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Abstract

Among robust notions of shape, depth and dispersion of a distribution or dataset we have Tukey
depth and depth curves, which are essentially the same as the convex floating body in convex geometry.
These notions are important because they play the role of multidimensional quantiles and rank statistics.
At the same time, they can be difficult to use because they are computationally intractable in general.
We develop a theory of algorithmic efficiency for these notions for several broad and relevant families
of distributions: symmetric log-concave distributions and certain multivariate stable distributions and
power-law distributions. As an example of the power of these results, we show how to solve the Independent
Component Analysis problem for power-law distributions, even when the first moment is infinite.

1 Introduction

One of the aims of robust statistics is to infer information from data in a way that is not too sensitive
to perturbations of the input. One of the basic tools in this context are the quantiles of a distribution.
Informally speaking, a quantile of level q ∈ (0, 1) of a set of real numbers is the least value that is above
a q fraction of the set. While quantiles are well-understood, it is an active area of research to understand
generalizations to multi-dimensional data sets. A natural starting point is to consider the quantile function of
a multi-dimensional data set, namely the function that maps q and a direction θ to the quantile of level q of
the marginal along θ.

How helpful this is depends partly on whether it is computationally efficient to answer questions about
this function given the data. Even without a complete answer to the issue of computational efficiency, notions
closely related to the quantile function have been central to robust and descriptive statistics: Tukey (or
halfspace) depth, Tukey median, depth contours (depth curves) [Tuk75], [DG92] as well as centerpoints. In
particular, the notion of “halfspace depth” was proposed in [Tuk75] as a way to generalize the notion of
quantiles to multivariate samples. In this formulation, for a probability measure P on Rn, the halfspace
depth of a point x ∈ Rn is defined as HD(x;P) = inf{P(H) : H is a halfspace containing x}. From a notion
of depth (of a sample or distribution), one can consider depth curves: the set of points that have at least a
particular depth. For Tukey’s depth function and many others, these curves form convex sets in the ambient
space and can be used to get information about the “shape” of the data.

There are several reasons to study the quantile function and related notions such as depth: They are
robust against outliers [DG92] and they are defined even for heavy tailed distributions (without any moment
assumption). They can therefore be used for outlier detection and as a way of understanding the dispersion
and shape of a distribution or dataset (as a multivariate analog of rank statistics).

Notions such as depth and depth curves are known to be computationally intractable in general: testing
whether the depth of a point with respect to a sample is at least some fixed bound is coNP-complete [JP78].
Given the issue of computational efficiency of questions about the quantile function, in this paper we argue
that the quantile function and many natural questions about it are computationally tractable in a broad
family of situations. The main idea is to consider the quantile function of a multivariate distribution and use
known results that show that it has a convexity property for several relevant families of distributions. The
convexity property is that, as a function of θ and for fixed q, the quantile function is the support function
of a convex set when the distribution is either (1) centrally symmetric and log-concave, or (2) a product
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distribution with coordinates following a symmetric stable or power-law distribution. A consequence of the
conditions that guarantee efficiency is the following: While questions about the empirical quantile function of
a sample (equivalently, a discrete distribution) are in general computationally hard, if the sample comes from
a distribution corresponding to the convex case, then the empirical quantile function is close to the convex
case, and this leads to computational efficiency. This can be proven rigorously by means of the ellipsoid
algorithm, which has polynomial time guarantees even when it is only given an approximation to its input
function or set.

The floating body. The notion of a depth curve coincides with a central concept in convex geometry, the
convex floating body. The convex floating body was introduced in [SW90] and independently in [BL88]. It is a
variation of a much older notion, Dupin’s floating body (see [Dup22, Lei98]). To avoid confusion, we use the
term “floating body” to refer exclusively to the one studied in [SW90]. However, we define this body not just
for the uniform distribution in a convex body, but for random vectors in Rn. See [NSW18] for an in-depth
discussion. We use a standard notion of quantiles of a random variable, and the quantiles in each direction
then determine the floating body for random vector X:

Definition 1. The q-quantile of a random variable X at level q ∈ (0, 1) is given by Qq(X) := inf{t : P (X ≤
t) ≥ q}.

Definition 2. The floating body of a random vector X ∈ Rn at level q ∈ (0, 1) is ΦqX =
⋂
θ∈Sn−1{x ∈ Rn :

〈x, θ〉 ≤ Qq(〈X, θ〉)}.

The primary appeal of the floating body is that it exists for any distribution over Rn, specifically without
the existence of any moments, and is also affine equivariant (that is, an affine transformation of X transforms
the floating body in the same way).

A natural question arises: what is the statistical behavior of a sample restricted to the floating body of its
underlying distribution? Which properties of the underlying distribution are preserved? A similar question
is addressed in [AGNR15] and [AGNR17], but about the centroid body — a depth measure dependent on
directional means of the underlying distribution.

We present Independent Component Analysis as a motivational application of this question and our
algorithmic results. Specifically, we extend the results of [AGNR15] by using the floating body as an
algorithmically efficient summary of the geometry of the given data that comes from a multidimensional
heavy-tailed distribution.

Our contributions. We study the computational efficiency of the floating body of a distribution or sample.
In this context, we show that in a broad family of relevant situations one can efficiently answer direct questions
about the floating body. The situations include symmetric log-concave distributions (Section 5), power-law
(Section 8) and stable distributions (Section 7), as well as datasets that behave like samples from any of those
distributions families. The main question we handle about the floating body is efficient membership, both in
terms of samples and computation. From membership one can directly answer more specific questions such
as the halfspace depth of a point and the covariance matrix of the floating body as a measure of dispersion.

Our results include approximation guarantees of the floating body from a sample, uniformly (in the
Hausdorff metric, via VC-theory). Related results can be found in [Bru18, Theorem 2]. Our results are
specialized to our case and in this way we achieve simpler assumptions and a more elementary proof: our
work only uses the results in [VC71] while [Bru18] uses much newer refinements.

As a proof of concept, we show how efficient access to the floating body can be used to efficiently solve
the Independent Component Analysis problem for power-law distributions with tail decay no slower than
the Cauchy distribution (with infinite first moment). This is based on the idea of reducing the power-law
case to the stable distribution case by taking sums of power-law samples and using the fact that such a sum
converges to a stable distribution. This is formally based on known results that provide an efficient rate of
convergence in the generalized central limit theorem. The stable distribution case of ICA can then be solved
based on the fact that the resulting floating body is an lp-ball and known results to learn an lp-ball [AGR13].
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The ICA problem has been widely studied in both theoretical and applied settings; see, for example, [CJ10],
[HO00]. Our extension of the ICA framework to stable and power-law distributions can easily be adapted to
other settings where robust estimation is needed.

