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Abstract
In this paper we show that very large mixtures of Gaussians are efficiently learnable in high
dimension. More precisely, we prove that a mixture with known identical covariance matrices whose
number of components is a polynomial of any fixed degree in the dimension n is polynomially
learnable as long as a certain non-degeneracy condition on the means is satisfied. It turns out that this
condition is generic in the sense of smoothed complexity, as soon as the dimensionality of the space
is high enough. Moreover, we prove that no such condition can possibly exist in low dimension and
the problem of learning the parameters is generically hard. In contrast, much of the existing work on
Gaussian Mixtures relies on low-dimensional projections and thus hits an artificial barrier.

Our main result on mixture recovery relies on a new “Poissonization”-based technique, which
transforms a mixture of Gaussians to a linear map of a product distribution. The problem of learning
this map can be efficiently solved using some recent results on tensor decompositions and Indepen-
dent Component Analysis (ICA), thus giving an algorithm for recovering the mixture. In addition,
we combine our low-dimensional hardness results for Gaussian mixtures with Poissonization to
show how to embed difficult instances of low-dimensional Gaussian mixtures into the ICA setting,
thus establishing exponential information-theoretic lower bounds for underdetermined ICA in low
dimension. To the best of our knowledge, this is the first such result in the literature.

In addition to contributing to the problem of Gaussian mixture learning, we believe that this
work is among the first steps toward better understanding the rare phenomenon of the “blessing of
dimensionality” in the computational aspects of statistical inference.
Keywords: Gaussian mixture models, tensor methods, blessing of dimensionality, smoothed analy-
sis, Independent Component Analysis

1. Introduction

The question of recovering a probability distribution from a finite set of samples is one of the most
fundamental questions of statistical inference. While classically such problems have been considered
in low dimension, more recently inference in high dimension has drawn significant attention in
statistics and computer science literature.

In particular, an active line of investigation in theoretical computer science has dealt with
the question of learning a Gaussian Mixture Model in high dimension. This line of work was
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started in Dasgupta (1999) where the first algorithm to recover parameters using a number of
samples polynomial in the dimension was presented. The method relied on random projections to a
low dimensional space and required certain separation conditions for the means of the Gaussians.
Significant work was done in order to weaken the separation conditions and to generalize the result
(see e.g., Dasgupta and Schulman (2000); Arora and Kannan (2001); Vempala and Wang (2002);
Achlioptas and McSherry (2005); Feldman et al. (2006)). Much of this work has polynomial sample
and time complexity but requires strong separation conditions on the Gaussian components. A
completion of the attempts to weaken the separation conditions was achieved in Belkin and Sinha
(2010) and Moitra and Valiant (2010), where it was shown that arbitrarily small separation was
sufficient for learning a general mixture with a fixed number of components in polynomial time.
Moreover, a one-dimensional example given in Moitra and Valiant (2010) showed that an exponential
dependence on the number of components was unavoidable unless strong separation requirements
were imposed. Thus the question of polynomial learnability appeared to be settled. It is worth noting
that while quite different in many aspects, all of these papers used a general scheme similar to that in
the original work Dasgupta and Schulman (2000) by reducing high-dimensional inference to a small
number of low-dimensional problems through appropriate projections.

However, a surprising result was recently proved in Hsu and Kakade (2013). The authors showed
that a mixture of d Gaussians in dimension d could be learned using a polynomial number of samples,
assuming a non-degeneracy condition on the configuration of the means. The result in Hsu and
Kakade (2013) is inherently high-dimensional as that condition is never satisfied when the means
belong to a lower-dimensional space. Thus the problem of learning a mixture gets progressively
computationally easier as the dimension increases, a “blessing of dimensionality!” It is important
to note that this was quite different from much of the previous work, which had primarily used
projections to lower-dimension spaces.

Still, there remained a large gap between the worst case impossibility of efficiently learning more
than a fixed number of Gaussians in low dimension and the situation when the number of components
is equal to the dimension. Moreover, it was not completely clear whether the underlying problem
was genuinely easier in high dimension or our algorithms in low dimension were suboptimal. The
one-dimensional example in Moitra and Valiant (2010) cannot answer this question as it is a specific
worst-case scenario, which can be potentially ruled out by some genericity condition.

In our paper we take a step to eliminate this gap by showing that even very large mixtures of
Gaussians can be polynomially learned. More precisely, we show that a mixture of m Gaussians
with equal known covariance can be polynomially learned as long as m is bounded from above by a
polynomial of the dimension n and a certain more complex non-degeneracy condition for the means
is satisfied. We show that if n is high enough, these non-degeneracy conditions are generic in the
smoothed complexity sense. Thus for any fixed d, O(nd) generic Gaussians can be polynomially
learned in dimension n.

Further, we prove that no such condition can exist in low dimension. A measure of non-
degeneracy must be monotone in the sense that adding Gaussian components must make the condition
number worse. However, we show that for k2 points uniformly sampled from [0, 1] there are (with
high probability) two mixtures of unit Gaussians with means on non-intersecting subsets of these
points, whose L1 distance is O∗(e−k) and which are thus not polynomially identifiable. More
generally, in dimension n the distance becomes O∗(exp(− n

√
k)). That is, the conditioning improves

as the dimension increases, which is consistent with our algorithmic results.
To summarize, our contributions are as follows:

2



THE BLESSING OF DIMENSIONALITY FOR LEARNING LARGE GAUSSIAN MIXTURES

(1) We show that for any q, a mixture of nq Gaussians in dimension n can be learned in time and
number of samples polynomial in n and a certain “condition number” σ. For sufficiently high dimen-
sion, this results in an algorithm polynomial from the smoothed analysis point of view (Theorem 1).
To do that we provide smoothed analysis of the condition number using certain results from Rudelson
and Vershynin (2009) and anti-concentration inequalities. The main technical ingredient of the
algorithm is a new “Poissonization” technique to reduce Gaussian mixture estimation to a problem of
recovering a linear map of a product distribution known as underdetermined Independent Component
Analysis (ICA). We combine this with the recent work on efficient algorithms for underdetermined
ICA from Goyal et al. (2013) to obtain the necessary bounds.
(2) We show that in low dimension polynomial identifiability fails in a certain generic sense (see
Theorem 3). Thus the efficiency of our main algorithm is truly a consequence of the “blessing of
dimensionality” and no comparable algorithm exists in low dimension. The analysis is based on
results from approximation theory and Reproducing Kernel Hilbert Spaces.

Moreover, we combine the approximation theory results with the Poissonization-based technique
to show how to embed difficult instances of low-dimensional Gaussian mixtures into the ICA setting,
thus establishing exponential information-theoretic lower bounds for underdetermined ICA in low
dimension. To the best of our knowledge, this is the first such result in the literature.

We discuss our main contributions more formally now. The notion of Khatri–Rao power A�d of
a matrix A is defined in Section 2.

Theorem 1 (Learning a GMM with Known Identical Covariance) Supposem ≥ n and let ε, δ >
0. Let w1N (µ1,Σ) + · · · + wmN (µm,Σ) be an n-dimensional GMM, i.e. µi ∈ Rn, wi > 0, and
Σ ∈ Rn×n. Let B be the n×m matrix whose ith column is µi/ ‖µi‖. If there exists d ∈ N so that
σm
(
B�d

)
> 0, then Algorithm 2 recovers each µi to within ε accuracy with probability 1− δ. Its

sample and time complexity are at most

poly
(
md2 , σd

2
, ud

2
, wd

2
, dd

2
, rd

2
, 1/ε, 1/δ, 1/b, logd

2(
1/(bεδ)

))
where w ≥ maxi(wi)/mini(wi), u ≥ maxi ‖µi‖, r ≥

(
maxi ‖µi‖ + 1)/(mini ‖µi‖)

)
, 0 < b ≤

σm(B�d) are bounds provided to the algorithm, and σ =
√
λmax(Σ).

We note that the requirement that m ≥ n is due to the invocation of Theorem 1.3 of Goyal et al.
(2013); it should not be difficult, however, to adapt the algorithm to use a method similar to that of
Hsu and Kakade (2013) to handle the case where m < n.

Given that the means have been estimated, the weights can be recovered using the tensor structure
of higher order cumulants (see Section 2 for the definition of cumulants). This is shown in Appendix I.

We show that σmin(A�d) is large in the smoothed analysis sense, namely, if we start with a base
matrix A and perturb each entry randomly to get Ã, then σmin(Ã�d) is likely to be large:

Theorem 2 For n > 1, let M ∈ Rn×(n2) be an arbitrary matrix. Let N ∈ Rn×(n2) be a randomly
sampled matrix with each entry iid from N (0, σ2), for σ > 0. Then, for some absolute constant C,
Pr
(
σmin((M +N)�2) ≤ σ2/n7

)
≤ 2C/n.

We point out the simultaneous and independent work of Bhaskara et al. (2014), where the authors
prove learnability results related to our Theorems 1 and 2. We now provide a comparison. The
results in Bhaskara et al. (2014), which are based on tensor decompositions, are stronger in that
they can learn mixtures of axis-aligned Gaussians (with non-identical covariance matrices) without
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requiring to know the covariance matrices in advance. Their results hold under a smoothed analysis
setting similar to ours. To learn a mixture of roughly n`/2 Gaussians up to an accuracy of ε their
algorithm has running time and sample complexity poly`(n, 1/ε, 1/ρ) and succeeds with probability
at least 1− exp(−Cn1/3`), where the means are perturbed by adding an n-dimensional Gaussian
from N (0, Inρ

2/n). On the one hand, the success probability of their algorithm is much better (as a
function of n, exponentially close to 1 as opposed to polynomially close to 1, as in our result). On
the other hand, this comes at a high price in terms of the running time and sample complexity: The
polynomial poly`(n, 1/ε, 1/ρ) above has degree exponential in `, unlike the degree of our bound
which is polynomial in `. Thus, in this respect, the two results can be regarded as incomparable
points on an error vs running time (and sample complexity) trade-off curve. Our result is based on
a reduction from learning GMMs to ICA which could be of independent interest given that both
problems are extensively studied in somewhat disjoint communities. Moreover, our analysis can be
used in the reverse direction to obtain hardness results for ICA.

The technique of Poissonization is, to the best of our knowledge, new in the GMM setting, though
we note that it has been previously applied in computational learning. For instance, in Valiant and
Valiant (2013), it has been used for the estimation of properties of discrete probability distributions
such as the support size and the entropy.

Finally, in Section 6 we show that in low dimension the situation is very different from the
high-dimensional generic efficiency given by Theorems 1 and 2: The problem is generically hard.
More precisely, we show:

Theorem 3 Let X be a set of 4k2 points uniformly sampled from [0, 1]n. Then with high probability
there exist two mixtures with equal number of unit Gaussians p, q centered on disjoint subsets of X ,
such that, for some C > 0, ‖p− q‖L1(Rn) < exp

(
− C (k/log k)1/n ).

Here we would like to note that the assumption that X is random is convenient as it provides a
natural model for genericity, guarantees (with high probability) small fill (Section 6) and also ensures
that the means of the Gaussian mixture components of p and q are not too close. In particular, it is
not difficult to verify that with high probability any pair of the random means are at least 1/poly(k)
separated. However the randomness assumption is not essential. In fact, the above theorem will hold
for an arbitrary set of points with sufficiently small fill (see Section 6).

