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Abstract

We consider the problem of minimizing a convex function plus a poly-
nomial p over a convex body K. We give an algorithm that outputs a
solution x whose value is within � rangeK(p) of the optimum value, where
rangeK(p) = supx∈K p(x)− infx∈K p(x). When p depends only on a con-
stant number of variables, the algorithm runs in time polynomial in 1/�,
the degree of p, the time to round K and the time to solve the convex
program that results by setting p = 0.
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1 Introduction

We give an algorithm to minimize approximately f(x)+p(x) over a convex body
K in ℝn where f is any convex function and p is any polynomial in a constant
number of variables. Our solution x satisfies

f(x) + p(x) ≤ f(x∗) + p(x∗) + � rangeK(p)

where � is a given error parameter, x∗ is an optimum solution and

rangeK(p) = sup
x∈K

p(x)− inf
x∈K

p(x).

The algorithm runs in time(
O

(
kd2√
�

))k

T (f,K) + T̃ (K)
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where k is the number of variables that appear in p, d is the degree of p, T (f,K)
is the time to solve the convex program minx∈K f(x) and T̃ (K) is the time to
put K in near-isotropic position (discussed in Section 2).

In situations where p is a “small perturbation”, the range of p is small and
hence the error the algorithms makes. Also clearly the algorithm generalizes
traditional convex optimization.

This paper is inspired by a result of Vavasis [7] for the case when p is
quadratic with slightly different error bounds.

2 Preliminaries

For a bounded set C ⊆ ℝn, let wC denote the width of C, that is

wC = inf
ℎ∈Sn−1

(sup
x∈C

ℎTx− inf
x∈C

ℎTx).

Let Bn denote the n-dimensional Euclidean unit ball. The volume of Bn is

�n/2

Γ(n
2 + 1)

.

A convex body K is said to be in isotropic position if its center of gravity is
the origin and for any unit vector v, one has

1

vol(K)

∫
K

(v ⋅ x)2 = 1.

It is known that for any convex body there is an affine transformation which
puts the body in isotropic position.

We will now quote definitions and results from [2] about the existence of
an efficient randomized algorithm that puts a convex body in near isotropic
position.

For a convex body K, let b(K) denote its center of gravity.

Definition 1 (2.4 in [2]). We say that a convex body K is in �-nearly isotropic
position (0 < � ≤ 1), if

∥b(K)∥ ≤ �,
and for every vector v ∈ ℝn,

(1− �)∥v∥2 ≤ 1

vol(K)

∫
K−b(K)

(vTx)2 dx ≤ (1 + �)∥v∥2

Theorem 2 (Corollary 5.2 in [2]). Let � < 1/2. If K is in �-near isotropic
position, then

(1− 2�)Bn ⊆ K ⊆ (1 + 2�)(n+ 1)Bn.

The following result is a specialization of Theorem 2.5 from [2]. There are
some mistakes in the statement of that theorem, but a correct statement can
be obtained by looking at the results on which it depends (Lemma 5.18 and
Theorem 5.20 from [2])
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Theorem 3. There exists a randomized algorithm that, when given numbers
0 < r ≤ R and access to a membership oracle of a convex body K ⊆ ℝn with
rBn ⊆ K ⊆ RBn, finds an affine transformation A for which AK is in 1/4-
nearly isotropic position with probability at least 1 − �. The number of oracle
calls is

O∗

(
n5
(

log
R

r

)3
)
.

Here O∗ means that logarithmic factors in n and 1/� are ignored, where
� is the probability of failure. The improved random walks in [4] imply that
one can approximately round a convex body in time O∗(n4 logc(R/r)) for some
constant c, but we use the results from [2] because they are in a form that is
slightly closer to what we need.

3 Optimizing a Convex Program with a Polyno-
mial Perturbation

Formally, for a convex body K ⊆ ℝn, a convex function f : ℝn → ℝ and a
polynomial p that depends on only k variables, let problem (P ) be:

min g(x) = f(x) + p(x)

subject to x ∈ K
(P )

The algorithm that we propose to solve (P ) is essentially an enumeration
over a suitable grid in the space of the variables that appear in the polynomial.
It is possible to guarantee a certain quality of approximation because of a known
bound on the gradient of a polynomial in a convex set as a function of the range
of the polynomial (Theorem 5).

Let proj : ℝn → ℝk be the orthogonal projection onto the subspace of the
variables that appear in p. Consider a covering C of 3

2 (k + 1)Bk with cubes
having side

s =
�

8d2

√
�

k
. (1)

The algorithm will put proj(K) in 1/4-nearly isotropic position by an affine
transformation A (see Section 2), which implies that Aproj(K) ⊆ 3

2 (k + 1)Bk,
and C is also a covering of A proj(K). We will take C to be the set of all cubes
with centers in sℤk that intersect 3

2 (k + 1)Bk. These cubes are contained in

( 3
2 (k + 1) + s

√
k)Bk, and thus

∣C∣ ≤

(
O(
√
k)

s

)k

(2)

(using that the volume of each cube is sk and the volume of the ball given in
Section 2).
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The algorithm uses the following piecewise linear approximation of p: For
every cube C with center yC , define

�C(x) = p(A−1yC) +∇p(A−1yC)T (x−A−1yC).