2 Preliminaries

For a convex set K ⊂ Rn, the support function of K is hK(x) = sup{〈x, k〉 : k ∈ K}. The radial function of
K is ρK(x) = sup{a > 0 : ax ∈ K}. The polar of K is the convex set K◦ = {x ∈ Rn : 〈x, k〉 ≤ 1 ∀k ∈ K}.
Then, a key relationship between the two is that the radial function of K◦ is the reciprocal of the support
function of K, i.e. ρK◦ = 1/hK . This, along with the fact that (K◦)◦ = K under mild assumptions, will
provide the basis of our membership algorithms in later sections. For a matrix A, we denote the smallest and
largest singular values by σmin(A) and σmax(A). We also denote the smallest and largest eigenvalues by λmin

and λmax(A).
For point x ∈ Rn, p > 0, and r > 0, we denote the lp ball Bp(x, r) = {y ∈ Rn : ‖y‖p ≤ r}. We

denote the unit lp ball in Rn as Bnp := Bp(0, 1). For a convex set K ⊂ Rn and ε > 0, define the outer
parallel body Kε = {x ∈ Rn : ‖x− k‖2 ≤ ε for some k ∈ K}. Similarly, the inner parallel body is
K−ε = {x ∈ K : B(x, ε) ⊂ K}. Given a vector x, we denote the normalized version as x̂ := x/‖x‖2. For sets
A,B ⊆ Rn, we denote the Hausdorff distance as dH(A,B) = inf{ε > 0 : A ⊆ Bε and B ⊆ Aε}.

Algorithmic convexity. One main result of this paper is to establish the existence of efficient algorithms
which give a “probably approximate” membership decision in the following sense:

Definition 3 ([GLS88]). The ε-weak membership problem for K is the following: Given a point y ∈ Qn and
a rational number ε > 0, either (i) assert that y ∈ Kε, or (ii) assert that y 6∈ K−ε. An ε-weak membership
oracle for K is an oracle that solves the weak membership problem for K. For δ ∈ [0, 1], an (ε, δ)-weak
membership oracle for K acts as follows: Given a point y ∈ Qn, with probability at least 1− δ it solves the
ε-weak membership problem for y,K, and otherwise its output can be arbitrary.

The algorithmic efficiency of using a support function for membership in the polar is known, for instance
in [AGNR15], but we provide a specific result to be used in our analysis.

Lemma 4. Let K ⊂ Rn be a compact convex set with support function h and such that rBn2 ⊆ K ⊆ RBn2 for
r,R > 0. Suppose there exists an algorithm A to compute h̃ such that P (|h− h̃| > ε1) < δ, and the time and
sample complexity of that algorithm is T (n, ε1, δ,Θ), where Θ denotes the other parameters of the algorithm.
Then there exists an algorithm to give an (ε, δ)-weak membership decision for K◦ with using time and sample
complexity T (n,min{r2ε/2, r/2}, δ,Θ).

Proof. From the convexity of K, we know that the radial function of K◦ is ρ(θ) = 1/h(θ). Then, to estimate
membership, the natural algorithm is, given x ∈ Rn, to obtain the estimate h̃ := h̃(x/‖x‖) from A and
returning TRUE iff ‖x‖ ≤ 1/h̃.

Suppose now that the estimate is accurate, so that |h− h̃| ≤ ε1 ≤ r/2. Then, to control the radial function
error we compute ∣∣∣∣ 1h − 1

h̃

∣∣∣∣ =
|h− h̃|
hh̃

≤ ε1
r(r − ε1)

≤ 2ε1
r2
.

So if we choose ε1 = min{r2ε/2, r/2}, then the result follows.

Probabilistic tools. A random variable X (and its distribution) is centrally-symmetric if −X has the
same distribution as X; this applies similarly to densities and measures in the proper context. Furthermore,
we say a random vector X ∈ Rn (or its density or corresponding measure) is isotropic if its mean is zero and
its covariance matrix is the identity: E(X) = 0 and E(XXT ) = In. Unless otherwise noted, an empirical
estimate of a quantity f is denoted as f̃ .

One of the motivations of this paper is to be able to handle heavy-tailed distributions. Several of our
results involve stable distributions, a family of heavy-tailed distributions.
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Definition 5. For α ∈ (0, 2), the standard symmetric α-stable distribution is the one dimensional probability
distribution with characteristic function t 7→ e−|t|

α

. The standard symmetric 1-stable distribution is the
standard Cauchy distribution.

The Cauchy distribution is denoted Cauchy(x0, γ) and has pdf x 7→ 1

πγ(1+(
x−x0
γ )2)

and cdf x 7→
1
π arctan(x−x0

γ ) + 1
2 . The standard Cauchy distribution corresponds to Cauchy(0, 1)

Our analysis of stable distributions also applies to the case α = 2 (the Gaussian distribution), but we do

not include it in the definition of standard stable because characteristic function e−t
2

does not have the right
scale to be the standard Gaussian distribution. In any case, the Gaussian distribution is also log-concave and
better handled by that part of our paper.

The standard symmetric α-stable distribution does not have moments of order less than or equal to α,
which causes problems for algorithms or results which rely on estimating the mean, variance, or higher-order
moments from data.

Uniform convergence of empirical distributions. For the analysis of our algorithms, we use some
well-known ideas from learning theory. Let Z1, . . . , ZN be iid random variables in Rn. For a class of sets
A, we consider a probability measure on A as µ(A) = P (Z1 ∈ A). The empirical measure of µ is then

µN (A) = (1/n)
∑N
j=1 1{Zj ∈ A} , where I is the indicator random variable. The shatter coefficients measure

a type of “complexity” of the class A:

Definition 6. Let A be a collection of measurable sets. For {z1, . . . , zN} ∈ {Rn}N , let NA(z1, . . . , zN )
be the number of different sets in {{z1, . . . , zN} ∈ A : A ∈ A}. The n-th shatter coefficient of A is
s(A, N) = max(z1,...,zN )∈{Rn}N NA(z1, . . . , zN ). That is, the shatter coefficient is the maximal number of
different subsets of N points that can be identified by the class of sets A.

In our case, we will be working primarily with half-spaces in Rn, which have shatter coefficient bounded
by 2(N − 1)n + 2. In this work, the shatter function is used primarily in the well-known “VC Theorem” from
[VC71], adapted here as Theorem 7. For reference on the wider application of this theorem in statistical
learning theory, refer to [KVV94] and [SSBD14].

Theorem 7. If s(A, N) ≤ Nn+1 then P
(

supA∈A|µN (A)−µ(A)| > ε
)
≤ δ when N ≥ 16

ε2

(
n log 16n

ε2 + log 4
δ

)
.

3 The role of convexity and subadditivity

The use of the floating body (or, equivalently, depth curves) algorithmically poses the challenge of answering
questions about it efficiently. One of the simplest questions is membership, that is, given a query point x ∈ Rn,
determine whether it is in ΦqX. By definition, this means to check whether x is contained in the intersection
of an infinite number of halfspaces. There could be two situations, depending on whether all halfspaces in the
definition are “active” constraints (using optimization language). In the language of convex geometry, this
can be rephrased as: is the quantile function θ 7→ Qq(〈X, θ〉) the support function of ΦqX? If the answer
is yes, then using standard results in algorithmic convexity one can decide membership in polynomial time
[GLS88]. Moreover, standard results in convex geometry (see for example [Sch14, Theorem 1.7.1 and proof])
imply the following characterization: Let f : Rn → R be the positively homogeneous extension from Sn−1

to Rn of the quantile function, namely f(θ) = Qq(〈X, θ〉). Then f is the support function of ΦqX iff f is
subadditive (that is, f(x+ y) ≤ f(x) + f(y) for all x, y ∈ Rn). Note that if f is a positively homogeneous
function then f is subadditive iff f is convex.