Combining the above lower bound with our reduction provides a similar lower bound for ICA;
see a discussion on the connection with ICA below. Our lower bound gives an information-theoretic
barrier. This is in contrast to conjectured computational barriers that arise in related settings based on
the noisy parity problem (see Hsu and Kakade (2013) for pointers). The only previous information-
theoretic lower bound for learning GMMs we are aware of is due to Moitra and Valiant (2010) and
holds for two specially designed one-dimensional mixtures.

Connection with ICA. A key observation of Hsu and Kakade (2013) is that methods based on
the higher order statistics used in Independent Component Analysis (ICA) can be adapted to the
setting of learning a Gaussian Mixture Model. In ICA, samples are of the form X =

∑m
i=1AiSi

where the latent random variables Si are independent, and the fixed and unknown column vectors
Ai give the directions in which each signal Si acts. The goal is to recover the vectors Ai up to
inherent ambiguities. The ICA problem is typically posed when m is at most the dimensionality
of the observed space (the “fully determined” setting), as recovery of the directions Ai then allows
one to demix the latent signals. The case where the number of latent source signals exceeds the
dimensionality of the observed signal X is the underdetermined ICA setting.1 Two well-known

1. See (Comon and Jutten, 2010, Chapter 9) for a recent account of algorithms for underdetermined ICA.
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algorithms for underdetermined ICA are given in Cardoso (1991) and Albera et al. (2004). Finally,
Goyal et al. (2013) provides an algorithm with rigorous polynomial time and sampling bounds for
underdetermined ICA in high dimension in the presence of Gaussian noise.

Nevertheless, our analysis of the mixture models can be embedded in ICA to show exponential
information-theoretic hardness of performing ICA in low-dimension, and thus establishing the
blessing of dimensionality for ICA as well.

Theorem 4 Let X be a set of 4k2 uniformly random vectors from Sn−1 ⊂ Rn. Then, with high
probability, there exist non-empty two disjoint subsets of X such that when these two sets form the
columns of matrices A and B respectively, there exist noisy ICA models AS + η and BS′ + η′

exponentially close as a function of (k/ log k)
1
n as distributions in L1 distance satisfying: (1) The

coordinates of S (and similarly for S′) are scaled Poisson distributions, Si ∼ αiPoisson(λi) where
each λi ≤ k2 and αi ∈ (poly(k−1), 1). At least one λi is inverse polynomially (with respect to k)
bounded away from 0. (2) The directional variances of η and η′ are bounded by poly(k).

We sketch the proof of Theorem 4 in Appendix G. Like Theorem 3, choosing X at random ensures
that the columns of A and B are not too close. Condition (1) ensures that at least one of the signals
Si and its cumulants are not too close to 0.

Discussion. Most problems become harder in high dimension, often exponentially harder, a be-
havior known as “the curse of dimensionality.” Showing that a complex problem does not become
exponentially harder often constitutes major progress in its understanding. In this work we demon-
strate a reversal of this curse, showing that the lower dimensional instances are exponentially harder
than those in high dimension. This seems to be a rare situation in statistical inference and compu-
tation. In particular, while high-dimensional concentration of mass can sometimes be a blessing
of dimensionality, in our case the generic computational efficiency of our problem comes from
anti-concentration.

We hope that this work will enable better understanding of this unusual phenomenon and its
applicability to a wider class of computational and statistical problems.

2. Preliminaries

The singular values of a matrix A ∈ Rm×n will be ordered in the decreasing order: σ1 ≥ σ2 ≥ · · · ≥
σmin(m,n). By σmin(A) we mean σmin(m,n).

For a real-valued random variable X , the cumulants of X are certain polynomials in the moments
of X . For j ≥ 1, the jth cumulant is denoted cumj(X). Denoting mj := E

(
Xj
)
, we have, for

example: cum1(X) = m1, cum2(X) = m2 − m2
1, and cum3(X) = m3 − 3m2m1 + 2m3

1. In
general, cumulants can be defined as certain coefficients of a Taylor expansion of the logarithm of
the moment generating function of X: log(EX(etX)) =

∑∞
j=1 cumj(X) t

j

j! . The first two cumulants
are the same as the expectation and the variance, resp. Cumulants have the property that for two
independent random variables X,Y we have cumj(X + Y ) = cumj(X) + cumj(Y ) (assuming
that the first j moments exist for both X and Y ). Cumulants are degree-j homogeneous, i.e. if α ∈ R
and X is a random variable, then cumj(αX) = αjcumj(X). The third and higher cumulants of the
Gaussian distribution are 0.

Gaussian Mixture Model. For i = 1, 2, . . . ,m, define Gaussian random vectors ηi ∈ Rn with
distribution ηi ∼ N (µi,Σi) where µi ∈ Rn and Σi ∈ Rn×n. Let h be an integer-valued random
variable which takes on value i ∈ [m] with probability wi > 0, henceforth called weights. (Hence
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∑m
i=1wi = 1.) Then, the random vector drawn as Z = ηh is said to be a Gaussian Mixture Model

(GMM) w1N (µ1,Σ1)+ . . .+wmN (µm,Σm). The sampling of Z can be interpreted as first picking
one of the components i ∈ [m] according to the weights, and then sampling a Gaussian vector
from component i. We will be primarily interested in the mixture of identical Gaussians of known
covariance. In particular, there exists known Σ ∈ Rn×n such that Σi = Σ for each i. Letting
η ∼ N (0,Σ), and denoting by eh the random variable which takes on the ith canonical vector ei
with probability wi, we can write the GMM model as follows:

Z = [µ1|µ2| · · · |µm]eh + η . (1)

In this formulation, eh acts as a selector of a Gaussian mean. Conditioning on h = i, we have
Z ∼ N (µi,Σ), which is consistent with the GMM model.

Given samples from the GMM, the goal is to recover the unknown parameters of the GMM,
namely the means µ1, . . . , µm and the weights w1, . . . , wm.

Underdetermined ICA. In the basic formulation of ICA, the observed random variableX ∈ Rn is
drawn according to the model X = AS, where S ∈ Rm is a latent random vector whose components
Si are independent random variables, and A ∈ Rn×m is an unknown mixing matrix. The probability
distributions of the Si are unknown except that they are not Gaussian. The ICA problem is to recover
A to the extent possible. The underdetermined ICA problem corresponds the case m ≥ n. We cannot
hope to recover A fully because if we flip the sign of the ith column of A, or scale this column by
some nonzero factor, then the resulting mixing matrix with an appropriately scaled Si will again
generate the same distribution on X as before. There is an additional ambiguity that arises from not
having an ordering on the coordinates Si: If P is a permutation matrix, then PS gives a new random
vector with independent reordered coordinates, AP T gives a new mixing matrix with reordered
columns, and X = AP TPS provides the same samples as X = AS since P T is the inverse of P .
As AP T is a permutation of the columns of A, this ambiguity implies that we cannot recover the
order of the columns of A. However, it turns out that under certain genericity requirements, we can
recover A up to these necessary ambiguities, that is to say we can recover the directions (up to sign)
of the columns of A, even in the underdetermined setting.

In this paper, it will be important for us to work with an ICA model where there is Gaussian
noise in the data: X = AS + η, where η ∼ N (0,Σ) is an additive Gaussian noise independent of S,
and the covariance of η given by Σ ∈ Rn×n is in general unknown and not necessarily spherical. We
will refer to this model as the noisy ICA model.

We define the flattening operation vec (·) from a tensor to a vector in the natural way. Namely,
when T ∈ Rn` is a tensor, then vec (T )δ(i1,...,i`) = Ti1,...,i` where δ(i1, . . . , i`) = 1+

∑`
j=1 n

`−j(ij−
1) is a bijection with indices ij running from 1 to n. Roughly speaking, each index is being converted
into a digit in a base n number up to the final offset by 1. This is the same flattening that occurs to go
from a tensor outer product of vectors to the Kronecker product of vectors.

The ICA algorithm from Goyal et al. (2013) to which we will be reducing learning a GMM relies
on the shared tensor structure of the derivatives of the second characteristic function and the higher
order multi-variate cumulants. This tensor structure motivates the following form of the Khatri-Rao
product:

Definition 5 Given matrices A ∈ Rn1×m, B ∈ Rn2×m, a column-wise Khatri-Rao product is
defined by A�B := [vec (A1 ⊗B1) | · · · |vec (Am ⊗Bm)], where Ai is the ith column of A, Bi is
the ith column of B, ⊗ denotes the Kronecker product and vec (A1 ⊗B1) is flattening of the tensor
A1 ⊗B1 into a vector. The related Khatri-Rao power is defined by A�` = A� · · · �A (` times).
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This form of the Khatri-Rao product arises when performing a change of coordinates under the
ICA model using either higher order cumulants or higher order derivative tensors of the second
characteristic function.

ICA Results. Theorem 23 (Appendix H.1, from Goyal et al. (2013)) allows us to recover A up
to the necessary ambiguities in the noisy ICA setting. The theorem establishes guarantees for an
algorithm from Goyal et al. (2013) for noisy underdetermined ICA, UnderdeterminedICA. This
algorithm takes as input a tensor order parameter d, number of signalsm, access to samples according
to the noisy underdetermined ICA model with unknown noise, accuracy parameter ε, confidence
parameter δ, bounds on moments and cumulants M and ∆, a bound on the conditioning parameter
σm, and a bound on the cumulant order k. It returns approximations to the columns of A up to sign
and permutation.

3. Learning GMM means using underdetermined ICA: The basic idea

In this section we give an informal outline of the proof of our main result, namely learning the means
of the components in GMMs via reduction to the underdetermined ICA problem. Our reduction will
be discussed in two parts. The first part gives the main idea of the reduction and will demonstrate
how to recover the means µi up to their norms and signs, i.e. we will get ±µi/ ‖µi‖. We will then
present the reduction in full. It combines the basic reduction with some preprocessing of the data
to recover the µi’s themselves. The reduction relies on some well-known properties of the Poisson
distribution stated in the lemma below; its proof can be found in Appendix B.

Lemma 6 Fix a positive integer k, and let pi ≥ 0 be such that p1 + · · ·+pk = 1. IfX ∼ Poisson(λ)
and (Y1, . . . , Yk)|X=x ∼ Multinom(x; p1, . . . , pk) then Yi ∼ Poisson(piλ) for all i and Y1, . . . , Yk
are mutually independent.

Basic Reduction: The main idea. Recall the GMM from equation (1) is Z = [µ1| · · · |µm]eh + η.
Henceforth, we will set A = [µ1| · · · |µm]. We can write the GMM in the form Z = Aeh + η, which
is similar in form to the noisy ICA model, except that eh does not have independent coordinates. We
now describe how a single sample of an approximate noisy ICA problem is generated.

The reduction involves two internal parameters λ and τ that we will set later. We generate a
Poisson random variable R ∼ Poisson(λ), and we run the following experiment R times: At the
ith step, generate sample Zi from the GMM. Output the sum of the outcomes of these experiments:
Y = Z1 + · · ·+ ZR.

