε(n) < 1

12n2 . For n sufficiently large, en2ε(n) ≤ 1/4. The number of peaks is
2n; the number of (unordered) pairs of adjacent peaks is n2n−1. A peak that is
not substantially covered can participate in at most n pairs of adjacent peaks.
Because of (2), there are at most 1

42n = 2n−2 peaks that are not substantially
covered (for large n and a subsequence). That way, all the peaks that are not sub-
stantially covered can participate in at most n2n−2 = 1

2n2n−1 pairs of adjacent
peaks. Thus, at least 1/2 of the pairs of adjacent peaks involve only substantially
covered peaks. For γ equal to the volume of the contribution to Cn \Tn of a pair
of substantially covered peaks, this implies that

ε(n) ≥ vol(Cn \ Tn)
vol Tn

≥ vol(Cn \ Tn)
vol(all peaks)

vol(all peaks)
vol Tn

≥
1
2n2n−1γ

2n vol(one peak)
q(n)

≥ n

4
1

6n2

2
n

≥ 1
12n2

which is a contradiction. ��

5 An Algorithm Based on Planes

In this section, we state a conjecture about approximate convexity. Let S be
a compact subset of R

n whose center of gravity is the origin. For a pair of
points x, y = 0 in R

n let the subspace spanned by them be H(x, y) and define
P (x, y) = S ∩ H(x, y) to be the part of S on this subspace. Our conjecture is
the following:
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Conjecture. Let µ be the distribution on 2-dimensional sections P (x, y) obtained
by picking x and y uniformly at random from S. If

Pµ

(
P (x, y) is convex

)
> 1 − ε ,

then S is O(nε)-convex.
The conjecture motivates the following algorithm (here p(·) and q(·) are fixed

polynomials):
Repeat p(n, 1/ε) times

1. Get random points x, y from S.
2. Test if P (x, y) is q(1/n, ε)-convex.
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Appendix

For the Hausdorff metric or the symmetric difference volume metric, we have
(see [8], Theorem 4.18, for example):

Theorem 10 (Blaschke’s Selection Theorem). In R
n, any bounded se-

quence (Ck)k∈N of nonempty, convex sets has a subsequence converging to some
nonempty, compact, convex set C.
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