The quantile function is know to be subadditive when the distribution of X is centrally symmetric and
log-concave (by Meyer and Reisner [MR91] partly based on ideas by Ball). More generally, subadditivity holds
when the measure of X is κ-concave for κ ≥ −1 ([Bob10]), a class that includes log-concave distributions
and some heavy-tailed distributions, but we do not exploit this more general result in our paper. Finally,
subadditivity also holds for a product distribution with iid standard α-stable components for α ∈ [1, 2). This
follows immediately from the definition of stable distributions via characteristic functions:
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By the convolution property of characteristic functions, if X = (X1, . . . , Xn) is a random vector with
iid coordiantes following a standard symmetric α-stable distribution, then 〈X, θ〉/‖θ‖α follows a standard
symmetric α-stable distribution for all θ ∈ Rn \ {0}. Thus, Qq(〈X, θ〉) = ‖θ‖αQq(X1) (which is a subadditive
in θ) and ΦqX is a scaled lnα∗ -ball with 1 = 1/α∗ + 1/α.

4 Quantile estimation

In this section we establish basic bounds on the error of quantile estimation from an approximation to the
desired distribution.

Lemma 8. Let F , G be distribution functions. Assume supx|F (x) −G(x)| ≤ δ. Let q ∈ (0, 1), ε > 0 and
x0 = Qq(G). Assume

1. G(x0 + ε)−G(x0) ≥ δ and

2. G(x0)−G(x0 − ε− α) > δ for all α > 0.

Then |Qq(F )−Qq(G)| ≤ ε.

Proof. We get F (x0 + ε) ≥ q, which implies Qq(F ) ≤ x0 + ε.
For any α > 0 we have G(x0)−G(x0−ε−α) > δ. We get F (x0−ε−α) < q, which implies Qq(F ) > x0−ε−α.

The claim follows by letting α→ 0.

Note that assumption 2 of Lemma 8 is implied by either of the following conditions:

1. G(x0)−G(x0 − ε) > δ, or

2. G(x0)−G(x0 − ε) ≥ δ and G is strictly increasing.

Lemma 9. Let q ≥ 1/2. Let δ < 1− q. Let G be a distribution function with symmetric density function g
supported on a (possibly infinite) interval (−a, a). Let F be a distribution function satisfying supx|F (x)−
G(x)| ≤ δ. Then

|Qq(F )−Qq(G)| ≤ δ

g(G−1(q + δ))
.

Proof. We will use Lemma 8. Let x0 be such that q = G(x0). As x0 ≥ 0, we have G(x0) − G(x0 − ε) ≥
G(x0 + ε)−G(x0).

We will first find ε such that assumption 1 holds. This happens whenever x0 + ε ≥ G−1(q + δ). The
monotonicity of G implies G−1(q + δ) ≤ G−1(q) + δ(G−1)′(q + δ) = x0 + δ(G−1)′(q + δ). It is therefore
sufficient to have ε ≤ δ 1

g(G−1(q+δ)) to satisfy assumption 1.

Let ε0 be the smallest ε that satisfies assumption 1. We just showed that ε0 ≤ δ 1
g(G−1(q+δ)) . We will show

that ε0 also satisfies assumption 2. To see this, notice that ε0 < a: assumption 1 gives that ε0 is smallest ε
such that G(x0 + ε) ≥ q+ δ with q+ δ < 1. Thus, x0 + ε0 < a and therefore ε0 < a (as x0 ≥ 0 by assumption).
This implies x0 − ε0 > −a, i.e. x0 − ε0 is in the interior of the support of g and assumption 2 is satisfied. We
can then apply Lemma 8 and the claim follows.

5 Log-concave floating body estimation

In this section we use concentration of the empirical quantiles to study convergence of an empirical floating
body to the true one. Our approach is to take a fixed sample of random vector X and consider random
variable Y uniformly drawn from that sample. We then show that the floating body of Y is close to that of
X with high probability after only polynomially many samples. This behavior translates membership Φq Y to
approximate membership in ΦqX — in the sense of Defintion 3. When the distribution of X is log-concave,
the marginals given by 〈X, θ〉, for θ ∈ Sn−1, are also log-concave. As discussed in Section 3, it is known
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that directional quantiles of log-concave distributions are subadditive, and have been studied in finance and
measures of portfolio risk, for example in [Ibr09]. This means that for our algorithm, the directional quantiles
coincide with the support function of ΦqX, and we can proceed by applying tools from convex geometry to
recover a membership algorithm. This sidesteps the computational challenge posed by the floating body by
focusing not on capturing the whole body at once, but instead being able to efficiently study whether single
points are inside, opening the door, e.g., for efficient algorithms which rely on sampling.

Theorem 10 (Log-concave floating body concentration). Let X ∈ Rn be a random vector with centrally-
symmetric, isotropic, log-concave distribution. Let q ∈ (1/2, 1), δ > 0, and ε ∈ (0, 1). Take X1, X2, . . . , XN

iid copies of X and define Y as a random vector uniform in {X1, X2, . . . , XN}. Then

P
(
dH(Φq Y,ΦqX) ≤ ε

)
≥ 1− δ

when

N ≥ 1024

ε2(1− q)2

(
n log

1024n

ε2(1− q)2
+ log

4

δ

)
.

Proof. For random variable Z, let fZ , FZ , and µZ respectively be the associated pdf, cdf, and measure. Then
we have µY (A) = (1/N)

∑N
i=1 1 {Xj ∈ A} be the measure associated with Y . Let H denote the set of (affine)

halfspaces in Rn. From [VC71, Example 3] we have that the shatter function mH of the class H of (affine)
halfspaces in Rn satisfies mH(l) ≤ ln + 1. It follows from Theorem 7 that

P

(
sup
H∈H

|µY (H)− µX(H)| < ε1

)
≥ 1− δ (1)

when

N ≥ 16

ε21

(
n log

16n

ε21
+ log

4

δ

)
. (2)

When the event in (1) happens, we have that supt|F〈Y,θ〉(t) − F〈X,θ〉(t)| < ε1 for any choice of θ ∈ Sn−1.

From the log-concavity of X, we have that f〈X,θ〉(F
−1
〈X,θ〉(t)) is concave and positive on (0, 1), see [Bob96],

Proposition A.1. This concavity together with the fact that f〈X,θ〉(0) ≥ 1/8 and f〈X,θ〉(x) ≤ 1 for all x

(by isotropy, [LV07, Lemma 5.5]) implies f〈X,θ〉(F
−1
〈X,θ〉(t) ≥ min{t, 1 − t}/4 for all t ∈ (0, 1) . Then with

ε1 < 1− q, we can apply Lemma 9 to get

sup
θ∈Sn−1

|Qq(〈Y, θ〉)−Qq(〈X, θ〉)| ≤
4ε1

1− q − ε1
.

Choosing ε1 = ε(1− q)/8 gives

4ε1
1− q − ε1

≤ (1− q)/2
1− q − (1−q)

8

ε =
8ε

14
≤ ε.

Finally, since Qq(〈Y, θ〉) and Qq(〈X, θ〉) are the support functions of Φq Y and ΦqX, a uniform bound on
their difference ensures that the corresponding floating bodies have the same bound in the Hausdorff metric,
see [Sch14] Theorem 1.8.11. Substituting ε1 = ε(1− q)/8 in (2) completes the proof.

Next, the floating body of a random vector is equivariant under invertible affine transformations:

Lemma 11. Let X ∈ Rn be a random vector. Then for any invertible affine transformation A : Rn → Rn
we have Φq(AX) = AΦq(X).