Let Si be the random variable denoting the number of times samples were taken from the ith

Gaussian component in the above experiment. Thus, S1 + · · ·+ Sm = R. Note that S1, . . . , Sm are
not observable although we know their sum. By Lemma 6, each Si has distribution Poisson(wiλ),
and the random variables Si are mutually independent. Let S := (S1, . . . , Sm)T .

For a non-negative integer t, we define η(t) :=
∑t

i=1 ηi where the ηi are iid according to
ηi ∼ N (0,Σ). In this definition, t can be a random variable, in which case the ηi are sampled
independent of t. Using ∼ to indicate that two random variables have the same distribution, then
Y ∼ AS + η(R). If there were no Gaussian noise in the GMM (i.e. if we were sampling from a
discrete set of points) then the model becomes simply Y = AS, which is the ICA model without
noise, and so we could recover A up to necessary ambiguities. However, the model Y ∼ AS + η(R)
fails to satisfy even the assumptions of the noisy ICA model, both because η(R) is not independent
of S and because η(R) is not distributed as a Gaussian random vector.
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As the covariance of the additive Gaussian noise is known, we may add additional noise to the
samples of Y to obtain a good approximation of the noisy ICA model. Parameter τ , the second
parameter of the reduction, is chosen so that with high probability we have R ≤ τ . Conditioning on
the event R ≤ τ we draw X according to the rule X = Y + η(τ −R) ∼ AS + η(R) + η(τ −R),
where η(R), η(τ − R), and S are drawn independently conditioned on R. Then, conditioned on
R ≤ τ , we have X ∼ AS + η(τ).

Note that we have only created an approximation to the ICA model. In particular, restricting∑m
i=1 Si = R ≤ τ can be accomplished using rejection sampling, but the coordinate random

variables S1, . . . , Sm would no longer be independent. We have two models of interest: a noisy ICA
model with no restriction on R =

∑m
i=1 Si given by

X ∼ AS + η(τ) (2)

and the restricted model
X ∼ (AS + η(τ))|R≤τ . (3)

We are unable to produce samples from model (2), but it meets the assumptions of the noisy
ICA problem. Pretending we have samples from model (2), we can apply Theorem 23 (Appendix
(H.1)) to recover the Gaussian means up to sign and scaling. On the other hand, we can produce
samples from model (3), and depending on the choice of τ , the statistical distance between models
(2) and (3) can be made arbitrarily close to zero. It will be demonstrated that given an appropriate
choice of τ , running UnderdeterminedICA on samples from model (3) is equivalent to running
UnderdeterminedICA on samples from model (2) with high probability, allowing for recovery of
the Gaussian mean directions ±µi/ ‖µi‖ up to some error.

Full reduction. To be able to recover the µi without sign or scaling ambiguities, we add an extra
coordinate to the GMM as follows. The new means µ′i are µi with an additional coordinate whose
value is 1 for all i, i.e. µ′i :=

(
µTi , 1

)T . Moreover, this coordinate has no noise. In other words, each
Gaussian component now has an (n + 1) × (n + 1) covariance matrix Σ′ :=

(
Σ 0
0 0

)
. It is easy to

construct samples from this new GMM given samples from the original: If the original samples
were u1, u2 . . ., then the new samples are u′1, u

′
2 . . . where u′i :=

(
uTi , 1

)T . The reduction proceeds
similarly to the above on the new inputs.

Unlike before, we will define the ICA mixing matrix to be A′ :=
[
µ′1/‖µ′1‖

∣∣· · · ∣∣µ′m/‖µ′m‖]
such that it has unit norm columns. The role of matrix A in the basic reduction will now be played
by A′. Since we are normalizing the columns of A′, we have to scale the ICA signal S obtained in
the basic reduction to compensate for this: Define S′i := ‖µ′i‖Si. Thus, the ICA models obtained in
the full reduction are:

X ′ = A′S′ + η′(τ) , (4)
X ′ = (A′S′ + η′(τ))|R≤τ , (5)

where we define η′(τ) =
(
η(τ)T , 0

)T . As before, we have an ideal noisy ICA model (4) from which
we cannot sample, and an approximate noisy ICA model (5) which can be made arbitrarily close to
(4) in statistical distance by choosing τ appropriately. With appropriate application of Theorem 23 to
these models, we can recover estimates (up to sign) {Ã′1, . . . , Ã′m} of the columns of A′.

By construction, the last coordinate of each Ã′i now tells us both the sign and magnitude of each
µi: Let Ã′i(1 : n) ∈ Rn be the vector consisting of the first n coordinates of Ã′i, and let Ã′i(n+ 1)
be the last coordinate of Ã′i. Then µi = A′i(1 : n)/A′i(n+ 1) ≈ Ã′i(1 : n)/Ã′i(n+ 1), with the sign
indeterminacy canceling in the division.
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Subroutine 1 Single sample reduction from GMM to approximate ICA
Input: Covariance parameter Σ, access to samples from a mixture of m identical Gaussians in Rn

with variance Σ, Poisson threshold τ , Poisson parameter λ,
Output: Y (a sample from model (5)).

1: Generate R according to Poisson(λ).
2: If R > τ return failure.
3: Let Y = 0.
4: for j = 1 to R do
5: Get a sample Zj from the GMM.
6: Let Z ′j = (ZTj , 1)T to embed the sample in Rn+1.
7: Y = Y + Z ′j .
8: end for
9: Let Σ′ =

(
Σ 0
0 0

)
(add a row and column of all zeros)

10: Generate η′ according to N (0, (τ −R)Σ′).
11: Y = Y + η′.
12: return Y .

Algorithm 2 Use ICA to learn the means of a GMM
Input: Covariance matrix Σ, number of components m, upper bound on tensor order parameter d,

access to samples from a mixture of m identical, spherical Gaussians in Rn with covariance Σ,
confidence parameter δ, accuracy parameter ε, upper bound w ≥ maxi(wi)/mini(wi), upper
bound on the norm of the mixture means u, r ≥ (maxi ‖µi‖+ 1)/(mini ‖µi‖), and lower bound
b so 0 < b ≤ σm(A�d/2).

Output: {µ̃1, µ̃2, . . . , µ̃m} ⊆ Rn (approximations to the means of the GMM).
1: Let δ2 = δ1 = δ/2.
2: Let σ = supv∈Sn−1

√
Var(vT η(1)), for η(1) ∼ N (0,Σ).

3: Let λ = m be the parameter to be used to generate the Poisson random variable in Subroutine 1.
4: Let τ = 4

(
log(1/δ2) + log(q(Θ))

)
max

(
(eλ)2, 4Cd2

)
(the threshold used to add noise in the

samples from Subroutine 1, C is a universal constant, and q(Θ) is a polynomial defined as (19)
in the proof of Theorem 1).

5: Let ε∗ = ε
(√

1 + u2 + 2(1 + u2)
)−1.

6: Let M = max
(
(τσ)d+1, (w/(

√
1 + u2)d+1

)
(d+ 1)d+1.

7: Let k = d+ 1.
8: Let ∆ = w.
9: Invoke UnderdeterminedICA with access to Subroutine 1, parameters δ1, ε

∗, ∆, M , and k to
obtain Ã′ (whose columns approximate the normalized means up to sign and permutation). If
any calls to Subroutine 1 result in failure, the algorithm will halt completely.

10: Divide each column of Ã′ by the value of its last entry.
11: Remove the last row of Ã′ to obtain B̃.
12: return the columns of B̃ as {µ̃1, µ̃2, . . . , µ̃m}.

4. Correctness of the Algorithm and Reduction

Subroutine 1 captures the sampling process of the reduction: Let Σ be the covariance matrix of
the GMM, λ be an integer chosen as input, and a threshold value τ also computed elsewhere and

9
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provided as input. Let R ∼ Poisson(λ). If R is larger than τ , the subroutine returns a failure notice
and the calling algorithm halts immediately. A requirement, then, should be that the threshold is
chosen so that the chance of failure is very small; in our case, τ is chosen so that the chance of failure
is half of the confidence parameter given to Algorithm 2. The subroutine then goes through the
process described in the full reduction: sampling from the GMM, lifting the sample by appending
a 1, then adding a lifted Gaussian so that the total noise has distribution N (0, τΣ). The resulting
sample is from the model given by (5).

Algorithm 2 works as follows: it takes as input the parameters of the GMM (covariance matrix,
number of means), tensor order (as required by UnderdeterminedICA), error parameters, and
bounds on certain properties of the weights and means. The algorithm then calculates various internal
parameters: a bound on directional covariances, Poisson parameter λ, threshold parameter τ , error
parameters to be split between the “Poissonization” process and the call to UnderdeterminedICA,
and values explicitly needed by Goyal et al. (2013) for the analysis of UnderdeterminedICA.
Other internal values needed by the algorithm are denoted by the constant C and polynomial q(Θ);
their values are determined by the proof of Theorem 1. Briefly, C is a constant so that one can
cleanly compute a value of τ that will involve a polynomial, called q(Θ), of all the other parameters.
The algorithm then calls UnderdeterminedICA, but instead of giving samples from the GMM,
it allows access to Subroutine 1. It is then up to UnderdeterminedICA to generate samples as
needed (bounded by the polynomial in Theorem 1). In the case that Subroutine 1 returns a failure,
the entire algorithm process halts, and returns nothing. If no failure occurs, the matrix returned
by UnderdeterminedICA will be the matrix of normalized means embedded in Rn+1, and the
algorithm de-normalizes, removes the last row, and then has approximations to the means of of the
GMM.

The bounds are used instead of actual values to allow flexibility—in the context under which the
algorithm is invoked—on what the algorithm needs to succeed. However, the closer the bounds are
to the actual values, the more efficient the algorithm will be.

Sketch of the correctness argument. The proof of correctness of Algorithm 2 has two main
parts. For brevity, the details can be found in Appendix A. In the first part, we analyze the sample
complexity of recovering the Gaussian means using UnderdeterminedICA when samples are taken
from the ideal noisy ICA model (4).

In the second part, we note that we do not have access to the ideal model (4), and that we can only
sample from the approximate noisy ICA model (5) using the full reduction. Choosing τ appropriately,
we use total variation distance to argue that with high probability, running UnderdeterminedICA
with samples from the approximate noisy ICA model will produce equally valid results as running
UnderdeterminedICA with samples from the ideal noisy ICA model. The total variation distance
bound is explored in section A.2.

These ideas are combined in section A.3 to prove the correctness of Algorithm 2. One additional
technicality arises from the implementation of Algorithm 2. Samples can be drawn from the noisy
ICA modelX ′ = (AS′+η′(τ))|R≤τ using rejection sampling onR. In order to guarantee Algorithm
2 executes in polynomial time, when a sample of R needs to be rejected, Algorithm 2 terminates in
explicit failure. To complete the proof, we argue that with high probability, Algorithm 2 does not
explicitly fail.
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5. Smoothed Analysis

We start with a base matrix M ∈ Rn×(n2) and add a perturbation matrix N ∈ Rn×(n2) with each
entry coming iid from N (0, σ2) for some σ > 0. (We restrict the discussion to the second power
for simplicity; extension to higher power is straightforward.) As in Goyal et al. (2013), it will
be convenient to work with the multilinear part of the Khatri–Rao product: For a column vector
Ak ∈ Rn define A	2

k ∈ R(n2), a subvector of A�2
k ∈ Rn2

, given by (A	2
k )ij := (Ak)i(Ak)j for

1 ≤ i < j ≤ n. Then for a matrix A = [A1, . . . , Am] we have A	2 := [A	2
1 , . . . , A	2

m ].

