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#P-hard for polytopes given as a list of vertices or halfspaces.

There is a family of polytopes having rational halfspaces such
that the volume is a rational a/b with b of length exponential
in the input length.

Standard model: membership oracle. Randomization provably
helps.

Because of hardness results, we forget exact computation and
consider approximations up to a multiplicative factor.



Known bounds for volume

» Deterministic lower bound:
Elekes; Bérani, Fiiredi: polynomial number of queries —-
error of a factor of ~ n"/2.

» Upper bound: random walks:
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This and the deterministic lower bound imply that
randomization provably helps.

» The complexity of a randomized approximation of the volume
depends on roundedness of the input. Our lower bound holds
even for well-rounded convex bodies.



Yao's lemma

» Yao's lemma:
The probability of failure of a randomized algorithm on the
worst input is at least the probability of failure of the best
deterministic algorithm against some distribution.



Easy lower bound for randomized algorithms

» Lower bound: Q(n).
» Distribution: Axis-aligned cube or brick.
» Result: less than n — 1 queries — fails to approximate
volume up to a constant factor with probability at least 1/2n

1/2 1/(2n) 1/(2n) ..



First idea for improved lower bound

> Instead of axis-aligned, consider all rotations of cube and
brick, ~ n? “degrees of freedom”.

» But given that our proof is in the flavor of information theory,
we prefer the space of transformations to be a subset of
Euclidean space with the usual measure. Instead of rotations,
we allow all linear transformations of a cube, suitably
restricted to satisfy roundness condition.
= more variability in volume.



Our results: lower bounds, volume, determinant

» Theorem (volume): Any randomized algorithm needs
Q(n?/ log n) queries to approximate the volume up to a
constant factor with probability 1 — 1/ poly(n) (even
well-rounded).

» Actually, it is hard for parallelepipeds of the form: for
A 6 RHXH
{x e R" : (Vi)|Ai-x| <1}

Oracle: given x € R", decide whether (Vi)|A; - x| < 1.
Theorem (determinant): Any randomized algorithm needs
Q(n?/log n) queries to approximate |det A| up to a constant
factor with probability 1 — 1/ poly(n).



Proof of the volume lower bound

» Yao's lemma: enough to prove a lower bound for deterministic
algorithms against a distribution.

» Distribution: Parallelepipeds “||Ax|| ., < 1" given by matrices
A with each row uniformly and independently from \/nB,.
» A deterministic algorithm can be seen as a decision tree —>
partition of the input space ((1/nBp)").
q
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Proof of the volume lower bound

» After making all its queries, what the algorithm knows is
exactly on which part of the partition of (1/nB,)" we are

(VnB,)"




Proof of the volume lower bound

» Failure of the algorithm < dispersion of |det(-)| on most parts.

» Constant dispersion: there is at least 1/ poly(n) mass outside
of any interval of constant multiplicative length (i.e. of the
form [a, a(1 + €)]).
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Proof of the volume lower bound

> Leaf < part. # parts =# leafs < 2depth,

(VnBy)"




Proof of the volume lower bound

» Parts can be assumed to be “product sets along rows" .

A; A

Ay Ay

Implemented by modified oracle.



Proof of the volume lower bound

» Modified oracle: given g, if ||Aq|lcc < 1 output YES,

otherwise output NO and least index among violated
constraints and also side of the violation. (2n+ 1)-ary tree.

e NO, (1,-) e NO,(2,+)
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e VYES ® NO, (1,4)




Proof of the volume lower bound

» Warm up: What if a part is a “product set along rows” and

the determinant on that part has a fixed value?
Then, regions for each row are

> a point,

> a line parallel to the span of the previous point,

> a plane parallel to the span of the previous regions ...
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Proof of the volume lower bound

» Intuition: shape of parts is very different from level sets of
|det(-)|, as parts can be assumed to be “product sets along
rows". If |det(:)| is not dispersed in a part, then the part is
small = many parts = tree of large depth (n?/log n).
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Main lemma for volume lower bound

> (dispersion of the determinant)
.. . 2 “
For any partition of B] into < 2™ parts that are “product
sets along rows”, for half of the parts in measure we have

Pr(|det X| ¢ [u, u(1 +¢)]) > 271n6

for any u, for X a random point (matrix) in the part, and for
¢ a universal constant.



Proof of lemma

» Proof idea: Assume (for a contradiction) that a part
P =1, Pi is such that, for most matrices in it, [det(-)| fits in
a small interval. Write |det(A)| = [, ||Ail|, where A; is the

projection of A; to the space orthogonal to Ay,..., Aj_1.
Then
. n—1 .
1Al € [a,a(1+ )] TTIA
i=1
Thus, for most choices of Ay,...,A,_1, most of A, € P, is

forced to be contained in a “band”. A refinement of this
argument gives a band on P; for each pair /,j.

An&/Pl\,,

span(Ar, ..., As1) \] \,‘ bands




Proof of lemma: pairs of bands




Proof of lemma

> vol(y/nB,)") > 2™ + 27 parts.
= half of the parts (in measure) have volume at least 1/2
each.

> |det(-)| concentrated + “product set of matrices”
= bands
= volume of corresponding part less that 1/2.
Contradiction.



Conclusion

We proved:

> an n?/log n lower bound for the query complexity of
approximating the volume of a convex body up to a constant
factor by a randomized algorithm.



Conclusion

Open problems:

» Complexity of approximating the volume: matching upper and
lower bounds. Same with a separation oracle.