Proof. This is well-known, see for example [NSW18, Section 3.2.1]

Now we can generalize Theorem 10 for linear transformations of X by using Lemma 11.
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Corollary 12. Let X ∈ Rn be a random vector with centrally-symmetric log-concave measure µ with invertible
covariance matrix Σ. Let q ∈ (1/2, 1), with δ > 0, and ε ∈

(
0,
√
λmax(Σ)

)
. Take X1, X2, . . . , XN iid copies

of X and define Y as a random vector uniform in {X1, X2, . . . , XN}. Then

P
(
dH(Φq Y,ΦqX) ≤ ε

)
≥ 1− δ

when

N ≥ 1024λmax(Σ)

ε2(1− q)2

(
n log

1024nλmax(Σ)

ε2(1− q)2
+ log

4

δ

)
where λmax(Σ) is the largest eigenvalue of Σ.

Proof. From the linear equivariance of Φ (Lemma 11), we have that for any invertible n-by-n matrix A,

dH(Φq(AY ),Φq(AX)) = sup
θ∈Sn−1

∣∣hΦq(AY )(θ)− hΦq(AX)(θ)
∣∣

= sup
θ∈Sn−1

‖AT θ‖2

∣∣∣∣hΦq Y

(
AT θ

‖AT θ‖2

)
− hΦq X

(
AT θ

‖AT θ‖2

)∣∣∣∣
= σmax(A)dH(Φq Y,ΦqX)

where σmax(A) is the largest singular value of A. To see the above equalities, we refer to Section 1.7 of [Sch14]
and Section 0.6 in [Gar95].

We can write Σ = AAT , so that X = AZ where Z satisfies the assumptions of Theorem 10 and Y is
uniform in {AZ1, AZ2, . . . , AZN}. Then we have

dH(Φq Y,ΦqX) = σmax(A)dH(Φq(A
−1Y ),Φq Z) ≤ ε1σmax(A)

with probability at least 1− δ when

N ≥ 1024

ε21(1− q)2

(
n log

1024n

ε21(1− q)2
+ log

4

δ

)
.

Choosing ε1 = ε/σmax(A) = ε/
√
λmax(Σ) completes the proof.

To estimate membership, Theorem 10 will imply efficient estimation of the support function of the floating
body, which can be used together with the ellipsoid algorithm to estimate the radial function in the direction
of each new sample.

Lemma 13. Let X be a random variable with centrally-symmetric, isotropic, log-concave density. Then, for
q ∈ (1/2, 1), we have

q − 1

2
< Qq(X) ≤ 1 + log

1

2(1− q)
.

Proof. Let f be the density of X, supported on (−a, a). Note that for all t ∈ (−a, a),

• P (X ≤ t) ≥ q =⇒ Qq(X) ≤ t and

• P (X ≤ t) ≤ q =⇒ Qq(X) ≥ t.

By Lemma 5.7 in [LV07] we have that P (|X| > t) < exp(−t+ 1) for all t ≥ 0. This gives

P (X ≤ t) = 1− P (X ≥ t) ≥ 1− e−t+1/2

when t ≥ 0. So we get Qq(X) ≤ t whenever t ≥ 1− ln
(
2(1− q)

)
. For the lower bound, we use a simple bound

of P (X ∈ [0, t]) ≤ tf(0) ≤ t by log-concavity (see, e.g. [LV07]) so that P (X ≤ t) < q when t < q − 1/2.
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In particular, Lemma 13 implies that for a n-dimensional, centrally-symmetric, isotropic, log-concave
distribution, the floating body is contained in the ball of radius 1 − ln

(
2(1 − q)

)
and contains the ball of

radius q − 1/2. This generalizes to the following result:

Corollary 14. Let X be a random variable with centrally-symmetric log-concave density f . Let F be the
distribution function of X and let Σ be the covariance matrix of X. Then for q ∈ (1/2, 1),√

λmin(Σ)(q − 1/2)Bn2 ⊆
(
Φq(X)

)◦ ⊆√λmax(Σ)
(
1− ln

(
2(1− q)

))
Bn2 .

With bounds on the size of the floating body, we are ready to construct a membership oracle for the
floating body. However, we only have access to the support function; to check a single query point x directly,
one would have to verify that 〈x, θ〉 ≤ hΦq(X)(θ) for all θ ∈ Sn−1. To get around this infinite set of constraints,
we use the same approach as [AGNR15] and go through the polar body, where an estimate of the support
serves as an estimate of the radial function, meaning only a single constraint to check.

Subroutine 1 Weak Membership oracle for (ΦqX)◦

Input: Query point x ∈ Rn, samples of centrally-symmetric and log-concave random variable X, quantile q,
bounds s2

M ≥ λmax(Cov(X)), s2
m ≤ λmin(Cov(X)), accuracy ε, confidence δ.

Output: ε-weak-membership decision for x ∈ (ΦqX)◦.
1: Generate iid samples x(1), x(2), . . . , x(N) of X, for N = poly(n, 1/(1− q), sM , 1/ε, log(1/δ)), as given by

Corollary 12.
2: Compute the qth-quantile along x̂, call this h̃ = inf{h : |j : 〈x(j), x̂〉 ≤ h| ≥ qN}.
3: Return TRUE (“Feasible”) if ‖x‖ ≤ 1/h̃ and FALSE otherwise.

Lemma 15 (Correctness of Subroutine 1). Let X be a random variable with centrally-symmetric, log-concave
density. Let Σ = Cov(X) and suppose we have bounds s2

M ≥ λmax(Σ) and s2
m ≤ λmin(Σ). Then, given

query point x, q ∈ (1/2, 1), sM , sm, and ε, δ > 0, Subroutine 1 returns an ε-weak membership decision with
probability 1− δ with time and sample complexity poly(n, 1/(1− q), sM , 1/sm, 1/ε, log(1/δ)).

Proof. Corollary 12 gives that the estimate h̃ is within ε1 of the true support function h with probability
at least 1− δ, when the number of samples is N > poly(n, 1/(1− q), sM , 1/ε1, log(1/δ)). Using the bounds
provide by Corollary 14, we can invoke Lemma 4 to complete the proof.

To construct an (ε, δ)-weak membership algorithm for Φq(X), we mimic the approach of [AGNR15]. The
appropriate values of r and R come from Corollary 14 so that rBn2 ⊆ (Φq(X))◦ ⊆ RBn2 .

1. Use Subroutine 1 as an (ε2, δ)-weak membership oracle WMEM(Φq X)◦(ε2, δ, R, r). Theorem 4.3.2 of
[GLS88] — reproduced as Theorem 32 here — is used to implement an (ε1, δ)-weak validity ora-
cle WVAL(Φq X)◦(ε1, δ, R, r) which runs in oracle-polynomial time; it invokes the membership oracle
WMEM(Φq X)◦(ε2, δ/Q,R, r) a polynomial number of times for Q = poly(n, logR). Then the proof of
Theorem 4.3.2 in [GLS88] can be modified so that ε2 ≥ 1/ poly(1/ε1, R, 1/2).

2. Lemma 4.4.1 of [GLS88] shows how to construct an (ε, δ)-weak membership oracle WMEMΦq X(ε, δ, 1/r, 1/R)
using WVAL(Φq X)◦(ε1, δ, R, r) as a subroutine. The proof in [GLS88] shows that the membership oracle
invokes the validity oracle only once, with ε1 ≥ 1/ poly(1/ε, ‖x‖, 1/r) where x is the query point.

This approach is accurate and efficient as needed to estimate memberhip in the floating body of a sample.
The efficiency and correctness of this method follows the same analysis as Lemma 17 in [AGNR15], when
combined with the correctness and efficiency of Subroutine 1.