Theorem 7 With the above notation, for any base matrix M with dimensions as above, we have,
for some absolute constant C, Pr

(
σmin((M +N)	2) ≤ σ2/n7

)
≤ 2C/n.

Theorem 2 follows immediately from the theorem above by noting that σmin(A�2) ≥ σmin(A	2).
Proof In the following, for a vector space V (over the reals) dist(v, V ′) denotes the distance between
vector v ∈ V and subspace V ′ ⊆ V ; more precisely, dist(v, V ′) := minv′∈V ′ ‖v − v′‖2. We will
use a lower bound on σmin(A), found in Appendix H.2.

With probability 1, the columns of the matrix (M +N)	2 are linearly independent. This can be
proved along the lines of a similar result in Goyal et al. (2013). Fix k ∈

(
n
2

)
and let u ∈ R(n2) be a

unit vector orthogonal to the subspace spanned by the columns of (M +N)	2 other than column k.
Vector u is well-defined with probability 1. Then the distance of the k’th column Ck from the span
of the rest of the columns is given by

uTCk = uT (Mk +Nk)
	2 =

∑
1≤i<j≤n

uij(Mik +Nik)(Mjk +Njk)

=
∑

1≤i<j≤n
uijMikMjk +

∑
1≤i<j≤n

uijMikNjk +
∑

1≤i<j≤n
uijNikMjk +

∑
1≤i<j≤n

uijNikNjk

=: P (N1k, . . . , Nnk). (6)

Now note that this is a quadratic polynomial in the random variables Nik. We will apply the
anticoncentration inequality of Carbery and Wright (2001) to this polynomial to conclude that the
distance between the k’th column of (M +N)	2 and the span of the rest of the columns is unlikely
to be very small (see Appendix H.3 for the precise result).

Using ‖u‖2 = 1, the variance of our polynomial in (6) becomes

Var (P (N1k, . . . , Nnk)) = σ2

(∑
j

(∑
i:i<j

uijMik

)2
+
∑
i

(∑
j:i<j

uijMjk

)2
)

+ σ4
∑
i<j

u2
ij ≥ σ4.

In our application, random variables Nik for i ∈ [n] are not standard Gaussians but are iid Gaussian
with variance σ2, and our polynomial does not have unit variance. After adjusting for these differences
using the estimate on the variance of P above, Lemma 25 gives Pr (|P (N1k, . . . , Nnk)− t| ≤ ε) ≤
2C
√
ε/σ2 = 2C

√
ε/σ. Therefore, Pr (∃k : dist(Ck, C−k) ≤ ε) ≤

(
n
2

)
2C
√
ε/σ by the union bound

over the choice of k.
Now choosing ε = σ2/n6, Lemma 24 gives Pr

(
σmin((M +N)	2) ≤ σ2/n7

)
≤ 2C/n.

We note that while the above discussion is restricted to Gaussian perturbation, the same technique
would work for a much larger class of perturbations. To this end, we would require a version of the
Carbery-Wright anticoncentration inequality which is applicable in more general situations. We omit
such generalizations here.
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6. The curse of low dimensionality for Gaussian mixtures

In this section we prove Theorem 3, which informally says that for small n there is a large class of
superpolynomially close mixtures in Rn with fixed variance. This goes beyond the specific example
of exponential closeness given in Moitra and Valiant (2010) as we demonstrate that such mixtures
are ubiquitous as long as there is no lower bound on the separation between the components.

Specifically, let S be the cube [0, 1]n ⊂ Rn. We will show that for any two sets of k points X
and Y in S, with fill h (we say that X has fill h, if there is a point of X within distance h of any point
of S), there exist two mixtures p, q with means on disjoint subsets of X ∪Y , which are exponentially
close in 1/h in the L1(Rn) norm. Note that the fill of a sample from the uniform distribution on the
cube can be bounded (with high probability) by O(

√
n( log k

k )1/n) (see proof of Theorem 3 below).
We start by defining some of the key objects. Let K(x, z) = (2π)−n/2e−‖x−y‖

2/2 be the unit
Gaussian kernel. LetK be the integral operator corresponding to the convolution with a unit Gaussian:
Kg(z) =

∫
Rn K(x, z)g(x)dx. Let X be any subset of k points in [0, 1]n. Let KX be the kernel

matrix corresponding to X , (KX)ij = K(xi, xj). It is known to be positive definite. For a function
f : [0, 1]n → R, the interpolant is defined as fX,k(x) =

∑
wiK(xi, x), where the coefficients wi

are chosen so that (∀i)fX,k(xi) = f(xi). It is easy to see that such interpolant exists and is unique,
obtained by solving a linear system involving KX .

We will need some properties of the Reproducing Kernel Hilbert Space H corresponding to the
kernel K (see (Wendland, 2005, Chapter 10) for an introduction). In particular, we need the bound
‖f‖∞ ≤ ‖f‖H and the reproducing property, 〈f(·),K(x, ·)〉H = f(x),∀f ∈ H . For a function of
the form

∑
wiK(xi, x) we have ‖

∑
wiK(xi, x)‖2H =

∑
wiwjK(xi, xj).

Lemma 8 Let g be any positive function with L2 norm 1 supported on [0, 1]n and let f = Kg. If X
has fill h, then there exists A > 0 such that ‖f − fX,k‖L∞(Rn) < exp(A(log h)/h).

Proof From Rieger and Zwicknagl (2010), Theorem 6.1 (taking λ = 0) we have that for someA > 0
and h sufficiently small ‖f − fX,k‖L2([0,1]n) < exp(A log h

h ). Note that the norm is on [0, 1]n while
we need to control the norm on Rn. To do that we need a bound on the RKHS norm of f − fX,k.
This ultimately gives control of the norm over Rn because there is a canonical isometric embedding
of elements of H interpreted as functions over [0, 1] into elements of H interpreted as functions
over Rn. We first observe that for any xi ∈ X , f(xi)− fX,k(xi) = 0. Thus, from the reproducing
property of RKHS, 〈f − fX,k, fX,k〉H = 0. Using properties of RKHS with respect to the operator
K (see, e.g., Proposition 10.28 of Wendland (2005))

‖f − fX,k‖2H = 〈f − fX,k, f − fX,k〉H = 〈f − fX,k, f〉H = 〈f − fX,k,Kg〉H
= 〈f − fX,k, g〉L2([0,1]n) ≤ ‖f − fX,k‖L2([0,1]n)‖g‖L2([0,1]n) < exp(A(log h)/h).

Thus ‖f − fX,k‖L∞(Rn) ≤ ‖f − fX,k‖H < exp(A(log h)/h).

Theorem 9 Let X and Y be any two subsets of [0, 1]n with fill h. Then there exist two Gaussian
mixtures p and q (with positive coefficients summing to one, but not necessarily the same number of
components), which are centered on two disjoint subsets of X ∪ Y and such that for some B > 0,
‖p− q‖L1(Rn) < exp(B(log h)h).

12
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Proof To simplify the notation we assume that n = 1. The general case follows verbatim, except
that the interval of integration, [−1/h, 1/h], and its complement need to be replaced by the sphere of
radius 1/h and its complement respectively.

Let fX,k and fY,k be the interpolants, for some fixed sufficiently smooth (as above, f = Kg)
positive function f with

∫
[0,1] f(x)dx = 1. Using Lemma 8, we see that ‖fX,k − fY,k‖L∞(R) <

2 exp(A log h
h ). Functions fX,k and fY,k are both linear combinations of Gaussians possibly with

negative coefficients and so is fX,k − fY,k . By collecting positive and negative coefficients we write

fX,k − fY,k = p1 − p2, (7)

where, p1 and p2 are mixtures with positive coefficients only.
Put p1 =

∑
i∈S1

αiK(xi, x), p2 =
∑

i∈S2
βiK(xi, x), where S1 and S2 are disjoint subsets of

X ∪ Y . Now we need to ensure that the coefficients can be normalized to sum to 1.
Let α =

∑
αi, β =

∑
βi. From (7) and by integrating over the interval [0, 1], and since f is

strictly positive on the interval, it is easy to see that α, β ≥ 1. We have

|α− β| =
∣∣∣∣∫

R
p1(x)− p2(x)dx

∣∣∣∣ ≤ ‖p1 − p2‖L1(R)

‖p1 − p2‖L1(R) ≤
∫

[−1/h,1/h]
‖fX,k − fY,k‖L∞(R)dx+ 2(α+ β)

∫
x∈[1/h,∞)

K(0, x− 1)dx.

Noticing that the first summand is bounded by 2
h exp(A log h

h ) and the integral in the second
summand is even smaller (in fact, O(e−1/h2)) , it follows immediately, that |1− β

α | < exp(A′ log h
h )

for some A′ and h sufficiently small.
Hence, we have

∥∥ 1
αp1− 1

βp2

∥∥
L1(R)

≤
∥∥β
αp1−p2

∥∥
L1(R)

≤
∣∣1− β

α

∣∣‖p1‖L1(R) +‖p1 − p2‖L1(R) .

Collecting exponential inequalities completes the proof.

Proof [of Theorem 3] For convenience we will use a set of 4k2 points instead of k2. Clearly it
does not affect the exponential rate. By a simple covering set argument (cutting the cube into mn

cubes with size 1/m) and basic probability (the coupon collector’s problem), we see that the fill h of
2nmn logm points is at most O(

√
n/m) with probability 1− o(1). Hence, given k points, we have

h = O(
√
n( log k

k )1/n). We see that with a smaller probability (but still close to 1 for large k), we can
sample k points 4k times and still have the same fill on each group of k.

Pairing the sets of k points into 2k pairs of sets arbitrarily and applying Theorem 9 (to k + k
points) we obtain 2k pairs of exponentially close mixtures with at most 2k components each. If one
of the pairs has the same number of components, we are done. If not, by the pigeon-hole principle
for at least two pairs of mixtures p1 ≈ q1 and p2 ≈ q2 the differences of the number of components
(an integer number between 0 and 2k − 2) must coincide. Assume without loss of generality that p1

has no more components that q1 and p2 has no more components than q2.Taking p = 1
2(p1 + q2) and

q = 1
2(p2 + q1) completes the proof.
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Appendix A. Theorem 1 Proof Details

A.1. Error Analysis of the Ideal Noisy ICA Model

The proposed full reduction from Section 3 provides us with two models. The first is a noisy ICA
model from which we cannot sample:

(Ideal ICA) X ′ = A′S′ + η′(τ) . (8)
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The second is a model that fails to satisfy the assumption that S′ has independent coordinates, but it
is a model from which we can sample:

(Approximate ICA) X ′ = (A′S′ + η′(τ))|R≤τ . (9)

Both models rely on the choice of two parameters, λ and τ . The dependence on τ is explicit in
the models. The dependence on λ can be summarized in the unrestricted model as Si = 1

‖µ′i‖
S′i ∼

Poisson(wiλ) independently of each other, and R =
∑m

i=1 Si ∼ Poisson(λ).
The probability of choosing R > τ will be seen to be exponentially small in τ . For this reason,

running UnderdeterminedICA with polynomially many samples from model (8) will with high
probability be equivalent to running the ICA Algorithm with samples from model (9). This notion
will be made precise later using total variation distance.

