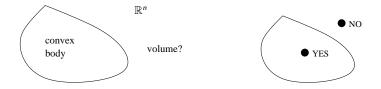
Dispersion of Mass and the Complexity of Randomized Algorithms II ICMS

Luis Rademacher Santosh Vempala MIT Georgia Tech and MIT

April 21, 2007

(日)

Volume computation



• #P-hard for polytopes given as a list of vertices or halfspaces.

- There is a family of polytopes having rational halfspaces such that the volume is a rational a/b with b of length exponential in the input length.
- Standard model: membership oracle. Randomization provably helps.
- Because of hardness results, we forget exact computation and consider approximations up to a multiplicative factor.

Known bounds for volume

▶ Deterministic lower bound: Elekes; Báráni, Füredi: polynomial number of queries ⇒ error of a factor of ~ n^{n/2}.

Upper bound: random walks:

Dyer, Frieze, Kannan 1991	n ²³
Lovász, Siminovits 1990	n ¹⁶
Applegate, Kannan 1990	n ¹⁰
Lovász 1990	n ¹⁰
Dyer, Frieze 1991	n ⁸
Lovász, Simonovits 1993	n ⁷
Kannan et al. 1997	n ⁵
Lovász, Vempala 2003	n ⁴

This and the deterministic lower bound imply that randomization provably helps.

The complexity of a randomized approximation of the volume depends on roundedness of the input. Our lower bound holds even for well-rounded convex bodies.

Yao's lemma

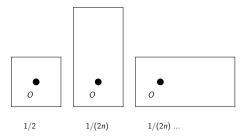
Yao's lemma:

The probability of failure of a randomized algorithm on the worst input is at least the probability of failure of the best deterministic algorithm against some distribution.

・ロト・日本・モート・モー うへぐ

Easy lower bound for randomized algorithms

- Lower bound: $\Omega(n)$.
 - Distribution: Axis-aligned cube or brick.
 - ▶ Result: less than n 1 queries ⇒ fails to approximate volume up to a constant factor with probability at least 1/2n



▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

First idea for improved lower bound

- ▶ Instead of axis-aligned, consider all rotations of cube and brick, $\sim n^2$ "degrees of freedom".
- But given that our proof is in the flavor of information theory, we prefer the space of transformations to be a subset of Euclidean space with the usual measure. Instead of rotations, we allow all linear transformations of a cube, suitably restricted to satisfy roundness condition.

 \implies more variability in volume.

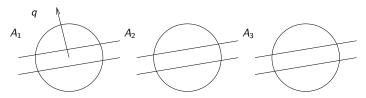
Our results: lower bounds, volume, determinant

- ► Theorem (volume): Any randomized algorithm needs Ω(n²/log n) queries to approximate the volume up to a constant factor with probability 1 − 1/poly(n) (even well-rounded).
- ► Actually, it is hard for parallelepipeds of the form: for A ∈ ℝ^{n×n}

$$\{x \in \mathbb{R}^n : (\forall i) | A_i \cdot x| \le 1\}$$

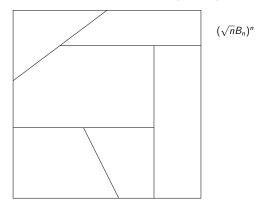
Oracle: given $x \in \mathbb{R}^n$, decide whether $(\forall i)|A_i \cdot x| \leq 1$. Theorem (determinant): Any randomized algorithm needs $\Omega(n^2/\log n)$ queries to approximate $|\det A|$ up to a constant factor with probability $1 - 1/\operatorname{poly}(n)$.

- Yao's lemma: enough to prove a lower bound for deterministic algorithms against a distribution.
- ▶ Distribution: Parallelepipeds "||Ax||_∞ ≤ 1" given by matrices A with each row uniformly and independently from √nB_n.
- A deterministic algorithm can be seen as a decision tree \implies partition of the input space $((\sqrt{n}B_n)^n)$.