Algorithm 1

1. Compute an affine transformation A : ℝk → ℝk such
that Aproj(K) is in 1/4-nearly isotropic position.

2. For every cube C ∈ C, compute an optimal solution
xC to

min
x∈proj−1 A−1(C)∩K

f(x) + �C(x).

If this problem is infeasible, remove C from C.

3. Let C∗ = argminC∈C f(xC) + p(xC). Output xC∗ .

Let T (f,K) be the time to solve the convex program obtained from P when
p = 0. This can be done in polynomial time with mild assumptions on K and
f and their representation [1, 3]. Let T̃ (K) be the time to put the projection
of K in 1/4-nearly isotropic position. If K is given by a membership oracle and
numbers 0 < r ≤ R so that rBn ⊆ K ⊆ RBn, then an efficient algorithm is
guaranteed by Theorem 3.

Theorem 4. Let x∗ be an optimum solution of Problem P. Algorithm 1 outputs
x ∈ K satisfying

f(x) + p(x) ≤ f(x∗) + p(x∗) + � rangeK(p)

in time (
O

(
kd2√
�

))k

T (f,K) + T̃ (K).

Proof. By means of Theorem 2 we have that Bk/2 ⊆ Aproj(K), which implies
that the width of Aproj(K) is at least 1/2. With this, we will now analyze the
error that the algorithm makes when replacing p by �C . We apply Corollary
6 and Taylor’s theorem on the multivariate polynomial q : ℝk → ℝ, q(x) =
p(A−1x) satisfying rangeA proj(K)(q) = rangeK(p) to get for any cube C and for

all x ∈ proj−1A−1(C) ∩K:

∣�C(x)− p(x)∣ ≤ 1

2
sup

z∈K,ℎ∈Sn−1

∣ℎT∇2q(Az)ℎ∣ ∥A proj(x)− yC∥2

≤ 16

�2

d4

w2
A proj(K)

rangeA proj(K)(q)s
2k

≤ 64

�2
d4 rangeK(p)s2k

≤ � rangeK(p).
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This implies g(xC∗) ≤ OPT + � rangeK(p).
The bound on the running time follows from Equations (1) and (2).

The following result is a slight reformulation of a result by Skalyga [6] (who
proved it with constant 4/�, it was proved before with constant 2 by Wilhelmsen
[8], [5, Section 6.1.5]). This is a multivariate generalization of a univariate
inequality by A. A. Markov [5, Chapter 6, Theorem 1.2.1]

Theorem 5. Let K ⊆ ℝn be a convex body. Let p : K → ℝ be a multivariate
polynomial of degree d. Then for any x ∈ K:

∥∇p(x)∥ ≤ 4

�

d2 rangeK(p)

wK
.

If we just used Theorem 5, we could only use a constant approximation in
the role of our linear approximation �C to p and the dependence on � of our
algorithm would be 1/�. But one can easily use Theorem 5 inductively to get a
second order version of it, and be able to use a linear approximation �C :

Corollary 6. Let K ⊆ ℝn be a convex body. Let p : K → ℝ be a multivariate
polynomial of degree d. Then for any x ∈ K and ℎ ∈ Sn−1:

∣ℎT∇2p(x)ℎ∣ ≤ 32

�2

d4 rangeK(p)

w2
K

.

Proof. Use Theorem 5 twice on the polynomials x 7→ ∇p(x)Tℎ and p to get:

∣ℎT∇2p(x)ℎ∣ ≤ 4

�

d2 rangeK(∇p(⋅)Tℎ)

wK

≤ 8

�

d2 supx∈K ∣∇p(x)Tℎ∣
wK

≤ 32

�2

d4 rangeK(p)

w2
K

4 Discussion

Vavasis’s paper is crucially based on a result similar to Theorem 5 for quadratic
polynomials. Note that the above theorem essentially asserts that a degree
d polynomial cannot be wild at any place. The only factor that can make
its gradient too large is the width which we bound using isotropic position. An
interesting open problem is to extend the results to a larger class of perturbations
of convex minimization problems. In effect any function satisfying Theorem 5
type of conclusion would be amenable to this. In a sense with Theorem 5
and efficient methods to find near-isotropic position on hand, the current paper
can be viewed as just using them together. But given that polynomials are
very general and not too many clean generalizations of convex optimization are
known, this records one such while raising the question of possibly others.
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