For the remainder of this subsection, we proceed as if samples are drawn from the ideal noisy ICA
model (8). Thus, to recover the columns of A′, it suffices to run UnderdeterminedICA on samples
of X ′. Theorem 23 can be used for this analysis so long as we can obtain the necessary bounds on
the cumulants of S′, moments of S′, and the moments of η′(τ). We define wmin := miniwi and
wmax := maxiwi. Then, the cumulants of S′ are bounded by the following lemma:

Lemma 10 Given ` ∈ Z+, cum`(S
′
i) ≥ wiλ for each S′i. In particular, then cum`(S

′
i) ≥ wminλ.

Proof By construction, S′i = ‖µ′i‖Si. By the homogeneity property of univariate cumulants,

cum`(S
′
i) = cum`(

∥∥µ′i∥∥Si) =
∥∥µ′i∥∥` cum`(Si)

As µ′i(n+ 1) = 1, ‖µ′i‖ ≥ 1. The cumulants of the Poisson distribution are given in Lemma 21. It
follows that cum`(S

′
i) ≥ cum`(Si) = wiλ.

The bounds on the moments of S′i for each i can be computed using the following lemma:

Lemma 11 For ` ∈ Z+, we have E
(
S′`i
)
≤ (‖µ′i‖wiλ)```.

Proof Let Y denote a random variable drawn from Poisson(α). It is known (see Riordan (1937))
that

E
(
Y `
)

=
∑̀
i=1

αi
{
`

i

}
where

{
`
i

}
denotes Stirling number of the second kind. Using Lemma 20, it follows that

E
(
Y `
)
≤
∑̀
i=1

αi``−1 ≤ `α```−1 = α```.

Since S′i = µ′iSi where Si ∼ Poisson(λwi), it follows that E
(
S′`i
)

= ‖µ′i‖
` E
(
S`i
)
≤ ‖µ′i‖

` (wiλi)
```.

The absolute moments of Gaussian random variables are well known. For completeness, the
bounds are provided in Lemma 22 of Appendix E.

Defining σ = supv∈Sn−1

√
Var(vT η′(1)); vectors µ′max = maxi ‖µ′i‖, µ′min = mini ‖µ′i‖, and

similarly µmax and µmin for later; and choosing λ = m, we can now show a polynomial bound for
the error in recovering the columns of A′ using UnderdeterminedICA.

16



THE BLESSING OF DIMENSIONALITY FOR LEARNING LARGE GAUSSIAN MIXTURES

Theorem 12 (ICA specialized to the ideal case) Suppose that samples of X ′ are taken from the
unrestricted ICA model (5) choosing parameter λ = m and τ a constant. Suppose that Underdeter-
minedICA is run using these samples. Suppose σm(A′�d/2) > 0. Fix ε ∈ (0, 1/2) and δ ∈ (0, 1/2).
Then with probability 1− δ, when the number of samples N is:

N ≥ poly
(
nd,md2 , (τσ)d

2
,
∥∥µ′max

∥∥d2 , (wmax/wmin)d
2

, dd
2
, 1/σm(A′�d/2)d, 1/ε, 1/δ

)
(10)

the columns of A′ are recovered within error ε up to their signs. That is, denoting the columns
returned from UnderdeterminedICA by Ã′1, . . . , Ã

′
m, there exists α1, · · · , αm,∈ {−1,+1} and a

permutation p of [m] such that
∥∥∥A′i − αiÃ′p(i)∥∥∥ < ε for each i.

Proof Obtaining the sample bound is an exercise of rewriting the parameters associated with the
model X ′ = A′S′ + η′(τ) in a way which can be used by Theorem 23. In what follows, where new
parameters are introduced without being described, they will correspond to parameters of the same
name defined in and used by the statement of Theorem 23.

Parameter d is fixed. We must choose k1, . . . , km and k such that d < ki ≤ k and cumki(S
′
i)

is bounded away from 0. It suffices to choose k1 = · · · = km = k = d + 1. By Lemma
10, cumd+1(S′i) ≥ wminλ = wminm for each i. As wmax ≥ 1

m

∑m
i=1wi = 1

m , we have that
cumd+1(S′i) ≥

wmin
wmax

for each i, giving a somewhat more natural condition number. In the notation
of Theorem 23, we have a constant

∆ =
wmin

wmax
(11)

such that cumd+1(S′i) ≥ ∆ for each i.
Now we consider the upper bound M on the absolute moments of both η′(τ) and on S′i. As the

Poisson distribution takes on non-negative values, it follows that S′i = ‖µ′i‖Si takes on non-negative
values. Thus, the moments and absolute moments of S′i coincide. Using Lemma 11, we have that

E
(
|S′i|

d+1
)

= E
(
(S′i)

d+1
)
≤ (‖µ′i‖wiλ)d+1(d + 1)d+1. Thus, for M to bound the (d + 1)th

moment of S′i, it suffices that M ≥ (‖µ′max‖wmaxλ)d+1(d+ 1)d+1. Noting that

wmaxλ = wmaxm =
wmax

1/m
≤ wmax

wmin

it suffices that M ≥ (‖µ′max‖ wmax
wmin

)d+1(d+ 1)d+1, giving a more natural condition number.
Now we bound the absolute moments of the Gaussian distribution. As d ∈ 2N, it follows that

d+ 1 is odd. Given a unit vector u ∈ Rn, it follows from Lemma 22 that

E
(∣∣〈u, η′(τ)〉

∣∣d+1
)

= Var(〈u, η′(τ)〉)
(d+1)

2 2d/2 (d/2)!
1√
π

= τd+1Var(〈u, η′(1)〉)
(d+1)

2 2d/2 (d/2)!
1√
π
.

σ gives a clear upper bound for Var(〈u, η′(1)〉)1/2, and (d + 1)d+1 gives a clear upper bound
to 1√

π
2d/2(d/2)!. As such, it suffices that M ≥ (τσ)d+1(d + 1)d+1 in order to guarantee that

M ≥ E
(
|〈u, η′(τ)〉|d+1

)
. Using the obtained bounds for M from the Poisson and Normal variables,

it suffices that M be taken such that

M ≥ max

(
(τσ)d+1, (

∥∥µ′max

∥∥ wmax

wmin
)d+1

)
(d+ 1)d+1 (12)
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to guarantee that M bounds all required order d+ 1 absolute moments.
We can now apply Theorem 23, using the parameter values k = d+ 1, ∆ from (11), and M from

(12). Then with probability 1− δ,

N ≥ poly
(
n2d+1,md2 , (τσ)d

2
,
∥∥µ′max

∥∥d2 , (wmax/wmin)d
2
, (d+ 1)d

2
,

1/σm(A′�d/2)d+1, 1/ε, 1/δ
)

(13)

samples suffice to recover up to sign the columns of A′ within ε accuracy. More precisely, letting
Ã′1, . . . , Ã

′
m give the columns produced by UnderdeterminedICA, then there exists parameters

α1, . . . , αm such that αi ∈ {−1,+1} captures the sign indeterminacy, and a permutation p on [m]

such that
∥∥∥A′i − Ã′p(i)∥∥∥ < ε for each i.

The poly bound in (13) is equivalent to the poly bound in (10).

Theorem 12 allows us to recover the columns of A′ up to sign. However, what we really want to
recover are the means of the original Gaussian mixture model, which are the columns of A. Recalling
the correspondence between A′ and A laid out in section 3, the Gaussian means µ1, . . . , µm which
form the columns of A are related to the columns µ′1, . . . , µ

′
m of A′ by the rule µi = µ′i(1 :

n)/µ′i(n+ 1). Using this rule, we can construct estimate the Gaussian means from the estimates of
the columns of A′. By propagating the errors from Theorem 12, we arrive at the following result:

Theorem 13 (Recovery of Gaussian means in Ideal Case) Suppose that UnderdeterminedICA
is run using samples of X ′ from the ideal noisy ICA model (8) choosing parameters λ = m and τ a
constant. Define B ∈ Rn×m such that Bi = Ai/ ‖Ai‖. Suppose further that σm(B�d/2) > 0. Let
Ã′1, · · · , Ã′m be the returned estimates of the columns of A′ (from model (8)) by Underdetermined-
ICA. Let µ̃i = Ã′i(1 : n)/Ã′i(n+ 1) for each i. Fix error parameters ε ∈ (0, 1/2) and δ ∈ (0, 1/2).
When at least

N ≥ poly

(
nd,md2 , (τσ)d

2
, ‖µmax‖d

2

,

(
wmax

wmin

)d2
, dd

2
,

(
‖µmax‖+ 1

‖µmin‖

)d2
,

1

σm(B�d/2)d
,
1

ε
,
1

δ

)
(14)

samples are used, then with probability 1 − δ there exists a permutation p of [m] such that∥∥µ̃p(i) − µi∥∥ < ε for each i.

Proof Let ε∗ > 0 (to be chosen later) give a desired bound on the errors of the columns of A′. Then,
from Theorem 12, using

N ≥ poly
(
nd,md2 , (τσ)d

2
,
∥∥µ′max

∥∥d2 , (wmax/wmin)d
2

, dd
2
, 1/σm(A′�d/2)d, 1/ε∗, 1/δ

)
(15)

samples suffices with probability 1− δ to produce column estimates Ã′1, . . . , Ã
′
m such that for an

unknown permutation p and signs α1, . . . , αm, αp(1)Ã
′
p(1), . . . , αp(m)Ã

′
p(m) give ε∗-close estimates

of the columns A′1, . . . , A
′
m respectively of A′. In order to avoid notational clutter, we will assume

without loss of generality that p is the identity map, and hence that
∥∥∥αiÃ′i − αA′i∥∥∥ < ε∗ holds.

This proof proceeds in two steps. First, we replace the dependencies in (15) on parameters from
the lifted GMM model generated by the full reduction with dependencies based on the GMM model
we are trying to learn. Then, we propagate the error from recovering the columns Ã′i to that of
recovering µ̃i.
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Step 1: GMM Dependency Replacements. In the following two claims, we consider alternative
lower bounds for N for recovering column estimators Ã′1, . . . , Ã

′
m which are ε∗-close up to sign to

the columns of A′. In particular, so long as we use at least as many samples of X ′ as in (15) when
calling UnderdeterminedICA, then A′ will be recovered with the desired precision with probability
1− δ.

Claim The poly(‖µ′max‖
d2 , dd

2
) dependence in (15) can be replaced by a poly(‖µmax‖d

2

, dd
2
)

dependence.

Proof of Claim. By construction, µ′max =

(
µmax

1

)
. By the triangle inequality,

∥∥µ′max

∥∥d2 ≤ (‖µmax‖+ 1)d
2

where (‖µmax‖+ 1)d
2

is a polynomial q of ‖µmax‖ with coefficients bounded by (d2)d
2

= d2d2 =

poly(dd
2
). The maximal power of ‖µmax‖ in q(‖µmax‖) is dd

2
. It follows that q(‖µmax‖) =

poly(‖µmax‖d
2

, dd
2
). N

Claim The poly(1/σm(A′�d/2)d) in (15) can be replaced by a poly((‖µmax‖+1
‖µmin‖ )d

2
, 1/σm(B�d/2)d)

dependence.

Proof of Claim First define A′ to be the unnormalized version of A′. That is, A′i := µ′i. Then,

A′ = A′diag (‖µ′1‖ , . . . , ‖µ′m‖) implies A′�d/2 = A′�d/2diag
(
‖µ′1‖

d/2 , . . . ‖µ′m‖
d/2
)

. Thus,

σm(A′�d/2) ≤ σm(A′�d/2) ‖µ′max‖
d/2.

Next, we note that A′ =

(
A
1

)
where 1 is an all ones row vector. It follows that the rows of

A�d/2 are a strict subset of the rows of A′�d/2. Thus,

σm(A�d/2) = inf
‖u‖=1

∥∥∥A�d/2u∥∥∥ ≤ inf
‖u‖=1

∥∥∥A′�d/2u
∥∥∥ = σm(A′�d/2) .

Finally, we note thatB = Adiag
(

1
‖µ1‖ , . . . ,

1
‖µm‖

)
andB�d/2 = A�d/2diag

(
1

‖µ1‖d/2
, . . . , 1

‖µm‖d/2

)
.

It follows that σm(B�d/2) ≤ σm(A�d/2) 1

‖µmin‖d/2
. Chaining together inequalities yields:

σm(B�d/2) ≤ ‖µ
′
max‖

d/2

‖µmin‖d/2
σm(A′�d/2) or alternatively

‖µ′max‖
d/2

‖µmin‖d/2
· 1

σm(B�d/2)
≥ 1

σm(A′�d/2)
.

As µ′max = (µTmax 1)T , the triangle inequality implies ‖µ′max‖ ≤ ‖µmax‖ + 1. As we require the
dependency of at least N > poly((1/σm(A′�d/2))d) samples, it suffices to have the replacement
dependency of N > poly((‖µmax‖+1

‖µmin‖ )
d
2
·d(1/σm(B�d/2)d) = poly((‖µmax‖+1

‖µmin‖ )d
2
(1/σm(B�d/2)d)

samples. N

Thus, it is sufficient to call UnderdeterminedICA with

N ≥ poly

(
nd,md2 , (τσ)d

2
, ‖µmax‖d

2

,
(wmax

wmin

)d2
, dd

2
,

(
‖µmax‖+ 1

‖µmin‖

)d2
,

1

σm(B�d/2)d
,

1

ε∗
,
1

δ

)
(16)
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samples to achieve the desired ε∗ accuracy on the returned estimates of the columns of A′ with
probability 1− δ.

Step 2: Error propagation. What remains to be shown is that an appropriate choice of ε∗ enforces
‖µi − µ̃i‖ < ε by propagating the error.

Recall that A′i =

(
µi
1

)
·
∥∥∥∥( µi

1

)∥∥∥∥−1

, making A′i(n+ 1) = 1√
1+‖µi‖2

. Thus,

A′i(n+ 1) ≥ 1√
1 + ‖µmax‖2

. (17)

We have that:

‖µi − µ̃i‖ =

∥∥∥∥∥ A′i(1 : n)

A′i(n+ 1)
− Ã′i(1 : n)

Ã′i(n+ 1)

∥∥∥∥∥
=

∥∥∥∥∥ A′i(1 : n)

A′i(n+ 1)
− αiÃ

′
i(1 : n)

A′i(n+ 1)
+
αiÃ

′
i(1 : n)

A′i(n+ 1)
− αiÃ

′
i(1 : n)

αiÃ′i(n+ 1)

∥∥∥∥∥
≤

∥∥∥A′i(1 : n)− αiÃ′i(1 : n)
∥∥∥

|A′i(n+ 1)|
+

∥∥∥Ã′i(1 : n)
∥∥∥ ∣∣∣αiÃ′i(n+ 1)−A′i(n+ 1)

∣∣∣∣∣∣A′i(n+ 1)αiÃ′i(n+ 1)
∣∣∣

≤ ε∗
√

1 + ‖µmax‖2 +

∣∣∣αiÃ′i(n+ 1)−A′i(n+ 1)
∣∣∣

|A′i(n+ 1)|
[
|A′i(n+ 1)| −

∣∣∣αiÃ′i(n+ 1)−A′i(n+ 1)
∣∣∣]

which follows in part by applying (17) for the left summand and noting that Ã′i is a unit vector

for the right summand, giving the bound
∥∥∥Ã′i(1 : n)

∥∥∥ ≤ 1. Continuing with the restriction that

ε∗ < 1
2

1√
1+‖µmax‖2

,

‖µi − µ̃i‖ ≤ ε∗
√

1 + ‖µmax‖2 +
ε∗
√

1 + ‖µmax‖2[
1√

1+‖µmax‖2
− ε∗

]
≤ ε∗

(√
1 + ‖µmax‖2 + 2(1 + ‖µmax‖2)

)
.

Then, in order to guarantee that ‖µi − µ̃i‖ < ε, it suffices to choose ε∗ such that

ε∗
(√

1 + ‖µmax‖2 + 2(1 + ‖µmax‖2)

)
≤ ε,

which occurs when
ε∗ ≤ ε(√

1 + ‖µmax‖2 + 2(1 + ‖µmax‖2)

) . (18)
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As ε < 1
2 , the restriction ε∗ < 1

2

√
1 + ‖µ2

max‖ holds automatically for the choice of ε∗ in

(18). The sample bound from (16) contains the dependency N > poly( 1
ε∗ , ‖µmax‖d

2

). Propa-

gating the error gives a replacement dependency of N > poly

(
1
ε ,
√

1 + ‖µmax‖2, ‖µmax‖d
2

)
=

poly(1
ε , ‖µmax‖d

2

) as d is non-negative. This propagated dependency is reflected in (14).

A.2. Distance of the Sampled Model to the Ideal Model

An important part of the reduction is that the coordinates of S are mutually independent. Without
the threshold τ , this is true (c.f. Lemma 6). However, without the threshold, one cannot know how
to add more noise so that the total noise on each sample is iid. We show that we can choose the
threshold τ large enough that the samples still come from a distribution with arbitrarily small total
variation distance to the one with truly independent coordinates.

Lemma 14 Fix δ > 0. Let S ∼ Poisson(λ) for λ ≥ ln δ. If τ > eλ, τ ≥ 1, and τ ≥ ln(1/δ)− λ,
then Pr (S > τ) < δ.

Proof By the Chernoff bound (See Theorem A.1.15 in Alon and Spencer (2004)),

Pr (S > λ(1 + ε)) ≤
(
eε(1 + ε)−(1+ε)

)λ
.

For any τ > λ, letting ε = τ/λ− 1, we get

Pr (S > τ) ≤ e−λ(eλ)τ

τ τ
.

Let b = eλ. To get Pr (S > τ) < δ, it suffices that τ − τ logb τ ≤ logb(δe
λ). Note that

τ(1− logb τ) = τ − τ logb τ = logb
(
bτ (1/τ)τ

)