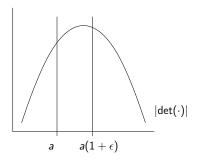
(日) (同) (三) (三) (三) (○) (○)

▶ After making all its queries, what the algorithm knows is exactly on which part of the partition of $(\sqrt{nB_n})^n$ we are



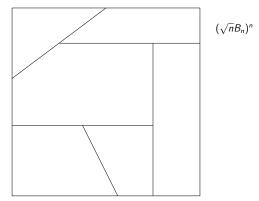
(日)

- Failure of the algorithm \Leftrightarrow dispersion of $|det(\cdot)|$ on most parts.
- Constant dispersion: there is at least 1/ poly(n) mass outside of any interval of constant multiplicative length (i.e. of the form [a, a(1 + c)]).



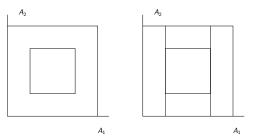
▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

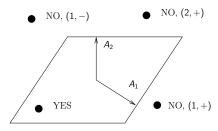
▶ Parts can be assumed to be "product sets along rows".



▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

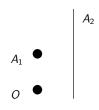
Implemented by modified oracle.

▶ Modified oracle: given q, if ||Aq||_∞ ≤ 1 output YES, otherwise output NO and least index among violated constraints and also side of the violation. (2n + 1)-ary tree.

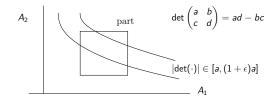


▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

- Warm up: What if a part is a "product set along rows" and the determinant on that part has a fixed value? Then, regions for each row are
 - ▶ a point,
 - a line parallel to the span of the previous point,
 - ▶ a plane parallel to the span of the previous regions ...



Intuition: shape of parts is very different from level sets of |det(·)|, as parts can be assumed to be "product sets along rows". If |det(·)| is not dispersed in a part, then the part is small ⇒ many parts ⇒ tree of large depth (n²/log n).



・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Main lemma for volume lower bound

► (dispersion of the determinant) For any partition of Bⁿ_n into ≤ 2^{n²} parts that are "product sets along rows", for half of the parts in measure we have

$$\Pr\bigl(|\det X| \notin [u, u(1+c)]\bigr) \geq \frac{1}{2^7 n^6}$$

for any u, for X a random point (matrix) in the part, and for c a universal constant.

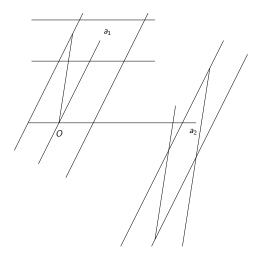
Proof of lemma

▶ Proof idea: Assume (for a contradiction) that a part $P = \prod_i P_i$ is such that, for most matrices in it, $|\det(\cdot)|$ fits in a small interval. Write $|\det(A)| = \prod_i ||\tilde{A}_i||$, where \tilde{A}_i is the projection of A_i to the space orthogonal to A_1, \ldots, A_{i-1} . Then

$$\|\tilde{A}_n\| \in \left[a, a(1+\epsilon)\right] \prod_{i=1}^{n-1} \|\tilde{A}_i\|^{-1}$$

Thus, for most choices of A_1, \ldots, A_{n-1} , most of $A_n \in P_n$ is forced to be contained in a "band". A refinement of this argument gives a band on P_i for each pair i, j.

Proof of lemma: pairs of bands



◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

Proof of lemma

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへぐ

►
$$|det(\cdot)|$$
 concentrated + "product set of matrices"
⇒ bands

 \implies volume of corresponding part less that 1/2. Contradiction.

Conclusion

We proved:

➤ an n²/log n lower bound for the query complexity of approximating the volume of a convex body up to a constant factor by a randomized algorithm.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Conclusion

Open problems:

 Complexity of approximating the volume: matching upper and lower bounds. Same with a separation oracle.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで