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Volume computation
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◮ #P-hard for polytopes given as a list of vertices or halfspaces.

◮ There is a family of polytopes having rational halfspaces such
that the volume is a rational a/b with b of length exponential
in the input length.

◮ Standard model: membership oracle. Randomization provably
helps.

◮ Because of hardness results, we forget exact computation and
consider approximations up to a multiplicative factor.



Known bounds for volume
◮ Deterministic lower bound:

Elekes; Báráni, Füredi: polynomial number of queries =⇒
error of a factor of ∼ nn/2.

◮ Upper bound: random walks:

Dyer, Frieze, Kannan 1991 n23

Lovász, Siminovits 1990 n16

Applegate, Kannan 1990 n10

Lovász 1990 n10

Dyer, Frieze 1991 n8

Lovász, Simonovits 1993 n7

Kannan et al. 1997 n5

Lovász, Vempala 2003 n4

This and the deterministic lower bound imply that
randomization provably helps.

◮ The complexity of a randomized approximation of the volume
depends on roundedness of the input. Our lower bound holds
even for well-rounded convex bodies.



Yao’s lemma

◮ Yao’s lemma:
The probability of failure of a randomized algorithm on the
worst input is at least the probability of failure of the best
deterministic algorithm against some distribution.



Easy lower bound for randomized algorithms

◮ Lower bound: Ω(n).
◮ Distribution: Axis-aligned cube or brick.
◮ Result: less than n − 1 queries =⇒ fails to approximate

volume up to a constant factor with probability at least 1/2n

1/(2n) ...
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First idea for improved lower bound

◮ Instead of axis-aligned, consider all rotations of cube and
brick, ∼ n2 “degrees of freedom”.

◮ But given that our proof is in the flavor of information theory,
we prefer the space of transformations to be a subset of
Euclidean space with the usual measure. Instead of rotations,
we allow all linear transformations of a cube, suitably
restricted to satisfy roundness condition.
=⇒ more variability in volume.



Our results: lower bounds, volume, determinant

◮ Theorem (volume): Any randomized algorithm needs
Ω(n2/ log n) queries to approximate the volume up to a
constant factor with probability 1 − 1/ poly(n) (even
well-rounded).

◮ Actually, it is hard for parallelepipeds of the form: for
A ∈ R

n×n

{x ∈ R
n : (∀i)|Ai · x | ≤ 1}

Oracle: given x ∈ R
n, decide whether (∀i)|Ai · x | ≤ 1.

Theorem (determinant): Any randomized algorithm needs
Ω(n2/ log n) queries to approximate |detA| up to a constant
factor with probability 1 − 1/ poly(n).



Proof of the volume lower bound

◮ Yao’s lemma: enough to prove a lower bound for deterministic
algorithms against a distribution.

◮ Distribution: Parallelepipeds “‖Ax‖
∞

≤ 1” given by matrices
A with each row uniformly and independently from

√
nBn.

◮ A deterministic algorithm can be seen as a decision tree =⇒
partition of the input space ((

√
nBn)

n).
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Proof of the volume lower bound

◮ After making all its queries, what the algorithm knows is
exactly on which part of the partition of (

√
nBn)

n we are

(
√

nBn)
n



Proof of the volume lower bound

◮ Failure of the algorithm ⇔ dispersion of |det(·)| on most parts.

◮ Constant dispersion: there is at least 1/ poly(n) mass outside
of any interval of constant multiplicative length (i.e. of the
form [a, a(1 + ǫ)]).

a(1 + ǫ)

|det(·)|

a



Proof of the volume lower bound

◮ Leaf ↔ part. # parts =# leafs ≤ 2depth.

(
√

nBn)
n



Proof of the volume lower bound

◮ Parts can be assumed to be “product sets along rows”.
A2

A1

A2

A1

Implemented by modified oracle.



Proof of the volume lower bound

◮ Modified oracle: given q, if ‖Aq‖∞ ≤ 1 output YES,
otherwise output NO and least index among violated
constraints and also side of the violation. (2n + 1)-ary tree.

A2

YES NO, (1, +)

NO, (2, +)NO, (1,−)

A1



Proof of the volume lower bound

◮ Warm up: What if a part is a “product set along rows” and
the determinant on that part has a fixed value?
Then, regions for each row are

◮ a point,
◮ a line parallel to the span of the previous point,
◮ a plane parallel to the span of the previous regions ...

O
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Proof of the volume lower bound

◮ Intuition: shape of parts is very different from level sets of
|det(·)|, as parts can be assumed to be “product sets along
rows”. If |det(·)| is not dispersed in a part, then the part is
small =⇒ many parts =⇒ tree of large depth (n2/ log n).

det

(

a b

c d

)

= ad − bc

A1

partA2

|det(·)| ∈ [a, (1 + ǫ)a]



Main lemma for volume lower bound

◮ (dispersion of the determinant)
For any partition of Bn

n into ≤ 2n
2

parts that are “product
sets along rows”, for half of the parts in measure we have

Pr
(

|det X | /∈ [u, u(1 + c)]
)

≥ 1

27n6

for any u, for X a random point (matrix) in the part, and for
c a universal constant.



Proof of lemma

◮ Proof idea: Assume (for a contradiction) that a part
P =

∏

i
Pi is such that, for most matrices in it, |det(·)| fits in

a small interval. Write |det(A)| =
∏

i
‖Ãi‖, where Ãi is the

projection of Ai to the space orthogonal to A1, . . . ,Ai−1.
Then

‖Ãn‖ ∈
[

a, a(1 + ǫ)
]

n−1
∏

i=1

‖Ãi‖
−1

.

Thus, for most choices of A1, . . . ,An−1, most of An ∈ Pn is
forced to be contained in a “band”. A refinement of this
argument gives a band on Pi for each pair i , j .

An

bandsspan(A1, . . . , An−1)

Ãn



Proof of lemma: pairs of bands

a2

a1
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Proof of lemma

◮ vol(
√

nBn)
n) ≥ 2n

2

+ 2n
2

parts.
=⇒ half of the parts (in measure) have volume at least 1/2
each.

◮ |det(·)| concentrated + “product set of matrices”
=⇒ bands
=⇒ volume of corresponding part less that 1/2.
Contradiction.



Conclusion

We proved:

◮ an n2/ log n lower bound for the query complexity of
approximating the volume of a convex body up to a constant
factor by a randomized algorithm.



Conclusion

Open problems:

◮ Complexity of approximating the volume: matching upper and
lower bounds. Same with a separation oracle.