.

If τ − τ logb τ ≤ logb
(
δeλ
)
, then we have

logb
(
bτ (1/τ)τ

)
≤ logb(δe

λ)

which then implies it suffices that

bτ

τ τ
=

(eλ)τ

τ τ
≤ λτ/τ τ ≤ (1/e)τ ≤ δeλ

which holds for τ ≥ ln
(

1
δeλ

)
= ln(1/δ)− λ, giving the desired result.

Lemma 15 Let N, δ > 0, N ∈ N, and T1, T2, . . . , TN be iid with distribution Poisson(λ). If
τ ≥ ln(N/δ)− λ then

Pr

(⋃
i

{Ti > τ}

)
< δ.
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Proof By Lemma 14 τ ≥ ln(N/δ)− λ implies Pr (Ti > τ) < δ/N for every i. The union bound
gives us the desired result.

It should now be easy to see that if we choose our threshold τ large enough, our samples can be
statistically close (See Appendix F) to ones that would come from the truly independent distribution.
This claim is made formal as follows:

Lemma 16 Fix δ > 0. Let τ > 0. Let F be a Poisson distribution with parameter λ and have
corresponding density f . Let G be a discrete distribution with density g(x) = f(x)/F (τ) when
0 ≤ x ≤ τ and 0 otherwise. Then dTV (F,G) = 1− F (τ).

Proof Since we are working with discrete distributions, we can write

dTV (F,G) =
1

2

∞∑
i=0

|f(i)− g(i)|.

Then we can compute

dTV (F,G) =
|F (τ)− 1|

2F (τ)

τ∑
i=0

f(i) +
1

2

∞∑
i=τ+1

f(i) =
|F (τ)− 1|

2
+

1− F (τ)

2
= 1− F (τ) .

A.3. Proof of Theorem 1

We now show that after the reduction is applied, we can use the UnderdeterminedICA routine
given in Goyal et al. (2013) to learn the GMM. Instead of requiring exact values of each parameter,
we simply require a bound on each. The algorithm remains polynomial on those bounds, and hence
polynomial on the true values.
Proof For consistency with the notation in Goyal et al. (2013), d in the proof below is twice the
value of d in the statement of Theorem 1.

The algorithm is provided parameters: Covariance matrix Σ, upper bound on tensor order d,
access to samples from a mixture of m identical spherical Gaussians in Rn with covariance Σ,
confidence δ, accuracy ε, upper bound w ≥ maxi(wi)/mini(wi), upper bound on the norm of the
mixture means u, lower bound v so 0 < b ≤ σm(A�d/2), and r ≥

(
maxi ‖µi‖+ 1)/(mini ‖µi‖)

)
.

The algorithm then needs to fix the number of samples N , sampling threshold τ , Poisson
parameter λ, and two new errors δ1 and δ2 so that δ1 + δ2 ≤ δ. For simplicity, we will take
δ1 = δ2 = δ/2. Then fix σ = supv∈Sn−1

√
Var(vT η(1)) for η(1) ∼ N (0,Σ). Recall that B is the

matrix whose ith column is µi/ ‖µi‖. Let A′ be the matrix whose ith column is (µi, 1)/ ‖(µi, 1)‖.

Step 1 Assume that after drawing samples from Subroutine 1, the signals Si are mutually indepen-
dent (as in the “ideal” model given by (4)) and the mean matrix B satisfies σm(B�d/2) ≥ b > 0.
Then by Theorem 13, with probability of error δ1, the call to UnderdeterminedICA in Algorithm 2
recovers the columns of B to within ε and up to a permutation using N samples of complexity

p
(
τd

2
,Θ
)

= poly
(
nd,md2 , (τσ)d

2
, ud

2
, wd

2
, dd

2
, rd

2
, 1/bd, 1/ε, 1/δ1

)
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where p(τd
2
,Θ) is the bound on N promised by Theorem 13 and Θ is all its arguments except the

dependence in τ . So then we have that with at least N samples in this “ideal” case, we can recover
approximations to the true means in Rn up to a permutation and within ε distance.

Step 2 We need to show that after getting N samples from the reduction, the resulting distribution
is still close in total variation to the independent one. We will choose a new δ′ = δ2/(2N). Let
R ∼ Poisson(λ). Given δ′, Lemma 16 shows that for τ ≥ ln(1/δ′) − λ, with probability 1 − δ′,
R ≤ τ .

Take N iid random variables X1, X2, . . . , XN from the Poisson(λ) distribution. Let G be a
distribution given by density function g(x) = (f(x)10≤x≤τ )/F (τ). Let Y1, Y2, . . . , YN be iid
random variables with distribution G. Denote the joint distribution of the Xi’s by F ′ with density f ′,
and the joint distribution of the Yi’s as G′ with density g′. By the union bound and the fact that total
variation distance satisfies the triangle inequality,

dTV (F ′, G′) ≤
N∑
i=1

dTV (F,G) = N dTV (F,G).

Then for our choice of τ , by Lemma 14 and Lemma 16, we have

dTV (F ′, G′) ≤ NdTV (F,G) = NPr (X1 > τ) ≤ Nδ′ = δ2/2.

By the same union bound argument, the probability that the algorithm fails (when R > τ ) is at
most δ2/2, since it has to draw N samples. So with high probability, the algorithm does not fail;
otherwise, it still does not take more than polynomial time, and will terminate instead of returning a
false result.

Step 3 We know that N is at least a polynomial which can be written in terms of the dependence
on τ as p(τd

2
,Θ). This means there will be a power of τ which dominates all of the τ factors in

p, and in particular, will be τCd
2

for some C. It then suffices to choose C so that p
(
τd

2
,Θ
)
≤

τCd
2
q(Θ) ≤ N , where

q(Θ) = poly
(
nd,md2 , σd

2
, ud

2
, wd

2
, dd

2
, rd

2
, 1/bd, 1/ε, 1/δ1

)
. (19)

Then, with the proper choice of τ (to be specified shortly), from step 2 we have

p
(
τd

2
,Θ
)
≤ τCd2q(Θ) ≤ N =

δ2

δ′
≤ δ2τ

τeλ

(eλ)τ
=

δτ τeλ

2(eλ)τ
.

Since λ ≥ 1 it suffices to choose τ so that

2

δ
q(Θ)τCd

2 ≤ τ τ

τCd2(eλ)τ
. (20)

Finally, we claim that

τ = 4
(

log(2/δ) + log(q(Θ))
)

max
(
(eλ)2, 4Cd2

)
= O

(
(λ2 + d2) log

q(Θ)

δ

)
is enough for the desired bound on the sample size. Observe that 4(log(2/δ) + log(q(Θ))) ≥ 1.
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An useful fact is that for general x, a, b ≥ 1, x ≥ max(2a, b2) satisfies xa ≤ xx/bx. This
captures the essence of our situation nicely. Letting eλ play the role of b, Cd2 play the role of a and
x play the role of τ , to satisfy (20), it suffices that

2

δ
q(Θ) ≤ τ τ/2τ τ/4τ τ/4

τCd2(eλ)2
.

We can see that τ τ/2 ≥ (eλ)2 and τ τ/4 ≥ τCd2 by construction. But we also get τ/4 ≥ log(2/δ) +
log q(Θ) which implies τ τ/4 ≥ eτ/4 ≥ 2

δ q(Θ). Thus for our choice of τ , which also preserves the
requirement in Step 2, there is a corresponding set of choices for N , where the required sample size
remains polynomial as

poly
(
nd,md2 , (τσ)d

2
, ud

2
, wd

2
, dd

2
, rd

2
, 1/bd, 1/ε, 1/δ

)
where we used the bound q(Θ) ≤ (ndmd2σd

2
ud

2
wd

2
(d+ 1)d

2
rd

2
/bdδ1ε)

O(1). By the choice of τ ,
one can absorb τd

2
into the above poly(·) expression, giving the result.

Appendix B. Lemmas on the Poisson Distribution

The following lemmas are well-known; see, e.g., Dasgupta (2011). We provide proofs for complete-
ness.

Lemma 17 If X ∼ Poisson(λ) and Y |X=x ∼ Bin(x, p) then Y ∼ Poisson(pλ).

Proof

Pr (Y = y) =
∞∑

x:x≥y
Pr (Y = y | X = x)Pr (X = x)

=

∞∑
x:x≥y

(
x

y

)
py(1− p)x−y λ

xe−λ

x!

= pye−λ
∞∑

x:x≥y

λx

x!

(
x

y

)
(1− p)x−y

=
(pλ)ye−λ

y!

∞∑
x:x≥y

(λ(1− p))x−y

(x− y)!

=
(pλ)ye−λ

y!
e(1−p)λ

=
(pλ)ye−pλ

y!
.
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Lemma 18 Fix a positive integer k, and let pi ≥ 0 be such that p1+· · ·+pk = 1. IfX ∼ Poisson(λ)
and (Y1, . . . , Yk)|X=x ∼ Multinom(x; p1, . . . , pk) then Yi ∼ Poisson(piλ) for all i and Y1, . . . , Yk
are mutually independent.

Proof The first part of the lemma (i.e., Yi ∼ Poisson(piλ) for all i) follows from Lemma 17. For
the second part, let’s prove it for the binomial case (k = 2); the general case is similar.

Pr (Y1 = y1, Y2 = y2) = Pr (Y1 = y1, Y2 = y2 | X = y1 + y2)Pr (X = y1 + y2)

=

(
y1 + y2

y1

)
py1(1− p)y2 · λ

y1+y2e−λ

(y1 + y2)!

=
(pλ)y1e−pλ

y1!
· ((1− p)λ)y2e−(1−p)λ

y2!

= Pr (Y1 = y1) · Pr (Y2 = y2) .

Appendix C. Properties of Cumulants

The following properties of multivariate cumulants are well known and are largely inherited from the
definition of the cumulant generating function:

• (Symmetry) Let σ give a permutation of k indices. Then, κi1,··· ,i`Y = κ
σ(i1),··· ,σ(i`)
Y .

• (Multilinearity of coordinate random variables) Given constants α1, · · · , α`, then

cum(α1Yi1 , · · · , α`Yi`) =

(∏̀
i=1

αi

)
cum(Yi1 , · · · , Yi`) .

Also, given a scalar random variable Z, then

cum(Yi1 + Z, Yi2 , · · · , Yi`) = cum(Yi1 , Yi2 , · · · , Yi`) + cum(Z, Yi2 , · · · , Yi`)

with symmetry implying the additive multilinear property for all other coordinates.

• (Independence) If there exists ij , ik such that Yij and Yik are independent random variables,
then the cross-cumulant κi1,··· ,i`Y = 0. Combined with multilinearity, it follows that when there
are two independent random vectors Y and Z, then κY+Z = κY + κZ .

• (Vanishing Gaussians) When ` ≥ 3, then for the Gaussian random variable η, κη = 0.

Appendix D. Bounds on Stirling Numbers of the Second Kind

The following bound comes from (Rennie and Dobson, 1969, Theorem 3).

Lemma 19 If n ≥ 2 and 1 ≤ r ≤ n− 1 are integers, then
{
n
r

}
≤ 1

2

(
n
r

)
rn−r.

From this, we can derive a somewhat looser bound on the Stirling numbers of the second kind
which does not depend on r:
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Lemma 20 If n, r ∈ Z+ such that r ≤ n, then
{
n
r

}
≤ nn−1.

Proof The Stirling number
{
n
k

}
of the second kind gives a count of the number of ways of splitting

a set of n labeled objects into k unlabeled subsets. In the case where r = n, then
{
n
r

}
= 1 As n ≥ 1,

it is clear that for these choices of n and r,
{
n
r

}
≤ nn−1. By the restriction 1 ≤ r ≤ n, when n = 1,

then n = r giving that
{
n
r

}
= 1. As such, the only remaining cases to consider are when n ≥ 2 and

1 ≤ r ≤ n− 1, the cases where Lemma 19 applies.
When n ≥ 2 and 1 ≤ r ≤ n− 1, then{

n

r

}
≤ 1

2

(
n

r

)
rn−r =

1

2

n!

r!(n− r)!
rn−r ≤ 1

2
nrrn−r−1 <

1

2
nrnn−r−1 =

1

2
nn−1 ,

which is slightly stronger than the desired upper bound.

Appendix E. Values of Higher Order Statistics

In this appendix, we gather together some of the explicit values for higher order statistics of the
Poisson and Normal distributions required for the analysis of our reduction from learning a Gaussian
Mixture Model to learning an ICA model from samples.

Lemma 21 (Cumulants of the Poisson distribution) Let X ∼ Poisson(λ). Then, cum`(X) = λ
for every positive integer `.

Proof The moment generating function of the Poisson distribution is given by M(t) = exp(λ(et −
1)). The cumulant generating function is thus g(t) = log(M(t)) = λ(et − 1). The `th derivative
(` ≥ 1) is given by g(`)(t) = λet.

By definition, cum`(X) = g(`)(0) = λ.

Lemma 22 (Absolute moments of the Gaussian distribution) The absolute moments of the Gaus-
sian random variable η ∼ N(0, σ2) are given by:

E
(
|η|`
)

=

{
σ` `!

2`/2(`/2)!
if ` is even

σ`2`/2( `−1
2 )! 1√

π
if ` is odd.

The case that ` is even in Lemma 22 is well known, and can be found for instance in (Kendall et al.,
1994, Section 3.4). For general `, it is known (see Winkelbauer (2012)) that

E
(
|η|`
)

= σ`2
`/2Γ

(
`+ 1

2

)
1√
π
.

When ` is odd, `+1
2 is an integer, allowing the Gamma function to simplify to a factorial: Γ

(
`+1

2

)
=(

`−1
2

)
!. This gives the case where ` is odd in Lemma 22.
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Appendix F. Total Variation Distance

Total variation is a type of statistical distance metric between probability distributions. In words, the
total variation between two measures is the largest difference between the measures on a single event.
Clearly, this distance is bounded above by 1.

For probability measures F and G on a sample space Ω with sigma-algebra Σ, the total variation
is denoted and defined as:

dTV (F,G) := sup
A∈Σ
|F (A)−G(A)|.

Equivalently, when F and G are distribution functions having densities f and g, respectively,

dTV (F,G) =
1

2

∫
Ω
|f − g|dµ