Theorem 16. Let X be a random vector with centrally-symmetric, log-concave density. Let Σ = Cov(X).
Then, given a query point x ∈ Rn, ε, δ > 0, and bounds s2

M ≥ λmax(Σ), s2
m ≤ λmin(Σ), there exists an

algorithm which gives an ε-weak membership decision for Φq(X) with probability 1− δ using time and sample
complexity poly(n, 1/(1− q), 1/sm, sM , 1/ε, log(1/δ)).
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6 Stable distribution quantile estimation

The class of stable distributions is a four-parameter family which includes important distributions such as
the Cauchy and Gaussian distributions. The former is of particular interest here because it is heavy-tailed in
the sense that it does not have a well-defined mean, and hence no covariance or higher moments. In this
section we consider the problem of estimating the quantiles of a symmetric α-stable distribution. We state a
bound on the error if the quantiles are estimated from a distribution that is close to the true distribution,
Lemma 18.

Lemma 17. Let G be a standard α-stable distribution function for 0 < α < 2 and with density function g.
Then there exists a constant a = a(α) > 0 such that, for 1/2 ≤ q ≤ 1, we have

g(G−1(q)) ≥ a(1− q)1+1/α.

Proof. We have the following tail behavior for 0 < α < 2 as x→∞ [Nol18, Theorem 1.12]:

1−G(x) ∼ cαx−α

g(x) ∼ αcαx−(α+1)

(where f(x) ∼ g(x) as x→∞means f(x)/g(x)→ 1). That is, for any ε > 0 there exists x0 > 0 such that for all
x ≥ x0 we have 1−G(x) ≤ (1+ε)cαx

−α and g(x) ≥ (1−ε)αcαx−(α+1). This implies x ≥ G−1(1−(1+ε)cαx
−α).

We write this inequality in terms of q = 1− (1 + ε)cαx
−α to get G−1(q) ≤ ((1 + ε)cα)1/α(1− q)−1/α. This

inequality holds for q ∈ [q0, 1), where q0 = G(x0). We use the tail behavior of g and the fact that it is
monotone decreasing in [0,∞) to get

g(G−1(q)) ≥ g(((1 + ε)cα)1/α(1− q)−1/α)

≥ (1− ε)αcα((1 + ε)cα)−(α+1)/α(1− q)1+1/α.

for q ∈ [q0, 1). Now set ε to any small constant (say, ε = 1/2), and notice that g ◦G−1 is continuous, positive
and monotone decreasing in [1/2, q0]. Thus, one can choose a > 0 so that g(G−1(q)) ≥ a(1 − q)1+1/α for
1/2 ≤ q ≤ 1.

Lemma 18. Let G be a standard α-stable distribution function for 0 < α < 2. Let F be a distribution
function satisfying supx|F (x)−G(x)| ≤ δ. Then there exists a constant c = c(α) > 0 such that, for q ≥ 1/2,
δ < 1− q, we have

|Qq(F )−Qq(G)| ≤ cδ/(1− q − δ)1+1/α.

Proof. Combine Lemma 9 with Lemma 17.

7 Floating body of the product of stable distributions

Here we build upon the results in Section 6 to construct a membership algorithm for the floating body when
the data comes from a stable distribution. We first suppose X is a random vector with iid α-stable coordinates,
and then further generalize to situations where X undergoes an unknown invertible linear transformation.
From the discussion in Section 6, the support function of ΦqX is given by hΦq(X)(θ) = ‖θ‖αQq(X1), which
implies that (ΦqX)◦ = Bnα/Qq(X1). This gives us the radial function of (ΦqX)◦ and efficient membership in
it and, via the ellipsoid algorithm, efficient membership in ΦqX.

We start with properties that will be helpful for the ICA example.

Lemma 19. Let X ∈ Rn be a random vector so that the coordinates have iid standard α-stable distributions.
Then, for q ∈ (1/2, 1),

1. Φq(X) is absolutely symmetric (that is, invariant under reflection through all coordinate hyperplanes).
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2. If Y is drawn uniformly from Φq(X), then EY Y T is positive definite.

3. (Linearly equivariant) Φq(AX) = AΦq(X) for any invertible A ∈ Rn×n.

Proof. Parts 1 and 2 are immediate from the definitions. Part 3 is a special case of Lemma 11.

Lemma 19 illustrates a way that the floating body still captures the “shape” of data in even the stable
setting, which includes many heavy-tailed distributions. As we show in Sections 9 and 10, one application of
this idea is that one can now recover an unknown linear transformation of data with stable distributions,
including ones which may be (very) heavy-tailed. In general, the floating body might serve as a surrogate for
data from the underlying distribution in situations that rely on estimating the moments of a sample but
which are sensitive to outliers present in heavy-tailed data.

The primary result of this section is that given only polynomially-many observations of X, the empirical
quantiles will provide an accurate estimate of the support function for the floating body:

Theorem 20. Let α ∈ [1, 2). Let X ∈ Rn be a random vector with iid standard α-stable coordinates. Let
q ∈ (1/2, 1), δ > 0, ε ∈ (0, 1]. Let X1, . . . , XN be iid copies of X. Let Y be a random vector distributed
uniformly in {X1, . . . , XN}. Then there exists a constant c = c(α) > 0 such that

P
(
dH(Φq Y,ΦqX) ≤ ε

)
≥ 1− δ when N ≥ cn

ε2(1− q)4

(
n log

n

ε(1− q)
+ log

4

δ

)
.

Proof. From [VC71, Example 3] we have that the shatter function mH of the class H of (affine) halfspaces in
Rn satisfies mH(l) ≤ ln + 1. Thus, from Theorem 7 we get

P
(

sup
H∈H

|µN (H)− µ(H)| > ε1

)
≤ δ (3)

when

N ≥ 16

ε21

(
n log

16n

ε21
+ log

4

δ

)
. (4)

Let θ ∈ Sn−1. From the additivity property of the α-stable distribution (as in the discussion in Section 3),
we have that 〈X, θ〉/‖θ‖α is distributed as a standard α-stable distribution. Let G be the cdf of 〈X, θ〉/‖θ‖α.
Let F be the cdf of 〈Y, θ〉/‖θ‖α. If the event in (3) does not hold, then we have supx|F (x) − G(x)| ≤ ε1
(using that this distance between distributions is invariant under scaling along the x-axis). Using Lemma 18
we conclude

|Qq(F )−Qq(G)| ≤ cε1
(1− q − ε1)1+1/α

.

for ε1 < 1− q. That is,

|Qq(〈Y, θ〉)−Qq(〈X, θ〉)| ≤
cε1‖θ‖α

(1− q − ε1)1+1/α
≤ cε1

√
n

(1− q − ε1)2
.

We want this quantile error to be at most ε. We take ε1 = c′(1− q)2ε/
√
n for c′ > 0 to be determined. Using

that ε ≤ 1 and if we choose c′ ≤ 1/(2c), the error satisfies:

cε1
√
n

(1− q − ε1)2
≤ cc′(1− q)2ε

(1− q − c′(1−q)2√
n

)2
≤

1
2 (1− q)2

(1− q − c′(1−q)2√
n

)2
ε.

