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Outline.

■ Description and motivation of the problem of convexity
testing.

■ Our results. A convexity tester with exponential query
complexity. A natural “lines-based” algorithm has exponential
complexity.
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Convexity Testing. Motivation.

■ The subject of this talk is another problem that fits the
property testing framework: informally, checking
algorithmically whether a set in R

n is convex.
■ One of the motivations of this problem: there is hope that

approximately convex sets can be sampled efficiently.
Sampling makes a series of algorithmic problems tractable,
like volume approximation.
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Problem Statement.

■ Specification of the input set: as a minimum we need a
“membership oracle”, that is, a black box that takes as input
a point x ∈ R

n and answers the question “Does x belong to
the input set?”.

■ A membership oracle allows the existence of short proofs of
non-convexity: a triple (x, y, z) such that z is in the segment
[x, y], and x and y are in the input but z is not.
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Problem Statement.

■ If the given set is almost convex (say, a convex set missing a
point), then it is essentially impossible to detect its
non-convexity.

■ We relax the requirement of the algorithm to accepting when
the set is convex, and rejecting when it is far from convex,
with high probability.

■ Distance between sets: volume of the symmetric difference.

d(S, C) = vol(S∆C)

Analogous to other examples of property testing.
■ We say that a set S is ǫ-convex iff there exists a convex set C

such that
d(S, C) ≤ ǫ vol(S).
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Problem Statement.

■ The problem is still intractable with just a membership oracle:
e.g., when some part of the set is far from the rest, how do
we find it?

■ One solution: the algorithm also has access to a “random
oracle”, which gives uniformly and independently sampled
points from the input set.

■ Having a random oracle seems to be consistent with the
chosen metric, which is based on volume.
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Problem Statement.

In summary, for us, a tester of convexity is an algorithm that,
when given as input a distance 0 < ǫ < 1 and a confidence
parameter δ and access to the membership and random
oracles of a set S ⊆ R

n, accepts with probability at least 1− δ if
S is convex and rejects with probability 1 − δ if the set is not
ǫ-convex.
The (total) query complexity of a tester is the number of
queries made by it, to any oracle.
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Related work.

■ Parnas, Ron, Rubinfeld: On testing convexity and
submodularity. (2003)
This paper includes the description and analysis of an
algorithm for testing convexity of discrete functions, in one
dimension.
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Outline.

■ Property testing. Description and motivation of the problem
of convexity testing.

■ Our results. A convexity tester with exponential query
complexity. A natural “lines-based” algorithm has exponential
complexity.
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Closest Convex Set Exists.

■ Given a compact set, a closest convex set exists:
Our distance is continuous in the space of convex bodies,
which has nice compactness properties (the space of convex
bodies contained in a bounded domain with the empty set is
compact, by Blaschke’s selection theorem).



- p. 11/17

Tester with Exponential Query Complexity.

■ There exists a tester with query complexity poly(n)
(

c

ǫ

)

n

,
independent of the set.
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Tester with Exponential Query Complexity.

Tester:
■ Get

(

cn

ǫ

)

n

random points from the input set S and consider
their convex hull C.

■ Check that the volume of the symmetric difference between
C and the input set is small by using both oracles.

S

C
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Analysis of a Lines-Based Test.

■ What about a test that checks the convexity along some
lines? More precisely, random lines determined by pairs of
random points from the input set.

■ We will see that a tester that checks the convexity of the
intersection of the set with random lines may need an
exponential number of queries to detect substantial
non-convexity, that is, there is a family of bodies that is far
from convex (not c/n2-convex) and such that the intersection
of all random lines but an exponentially small fraction with
the input set is an interval (i.e., convex).

■ Intuition: Lines that only intersect the set near the boundary
are unlikely.

■ Intuition: However, a substantial fraction of the volume of a
set is near the boundary, so there is a lot of room for
non-convexity near the boundary.
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Description of the Non-Convex Body.

■ The cross-polytope is the n-dimensional generalization of
the octahedron.

■ Our non-convex body, the “cross-polytope with peaks”: on
top of every facet of the cross-polytope add the convex hull
of the facet and a point above its center, i.e. add a simplex.
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The Lines-Based Algorithm “Fails”

■ We choose the height of each peak to be Θ(1/n) of the
distance of any facet to the origin. This ensures that the only
lines that show non-convexity are those that intersect the
body exactly at 2 adjacent peaks and nowhere else. This
event has an exponentially low probability (no more that
(n + 1)/2n).
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The sets are far from convex.

■ Proof idea:
◆ Any convex set that is close to the cross-polytope with

peaks must cover most peaks, substantially. In particular,
the convex set must cover substantially most pairs of
adjacent peaks.

◆ While covering a pair of adjacent peaks substantially, a lot
of mass is added between the peaks because it is convex,
thereby contributing to the symmetric difference.
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Conclusion.

■ We showed that convexity can be tested with exponential
query complexity.

■ We showed that a natural lines-based test has exponential
complexity.

■ Conjecture: if most (say a 1 − ǫ fraction) 2-dimensional
random sections through the origin (determined by pairs of
random points from the input set) of a set are convex then
the set is nearly (say O(nǫ)) convex.
Intuition: what happens near the boundary doesn’t seem to
be hard to detect in this case as in the lines case.

■ “Most” and “nearly” in the conjecture are such that it
supports a test with polynomial query complexity: test a
polynomial number of random planes through the origin.
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