where µ is an arbitrary positive measure for which F and G are absolutely continuous.
More specifically, when F and G are discrete distributions with known densities, we can write

dTV (F,G) =
1

2

∞∑
k=0

|f(k)− g(k)|

where we choose µ that simply assigns unit measure to each atom of Ω (in this case, absolute
continuity is trivial since µ(A) = 0 only when A is empty and thus F (A) must also be 0). For more
discussion, one can see Definition 15.3 in Nielsen (1997) and Sect. 11.6 in Royden et al. (1988).

Appendix G. Sketch for the proof of Theorem 4

Lower bound for ICA. We can use our Poissonization technique to embed difficult instances of
learning GMMs into the ICA setting to prove that ICA is information-theoretically hard when the
observed dimension n is a constant using the lower bound for learning GMMs. We are not aware of
any existing lower bounds in the literature for this problem. We only provide an informal outline of
the argument.

Theorem 3 gives us two GMMs p and q of identity covariance Gaussians that are exponentially
close with respect to (k/ log k)

1
n (where 4k2 points are used to generate the Gaussian means) in L1

distance but far in parameter distance. We apply the basic reduction from Section 3 with λ set to
the number of Gaussian means associated with the respective GMMs p and q to obtain the ideal
noisy ICA models Xp = ApSp + η(τ) and Xq = AqSq + η(τ) (see the construction of model
(2) from Section 3). Here, η ∼ N (0, I), and the choice of τ will be specified later. Recall that
Rp =

∑
i Spi ∼ Poisson(mp) and Rq =

∑
i Sqi ∼ Poisson(mq) with parameters mp and mq

denoting the number of columns of Ap and Aq respectively. Let w1, . . . , wmp be the Gaussian
weights associated with the GMM p. By Lemma 6, each Spi ∼ Poisson(wimp). As there must exist
wi ∈ [ 1

mp
, 1], and as mp ∈ [1, 4k2], it follows that there exists i such that Spi ∼ Poisson(λ) for some

λ ∈ [ 1
4k2
, 4k2]. The same result holds for Sq.

Now, we let Sp and Sq take on the scaling information of the ICA model by setting αpi = ‖Api‖,
αqi = ‖Aqi‖ and replacing Spi and Sqj by αpiSpi and αqjSqj respectively, and replacing the columns
of Ap and Aq with their unit-normalized versions. While Theorem 3 is proven in the setting where
Gaussian means are drawn uniformly at random from the unit hypercube, it can be reformulated to
have Gaussian means drawn uniformly at random from the unit ball. Under such a reformulation,
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the resulting normalized columns of Ap and Aq are chosen from a set of 4k2 unit vectors drawn
uniformly from the unit sphere Sn−1 ⊂ Rn. Further, with high probability, each αpi and each αqi is
inverse polynomially (with respect to k) bounded away from 0.

Lemma 14 implies that for a choice of τp which is linear in mp ≤ 4k2, the probability of a draw
with Rp > τp is exponentially small with respect to τp. For such choices of τp and τq which are
linear in mp and mq respectively, we choose τ = max(τp, τq, k) as the common threshold for the
above ICA models. Note that since τ is at most linear in 4k2, the directional variances of η(τ) are
also linear in 4k2, and hence polynomially bounded in k as desired.

Since the L1 (or equivalently total variation) distance between p and q is exponentially small
with respect to (k/ log k)

1
n , the total variation distance between the two resulting ICA models—the

distributions of Xp and Xq respectively—is also exponentially small with respect to (k/ log k)
1
n .

To see this, we must condition on several cases. First, conditioning either model on R > τ , we
have that Pr(R > τ) is exponentially small with respect to τ and hence k, and its contribution to
the overall total variation distance between Xp and Xq is thus exponentially small. Conditioning
on R = z where z ∈ {0, 1, . . . , τ}, then the facts that p and q are close in total variation distance
and that total variation distance satisfies a version of the triangle inequality—for random variables
C, D, E, and F , we have dTV (C+D,E+F ) ≤ dTV (C,E)+dTV (D,F )—imply that by viewing
Xp (and similarly for Xq) as the sum of z draws from the distribution p and τ − z draws from the
additive Gaussian noise distribution η, the total variation distance between Xp and Xq conditioned
on R = z is still exponentially small. Thus, the non-conditional distributions of Xp and Xq will be
exponentially close with respect to (k/ log k)

1
n in total variation distance. In particular, the sample

complexity of distinguishing between Xp and Xq is at least exponential in (k/ log k)
1
n .

One can also interpret ICA with Gaussian noise as ICA without noise by treating the noise as
extra signals: If X = AS + η is an ICA model where A ∈ Rn×m and η ∈ Rn is spherical Gaussian
noise, then by defining A′ := [A|In], and S′ := [ST , ηT ]T we get X = A′S′ which is a noiseless
model with some of the signals being Gaussian. In such cases, algorithms (such as that of Goyal
et al. (2013)) are able to still recover the non-Gaussian portion A of A′. Our result shows that such
algorithms cannot be efficient if the observations are in small dimensions (i.e. n is small).

Appendix H.

H.1. Underdetermined ICA theorem

Theorem 23 (Goyal et al. (2013)) Let a random vector x ∈ Rn be given by an underdetermined
ICA model with unknown Gaussian noise x = As + η where A ∈ Rn×m with m ≥ n has unit
norm columns, and both A and the covariance matrix Σ ∈ Rn×n are unknown. Let d ∈ 2N be
such that σm(A�d/2) > 0. Let k > d be such that for each si, there is a ki satisfying d < ki ≤ k

and |cumki(si)| ≥ ∆, and E
(
|si|k

)
≤ M . Moreover, suppose that the noise also satisfies the

same moment condition: E
(
|〈u, ηi〉|k

)
≤ M for any unit vector u ∈ Rn (this is satisfied if we

have k!σk ≤M where σ2 is the maximum eigenvalue of Σ). Then algorithm UnderdeterminedICA
returns a set of n-dimensional vectors (Ãi)

m
i=1 so that for some permutation π of [m] and signs

αi ∈ {−1, 1} we have
∥∥∥αiÃπ(i) −Ai

∥∥∥ ≤ ε for all i ∈ [m]. Its sample and time complexity are

poly
(
nk,mk2 ,Mk, 1/∆k, 1/σm(A�d/2)k, 1/ε, 1/δ

)
.
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H.2. Rudelson-Vershynin subspace bound

Lemma 24 (Rudelson and Vershynin (2009)) If A ∈ Rn×m has columns C1, . . . , Cm, then de-
noting C−i = span (Cj : j 6= i), we have

1√
m

min
i∈[m]

dist(Ci, C−i) ≤ σmin(A),

where as usual σmin(A) = σmin(m,n)(A).

H.3. Carbery-Wright anticoncentration

The version of the anticoncentration inequality we use is explicitly given in Mossel et al. (2010)
which in turn follows immediately from Carbery and Wright (2001):

Lemma 25 (Mossel et al. (2010)) Let Q(x1, . . . , xn) be a multilinear polynomial of degree d. Sup-
pose that Var (Q) = 1 when xi ∼ N (0, 1) for all i. Then there exists an absolute constant C such
that for t ∈ R and ε > 0,

Pr
(x1,...,xn)∼N (0,In)

(|Q(x1, . . . , xn)− t| ≤ ε) ≤ Cdε1/d.

Appendix I. Recovery of Gaussian Weights

Multivariate cumulant tensors and their properties. Our technique for the recovery of the
Gaussian weights relies on the tensor properties of multivariate cumulants that have been used in the
ICA literature.

Given a random vector Y ∈ Rn, the moment generating function of Y is defined as MY (t) :=
EY (exp(tTY )). The cumulant generating function is the logarithm of the moment generating
function: gY (t) := log(EY (exp(tTY )).

Similarly to the univariate case, multivariate cumulants are defined using the coefficients of the
Taylor expansion of the cumulant generating function. We use both κj1,...,j`Y and cum(Yj1 , . . . , Yj`)
to denote the order-` cross cumulant between the random variables Yj1 , Yj2 , . . . , Yj` . Then, the cross-
cumulants κj1,...,j`Y are given by the formula κj1,...,j`Y = ∂

∂tj1
· · · ∂

∂tj`
gY (t)

∣∣
t=0

. When unindexed, κY
will denote the full order-` tensor containing all cross-cumulants, with the order of the tensor being
made clear by context. In the special case where j1 = · · · = j` = j, we obtain the order-` univariate
cumulant cum`(Yj) = κj,...,jY (j repeated ` times) previously defined. We will use some well known
properties of multivariate cumulants, found in Appendix C.

The most theoretically justified ICA algorithms have relied on the tensor structure of multivariate
cumulants, including the early, popular practical algorithm JADE Cardoso and Souloumiac (1993).
In the fully determined ICA setting in which the number source signals does not exceed the ambient
dimension, the papers Arora et al. (2012) and Belkin et al. (2013) demonstrate that ICA with additive
Gaussian noise can be solved in polynomial time and using polynomial samples. The tensor structure
of the cumulants was (to the best of our knowledge) first exploited in Cardoso (1991) and later in
Albera et al. (2004) to solve underdetermined ICA. Finally, Goyal et al. (2013) provides an algorithm
with rigorous polynomial time and sampling bounds for underdetermined ICA in the presence of
Gaussian noise.
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Weight recovery (main idea). Under the basic ICA reduction (see section 3) using the Poisson
distribution with parameter λ, we have that X = AS + η is observed such that A = [µ1| · · · |µm]
and Si ∼ Poisson(wiλ). As A has already been recovered, what remains to be recovered are the
weights w1, · · · , wm. These can be recovered using the tensor structure of higher order cumulants.
The critical relationship is captured by the following Lemma:

Lemma 26 Suppose that X = AS + η gives a noisy ICA model. When κX is of order ` > 2, then
vec (κX) = A�`(cum`(S1), . . . , cum`(Sm))T .

Proof It is easily seen that the Gaussian component has no effect on the cumulant:

κX = κAS+η = κAS + κη = κAS

Then, we expand κX :

κi1,··· ,i`X = κi1,··· ,i`AS = cum((AS)i1 , · · · , (AS)i`)

= cum

 m∑
j1=1

Ai1j1Sj1 , · · · ,
m∑
j`=1

Ai`j`Sj`


=

∑
j1,··· ,j`∈[m]

(∏̀
k=1

Aikjk

)
cum(Sj1 , · · · , Sj`) by multilinearity

But, by independence, cum(Sj1 , · · · , Sjm) = 0 whenever j1 = j2 = · · · = j` fails to hold. Thus,

κi1,··· ,i`X =

m∑
j=1

(∏̀
k=1

Aikj

)
cum`(Sj) =

m∑
j=1

(
(Aj)

⊗`)
i1,··· ,i`

cum`(Sj)

Flattening yields: vec (κX) = A�`(cum`(S1), · · · , cum`(Sm))T .

In particular, we have that Si ∼ Poisson(wiλ) with wi the probability of sampling from the ith

Gaussian. Given knowledge of A and the cumulants of the Poisson distribution, we can recover the
Gaussian weights.

Theorem 27 Suppose that X = AS + η(τ) is the unrestricted noisy ICA model from the basic
reduction (see section 3). Let ` > 2 be such that A�` has linearly independent columns, and let
(A�`)† be its Moore-Penrose pseudoinverse. Let κX be of order `. Then 1

λ(A�`)†vec (κX) is the
vector of mixing weights (w1, . . . , wm)T of the Gaussian mixture model.

Proof From Lemma 21, cum`(Si) = λwi. Lemma 26 implies that vec (κX) = λA�`(w1, . . . , wm)T .
Multiplying on the left by 1

λ(A�`)† gives the result.

30


	Introduction
	Preliminaries
	Learning GMM means using underdetermined ICA: The basic idea
	Correctness of the Algorithm and Reduction
	Smoothed Analysis
	The curse of low dimensionality for Gaussian mixtures
	Theorem 1 Proof Details
	Error Analysis of the Ideal Noisy ICA Model
	Distance of the Sampled Model to the Ideal Model
	Proof of Theorem 1

	Lemmas on the Poisson Distribution
	Properties of Cumulants
	Bounds on Stirling Numbers of the Second Kind
	Values of Higher Order Statistics
	Total Variation Distance
	Sketch for the proof of Theorem 4
	
	Underdetermined ICA theorem
	Rudelson-Vershynin subspace bound
	Carbery-Wright anticoncentration

	Recovery of Gaussian Weights