If c′ ≤ 1/4 then the fraction in front of ε is at most 1. Thus, we set c′ = min{1/(2c), 1/4}.
Since Q̃q and Qq are the support functions of Φq Y and ΦqX, a uniform bound on their difference

ensures that the corresponding floating bodies have the same bound in the Hausdorff metric, see [Sch14]
Theorem 1.8.11. Substituting our choice of ε1 in (4) completes the proof.
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Corollary 21. Let α ∈ [1, 2). Let X = AS ∈ Rn where S is a random vector with iid standard α-stable
coordinates. Let q ∈ (1/2, 1), δ > 0, ε ∈ (0, 1]. Let X1, . . . , XN be iid copies of X. Let Y be a random vector
distributed uniformly in {X1, . . . , XN}. Then there exists a constant c = c(α) > 0 such that

P
(
dH(Φq Y,ΦqX) ≤ ε

)
≥ 1− δ when N ≥ cnσ2

max(A)

ε2(1− q)4

(
n log

nσmax(A)

ε(1− q)
+ log

4

δ

)
.

Proof. The proof follows an identical procedure as the proof of Corollary 12, where we replace ε in the
conclusion of Theorem 20 by ε/σmax(A).

For the membership algorithm, Subroutine 2, we will need bounds on the size of
(
ΦqX

)◦
:

Lemma 22. Let q ∈ (1/2, 1). Let X = AS ∈ Rn where S is a random vector with each coordinate iid as a stan-
dard α-stable distribution for α ∈ [1, 2], and A is an n-by-n invertible matrix. Then (Qq(X1)σmax(A)

√
n)−1Bn2 ⊆

(Φq(X))◦ ⊆ (Qq(X1)σmin(A))−1Bn2 and Qq(X1)σmin(A)Bn2 ⊆ Φq(X) ⊆ Qq(X1)σmax(A)
√
nBn2 .

Proof. From the discussion above, (Φq S)◦ is the lα ball, scaled by 1/Qq(S1). Letting α vary from 1 to 2 and
using linear equivariance gives the result. The second part of the conclusion follows from polarity.

With bounds on the size of (Φq(X))◦, we construct the membership algorithm, Subroutine 2:

Subroutine 2 Weak Membership oracle for (ΦqX)◦

Input: Query point x, samples of random vector X = AS where S has iid standard α-stable coordinates
quantile q, bounds sM ≥ σmax(A), sm ≤ σmin(A), accuracy ε, confidence δ.

Output: ε-weak-membership decision for x ∈ (ΦqX)◦.
1: Generate iid samples x(1), x(2), . . . , x(N) of X, for N = poly(n, 1/(1− q), sM , 1/ε, log(1/δ)) as needed in

Corollary 21.
2: Estimate Qq(〈X, x̂〉) as h̃ = inf{h : |j : 〈x(j), x̂〉 ≤ h| ≥ qN}.
3: Return TRUE (“Feasible”) if ‖x‖ ≤ 1/h̃ and FALSE (“Infeasible”) otherwise.

Lemma 23 (Correctness of Subroutine 2). Let X = AS ∈ Rn where S has a standard α-stable distribution
with α ≥ 1 and A is an invertible n-by-n matrix. Let ε ∈ (0, 1] and δ > 0. Then, given q ∈ (1/2, 1),
sM ≥ σmax(A), sm ≤ σmin(A), Subroutine 2 is an (ε, δ)-weak membership oracle for (ΦqX)◦ with time and
sample complexity poly(n, 1/(1− q), sM , 1/sm, 1/ε, log(1/δ)).

Proof. Corollary 21 gives that |hΦq(X)(θ)− hΦq(Y )(θ)| < ε1 for all θ with probability at least 1− δ when

N > poly(n, 1/(1− q), sM , 1/ε1, log(1/δ)).

So we can use Lemma 4 with Lemma 22 to complete the proof.

Finally, from membership in the polar of the floating body, one can weakly query membership in the
primal, through the same process as in the log-concave setting. That is, using Subroutine 2, we can now
construct a membership oracle for the floating body of X. The algorithm is the same as in the log-concave
case, see Section 5, specifically the discussion around Theorem 16.

Theorem 24. Let X = AS ∈ Rn satisfy the requirements of Lemma 23. Let ε ∈ (0, 1] and δ > 0. Then,
given q ∈ (1/2, 1), sM ≥ σmax(A), sm ≤ σmin(A), there exists an (ε, δ)-weak membership oracle for ΦqX
which uses and sample complexity poly(n, 1/(1− q), sM , 1/sm, 1/ε, log(1/δ)).
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8 Approximation for power-law distributions

In this section we use our understanding of the floating body of a product of stable distributions to more general
distributions with power-law distributions (sometimes known as Paretian, whose tails decay approximately like
Pr(X ≥ x) ∼ 1/xα, α > 0). The main idea is the following. Given a random vector X whose coordinates have
power-law distributions of fixed exponent α, consider the floating body of Sk = (X(1) + · · ·+X(k))/bk − ak,
where X(1), . . . , X(k) are iid copies of X and ak, bk are constants. By the generalized central limit theorem
(GCLT) as k grows, there are constants ak, bk so that the distribution of Sk converges to a stable distribution
with the given parameter α [GK68, Pet75]. Algorithmic versions of our idea follow easily from known results
about the rate of convergence in the GCLT [Sat73].

A natural application of this idea is ICA with power-law distributions and α ≥ 1 (discussed in Section 10).
The restriction to α ≥ 1 is because the quantile function is convex only in this case (Section 7), and convexity
leads to efficient algorithms. The case α > 1 is already known to be efficiently solvable [AGNR15], so for
clarity of presentation we only state formal results for the case α = 1.

8.1 Approximation for product of power-law distributions with α = 1

We first bound the error of estimating quantiles of a symmetric stable distribution from an approximation
to the distribution (Lemma 25) Then we use this to show that a sum of iid copies of a random vector
distributed as a product of power-law distributions with a certain tail decay behaves like a product of Cauchy
distributions (Theorem 27).

Lemma 25. Let q ≥ 1/2. Let δ < 1− q. Let G be the standard Cauchy distribution function. Let F be a
distribution with supx|F (x)−G(x)| ≤ δ. Then

|Qq(F )−Qq(G)| ≤ πδ

4(1− q)(1− q − δ)
.

Proof. We will use Lemma 8. Let x0 be such that q = G(x0). This implies x0 = cot(π(1− q)). As x0 ≥ 0,

we have G(x0)−G(x0 − ε) ≥ G(x0 + ε)−G(x0) = arctan(x0+ε)−arctan(x0)
π = 1

π arctan( ε
1+x2

0+x0ε
). Given that

G is strictly increasing and in view of the observation after Lemma 8, it is enough to require that this last
expression be greater than or equal to δ. Solving for ε, we get that we can apply Lemma 8 whenever

ε ≥ (1 + x2
0) tan(πδ)

1− x0 tan(πδ)

and 1− x0 tan(πδ) > 0. This last condition is equivalent to δ < 1− q. Lemma 8 gives

|Qq(F )− x0| ≤ (1 + x2
0)

tan(πδ)

1− x0 tan(πδ)

=
1

sin2(π(1− q))
tan(π(1− q)) tan(πδ)

tan(π(1− q))− tan(πδ)

=
1

sin(π(1− q))
sin(πδ)

sin(π(1− q − δ))
.

The claim follows from this and inequality 2x ≤ sin(πx) ≤ πx for 0 ≤ x ≤ 1/2.

Given random variable X, let FX denote the cdf of X. Given cdfs F,G, let d(F,G) := supx∈R|F (x)−G(x)|.
The following property holds for r.v.s X,Y and any real number c 6= 0: d(FcX , FcY = d(FX , FY ).

Lemma 26. Let X,Y, Z be mutually independent. Then d(FX+Z , FY+Z) ≤ d(FX , FY ).
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Proof. Let t ∈ R. We have

FX+Z(t) = Pr(X + Z ≤ t) =

∫
Pr(X ≤ t− z) dFZ(z)

and a similar inequality for Y , and∣∣∣∣∫ Pr(X ≤ t− z) dFZ(z)−
∫

Pr(Y ≤ t− z) dFZ(z)

∣∣∣∣ ≤ d(FX , FY ).

Thus, |FX+Z(t)− FY+Z(t)| ≤ d(FX , FY ). The claim follows.

Theorem 27. Let X be a random vector with independent coordinates X1, . . . , Xn with cdfs F1, . . . , Fn,
respectively. Suppose that all Fis satisfy the assumptions of Theorem 33. Let X(1), . . . , X(k) be iid copies of
X. Let Sk = (X(1) + · · ·+ X(k))/k. Let Y be a random vector with iid standard Cauchy coordinates. Let
q ∈ [1/2, 1]. Then, there exists a constant c > 0 (that depends only on κ from Theorem 33 among Fis) such
that

sup
θ∈Sn−1

|Qq(Sk, θ)−Qq(Y, θ)| ≤
c

(1− q)(1− q − c(n/k))

n

k
.

(Note that the conclusion simplifies to a more interpretable supθ∈Sn−1 |Qq(Sk, θ)−Qq(Y, θ)| ≤ c′′n/k for
some c′′ whenever 1− q ≥ c′ and cn/k ≤ c′/2 for some c′ > 0).

Proof. Let θ ∈ Sn−1. We have Qq(Sk, θ) = Qq(〈Sk, θ〉). Let F = 〈Sk, θ〉, G = 〈Y, θ〉. We have (Sk)i =∑k
j=1X

(j)
i so that d((Sk)i,Cauchy(0, 1)) ≤ c/k, for i = 1, . . . , n (Theorem 33). Also, 〈Sk, θ〉 =

∑n
i=1(Sk)iθi

and d((Sk)iθi,Cauchy(0, θi)) = d((Sk)i,Cauchy(0, 1)) ≤ c/k. Lemma 26 inductively with triangle inequality
implies d(〈Sk, θ〉, G) ≤ cn/k. Lemma 25 implies |Qq(Sk, θ)−Qq(Y, θ)| ≤ c 1

(1−q)(1−q−c(n/k))n/k. The claim

follows.

9 ICA with stable distributions for α ≥ 1

Finally, having access to the floating body means that we can generate a sample approximately uniform
inside it. In this section, we give an application which uses the floating body in a broader algorithmic context.
We show that one can recover an unknown linear transformation of an α-stable random vector efficiently in
high dimemsions when α ≥ 1. This extends the result in [AGNR15] which requires α > 1. We formalize this
setting as follows:

Definition 28 (α-Stable ICA Model). We say that random vector X follows an α-stable ICA model if
X = AS where A is an unknown invertible matrix and the coordinates of S are iid and drawn from an α-stable
distribution.

If X = AS is drawn form an α-Stable ICA model, then we general samples from its corresponding floating
body, those samples will be ultimately from a scaled lα ball. Then, we can take advantage of a reduction given
in [AGR13] specifically developed to relate the ICA problem with that of learning a linearly transformed lα
ball. The procedure of this would be as follows:

1. Construct a weak membership oracle for Φq(X).

2. Use a random walk, e.g. [DFK91], for (approximately) uniform samples from Φq(X).

3. Provide samples from step 2 to Algorithm 3 in [AGR13], along with α, and get estimated matrix Ã.
Return Ã.
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This reduction, though convenient, suffers slightly from the need to know α a priori. However, if α is
unknown, one can estimate it first from samples using known techniques, see, e.g. [UZ11]. We omit an
analysis of the effect this would have on the total error of our algorithm. Furthermore, the choice of q here
would play a role in the practical efficiency, but not its asymptotic behavior.

For a more general algorithm (that does not need to know α), one can use the approach in [AGNR15]
where the samples from the centroid body of X are replaced by samples from the floating body. This will have
more precise guarantees during the orthogonalization stage than the reduction to the algorithm in [AGR13],
but is slightly complicated by the second, “damping”, phase to recover the rotation. Combining Lemma 19
with [AGNR15, Lemma 18], we now know that if X = AS satisfies Definition 28 then Cov(Φq(X))−1/2 is an
orthogonalizer of X. The high-level adaptation of the algorithm in [AGNR15] is shown below as Algorithm 1.

Algorithm 1 ICA For α-stable signals

Input: Samples of random vector X = AS with iid standard α-stable coordinates, quantile parameter
q ∈ (1/2, 1), bounds sM ≥ σmax(A), sm ≤ σmin(A), accuracy ε, confidence δ.

Output: Matrix Ã
1: Use a random walk such as the one constructed by [DFK91] (provided access to a weak oracle from

Subroutine 2) to generate N samples uniformly distributed in Φq(X).

2: Apply Algorithm 3 from [AGR13] to the samples with parameter α, to get Ã. Return Ã.

10 ICA with Cauchy tails

In Section 9 we demonstrated a solution for ICA with stable distributions when α ≥ 1. This result is based
on reducing ICA to learning a linear transformation of an lp-ball (solvable by Algorithm 3 from [AGR13]).
The reduction is based on the idea that the floating body of an ICA model X = AS in this case is an lp-ball,
which transforms in the same way as the underlying random vector X so that recovering the transformation
of the floating body recovers A.

In this section we extend these ideas to distributions whose tails decay approximately like stable distri-
butions with α ≥ 1 (Paretian tails whose densities decays like 1/xα+1 as x→∞), without the need to be
exactly a stable distribution. The results are an application of the rate of convergence to a stable distribution
in the GCLT. The approximation of distributions is in the sense of the domain of attraction of a stable
distribution in that theorem (the set of distributions such that sums of iid random variables according to any
such distribution would converge to a stable distribution).

The idea of our algorithm for ICA model X = AS with Paretian tails is the following: For k large enough,
generate samples of Sk = (X(1) + · · ·X(k))/k. By Theorem 27, the quantile function of Sk, Qq(Sk, ·), is close
to the quantile function of A applied to a vector with iid stable coordinates. This quantile function is convex
for α ≥ 1, and therefore Qq(Sk, ·) is approximately convex which leads to and efficient implementation of an
ε-membership oracle in the floating body of the transformed stable vector. This floating body is a linearly
transformed lp-ball. Algorithm 3 from [AGR13]) recovers the transformation given the oracle. For the reasons
explained in Section 8, formal results are only stated for the case α = 1.

Theorem 29. Let X be a random vector drawn from an ICA model X = AS such that coordinates Si are
iid and follow distributions Fi satisfying the assumptions of Theorem 33.Let Tk = (X(1) + · · ·+X(k))/k. Let
S̄ be a random vector with iid standard Cauchy coordinates. Let X̄ = AS̄. Let Y be uniformly random in
Φq(X̄). Then

1. Cov(Y )−1/2 is an orthogonalizer of X̄ and X (in the sense of [AGNR15]).

2. supθ∈Sn−1 |Qq(Tk, θ)−Qq(X̄, θ)| ≤ c33
(1−q)(1−q−c33(n/k))

n
k ‖A‖.

3. Subroutine 3 is an ε-weak membership oracle for (Φq X̄)◦.
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4. Algorithm 1 with Subroutine 3 approximately recovers A.

Proof. 1. ICA models X̄ and X use the same matrix A and therefore an orthogonalizer for X̄ is also an
orthogonalizer for X. From Lemma 19 and [AGNR15, Lemma 33], we have that Cov(Y )−1/2 is an
orthogonalizer for X̄. The claim follows.

2. This follows from Theorem 27 and an analysis of how the error changes under a linear transformation.
Let Uk = A−1Tk. Note that Uk = (S(1) + · · ·+ S(k))/k where S(i) = A−1X(i) are iid copies of S. We
have

Qq(Tk, θ)−Qq(X̄, θ) = Qq(〈AUk, θ〉)−Qq(〈AS̄, θ〉)
= Qq(〈Uk, AT θ〉)−Qq(〈S̄, AT θ〉)

= ‖AT θ‖[Qq(〈Uk, ˆ(AT θ)〉)−Qq(〈S̄, ˆ(AT θ)〉)].

Thus,

sup
θ∈Sn−1

|Qq(Tk, θ)−Qq(X̄, θ)| = sup
θ∈Sn−1

‖AT θ‖ · |Qq(〈Uk, ˆ(AT θ)〉)−Qq(〈S̄, ˆ(AT θ)〉)|.

The claim follows from this and Theorem 27 applied to Uk and S̄.

3. The choice of k in Subroutine 3 implies k ≥ 2c33n/(1− q) so that (1− q − c33(n/k)) ≥ (1− q)/2. This
and the choice of k again in part 2 imply

sup
θ∈Sn−1

|Qq(Tk, θ)−Qq(X̄, θ)| ≤
1

2ε
.

With this guarantee, the rest of the analysis is the same the analysis of Subroutine 2 (with ε/2 in place
of ε).

4. Given samples from model X = AS, Subroutine 3 implements a weak membership oracle for Φq(X̄)◦

(part 3). X̄ = AS̄ is an ICA model with Cauchy components. Therefore, Algorithm 1, when given
access to a weak membership oracle for Φq(X̄)◦, recovers A.

Subroutine 3 Weak Membership oracle for (Φq X̄)◦

Input: Query point x, samples of random vector X = AS as in Theorem 29, quantile parameter q, bounds
sM ≥ σmax(A), sm ≤ σmin(A), accuracy parameter ε, confidence parameter δ.

Output: ε-weak-membership decision for x ∈ (Φq X̄)◦.
1: Generate iid samples x(i,j), i = 1, . . . , k, j = 1 . . . , N of X, for N = poly(n, 1/(1− q), sM , 1/ε, log(1/δ))

as in Subroutine 2 and k = 2c33
n

1−q max{(1− q)−1, 2sM/ε}.
2: Let t

(j)
k =

∑k
i=1 x

(i,j), j = 1, . . . , N .

3: Estimate Qq(Tk, x̂) as h̃ = inf{h : |j : 〈t(j)k , x̂〉 ≤ h| ≥ qN}
4: Return TRUE if ‖x‖ ≤ 1/h̃ and FALSE otherwise.
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[SW90] Carsten Schütt and Elisabeth Werner. The convex floating body. Mathematica Scandinavica,
pages 275–290, 1990.

[Tuk75] John W Tukey. Mathematics and the picturing of data. In Proceedings of the International
Congress of Mathematicians, Vancouver, 1975, volume 2, pages 523–531, 1975.

[UZ11] Vladimir V Uchaikin and Vladimir M Zolotarev. Chance and stability: stable distributions and
their applications. Walter de Gruyter, 2011.

[VC71] V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to
their probabilities. Theory of Probability and its Applications, 16:264 – 280, 1971.

A Algorithmic convexity

We use the following result: Given a membership oracle for a convex body K one can implement efficiently
a membership oracle for K◦, the polar of K. This follows from applications of the ellipsoid method from
[GLS88]. Specifically, we use the following facts: (1) a validity oracle for K can be constructed from a
membership oracle for K [GLS88, Theorem 4.3.2]; (2) a membership oracle for K◦ can be constructed from a
validity oracle for K [GLS88, Theorem 4.4.1]. The following definitions and theorems come (occasionally
with slight rephrasing) from [GLS88] except for the notion of (ε, δ)-weak oracle.

Definition 30 ([GLS88]). The ε-weak validity problem for K is the following: Given a vector c ∈ Qn, a
rational number γ, and a rational number ε > 0, either (i) assert that cTx ≤ γ + ε for all x ∈ K‘−ε, or (ii)
assert that cTx ≥ γ − ε for some x ∈ Kε. The notion of ε-weak validity oracle and (ε, δ)-weak validity oracle
can be defined similarly to Definition 3.

Definition 31 ([GLS88, Section 2.1]). We say that an oracle algorithm is an oracle-polynomial time
algorithm for a certain problem defined on a class of convex sets if the running time of the algorithm is
bounded by a polynomial in the encoding length of K and in the encoding length of the possibly existing further
input, for every convex set K in the given class.

The encoding length of a convex set depends on how the convex set is presented; further discussion can
also be found in [GLS88].
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Theorem 32 (Theorem 4.3.2 in [GLS88]). Let R > r > 0 and a0 ∈ Rn. There exists an oracle-polynomial
time algorithm that solves the weak validity problem for every convex body K ⊆ Rn contained in the ball of
radius R and containing a ball of radius r centered at a0 given by a weak membership oracle. The encoding
length of K is n plus the length of the binary encoding of R, r, and a0.

We remark that Theorem 4.3.2 as stated in [GLS88] is stronger than the above statement in that it
constructs a weak violation oracle (not defined here) which gives a weak validity oracle which suffices for us.
The algorithm given by Theorem 4.3.2 makes a polynomial (in the encoding length of K) number of queries
to the weak membership oracle.

B Rate of convergence to Cauchy distribution

The following result gives the rate of convergence of a sum of symmetric iid random variables, whose distribution
function decays at a rate of 1/x, to the Cauchy distribution. It is a specialization of a characterization of
distributions converging to a stable distribution [Pet75, Chapter IV, Section 3, Theorem 14] and a result
giving the rate [Sat73].

A positive function h(x) for x > 0 is slowly varying if for c > 0 we have h(cx)
h(x) → 0 as x→∞.

Theorem 33 (Rate of convergence to Cauchy distribution). Let ξ1, ξ2, . . . be symmetric iid random variables

with cdf F . Suppose that 1 − F (x) = 1+o(1)
x h(x) as x → ∞, where h is slowly varying (in words, F is in

the domain of attraction of symmetric stable distribution with α = 1). Let G be the standard Cauchy cdf.
Suppose

∫
xd(F (x) − G(x)) = 0. Let κ = 2

∫
|x||F (x) − G(x)|dx. Let Fk be the cdf of (ξ1 + · · · + ξk)/k.

Assume κ <∞. Then there exist an absolute constant c > 0 such that for all k ≥ 1, supx|Fk(x)−G(x)| ≤
cmax(κ, κk/(2k+1))k−1.

Proof. The condition on the domain of attraction is well known in this context, see for example [Pet75,
Chapter IV, Section 3, Theorem 14]. The rate is a specialization of a result from [Sat73] to the symmetric
case with α = 1.
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