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Sylvester’s problem

• 4 random points: what is the probability that 

they are in convex position?

• : convex hull of n random points in convex 

body K.
PKn
body K.

• Which convex bodies K are extremal for

E volPKn
volK



Questions by Meckes and Reitzner

• M’s weak conjecture: for n=d+1 (random 

simplex) there exists some c.

• M’s strong conjecture: for n=d+1 and c=1

K ⊆M =⇒ E volPKn ≤ cdE volPMn

• M’s strong conjecture: for n=d+1 and c=1

• R’s question: for arbitrary n and c=1.



Connection with slicing

• Slicing conjecture: every d-dimensional convex 

body of volume one has a hyperplane section 

of area >=c for some universal c.

• Equivalent: for K a d-dimensional convex body• Equivalent: for K a d-dimensional convex body

• M’s weak conjecture ⇔ slicing
M’s weak conjecture:

∃c > 0 such that for any pair K,M of d-dimensional convex bodies

K ⊆M =⇒ E volPKd+1 ≤ cdE volPMd+1

LK := (detA(K)/(volK)2)1/2d has a universal upper bound.



Main result

• About M’s strong conjecture:

– True in dimension 1,2

– False in dimension >=4

– Strong numerical evidence for falsity in dim. 3.– Strong numerical evidence for falsity in dim. 3.

M’s strong conjecture:
For any pair K,M of d-dimensional convex bodies

K ⊆M ?
=⇒ E volPKd+1 ≤ E volPMd+1



Busemann-Petty

• Classical:  when c=1, true iff dim<5

• ∃ c ⇔ slicing

(∀θ ∈ Sd−1) vold−1(K ∩ θ⊥) ≤ vold−1(L ∩ θ⊥)

?
=⇒ volK ≤ c volL

• ∃ c ⇔ slicing

• Similarity with our problem:

– Dimension-dependent answer, connection with slicing

• Difference with our problem: 

– Ours has “elementary” solution, no Fourier analysis.



Question by Vempala

• A(K) = covariance matrix of K

• Original question: for c=1.

K ⊆ M ?
=⇒ detA(K) ≤ cd detA(M )



Question by Vempala

• ∃ c ⇔ slicing:

⇐: easy from * and bounded isotropic constant

⇒:

K ⊆ M ?
=⇒ detA(K) ≤ cd detA(M )

detA(K)/ vol(K)2 = L2dK ∗

⇒:
1. Let K,M be two convex bodies. Assumption with * 

imply LK ≤ c1/2 d(K,M) LM : 
By affine invariance, w.l.o.g. K,M are in position such 
that K ⊆ M ⊆ d(K,M)K. Implies vol M ≤ d(K,M)d vol K.

2. Use Klartag’s isomorphic slicing problem:
• given K,ε, there exists M s.t. d(K,M)≤ 1+ε and

LM ≤ 1/
√
ǫ



Question by Vempala

• Connection with random simplexes:

(µ(K)=centroid of K)

detA(K) = d!EXi∈K

(
(vol convµ(K), X1, . . . , Xd)

2
)

• I.e. “second moment” version of Meckes’s 

question.

E ∈

( )

=
d!

d+ 1
E
(
(volPKd+1)

2
)
,



Second result

• We also solve Vempala’s question for c=1

– True in dimension 1,2

– False in dimension >=3

• Our solution to Vempala’s question inspired • Our solution to Vempala’s question inspired 

our solution to Meckes’s strong conjecture.

Vempala’s question (for c = 1):

K ⊆ L ?
=⇒ detA(K) ≤ detA(L)



Solution to Vempala’s question

• Intuition: extreme point near the centroid

• E (random simplex using L\K) < E(… using L)



Solution to Vempala’s question

• Idea: Monotonicity of K a det A(K) holds for 

dimension d iff for every K ⊆ L there is a non-

increasing “path” of convex bodies from L to 

K. We will:K. We will:

– define “path”,

– compute derivative along path, and

– study sign of derivative.



Solution to Vempala’s question

• W.l.o.g. K is a polytope (by continuity, if there is a 
counterexample, then there is one where K is a polytope)

• “Path”: “push” hyperplanes parallel to facets of K “in”, one 
by one.

L

K



Solution to Vempala’s question

• det A(⋅) continuous along path, piecewise 
continuously differentiable.

• Enough to compute derivative with respect
intersection with moving halfspace.

• Enough to compute derivative in isotropic • Enough to compute derivative in isotropic 
position (sign of derivative is invariant under 
affine transformations).

Kt = K ∩ {x : aTx ≤ t}
d

dt
detA(Kt)



Solution to Vempala’s question

• Simple value of derivative in isotropic position:

Proposition. Let K ⊆ R
d be an isotropic convex body. Let v ∈ Rd be a unit

vector. Let a = infx∈K v · x, b = supx∈K v · x. Let Ht = {x ∈ Rd : v · x ≥ t}.
Let Kt = K ∩Ht, St = K ∩ bdryHt. Then

∣ ( )

∩ ∩

d

dt
detA(Kt)

∣∣∣∣
t=a

=
(
d− EX∈Sa ‖X‖2

) vold−1 Sa
volK

.



Solution to Vempala’s question

• Derivative implies dimension dependent 

condition:

Lemma. Monotonicity under inclusion of K �→ detA(K) holds for some di-
mension d iff for any isotropic convex body K ⊆ Rd we have

• Proof:

– “if part”: condition      implies negative derivative 

along path.

⊆
√
dBd ⊆ K.

d

dt
detA(Kt)

∣∣∣∣
t=a

=
(
d− EX∈Sa ‖X‖

2
) vold−1 Sa

volK
.



Proof  (cont’d)

• “Only if” part:
– There is an isotropic convex body L’ with a boundary point x at 

distance <d1/2 from the origin.

– By an approximation argument can assume x is extreme point 
(keeping isotropy and distance condition) of new body L.

– Positive derivative as one pushes hyperplane “in” at x a little bit.– Positive derivative as one pushes hyperplane “in” at x a little bit.

– If K is “L truncated near x”, det A(K) > det A(L).



When does the condition hold?

• Condition: for any isotropic convex body K

• Milman-Pajor, Kannan-Lovász-Simonovits: For 
any isotropic convex body K:

√
dBd ⊆ K.

any isotropic convex body K:

and this is best possible.

• I.e., condition fails iff d ≥ 3.

√
d+ 2

d
Bd ⊆ K ⊆

√
d(d+ 2)Bd



Solution to Meckes’s strong conjecture

• Argument parallels case of det A(K):

– same path between K and L (push hyperplanes in), 
same derivative (i.e. with respect to moving 
hyperplane)

• Our derivative is a special case Crofton’s • Our derivative is a special case Crofton’s 
differential equation:

(from Kendall and Moran, “Geometrical 
Probability”, 1963)



Derivative

Proposition (general derivative, Crofton). Let K ⊆ R
d be a convex body.

Let v ∈ R
d be a unit vector. Let a = infx∈K v · x, b = supx∈K v · x. Let

Ht = {x ∈ R
d : v · x ≥ t}. Let Kt = K ∩ Ht, St = K ∩ bdryHt. Let

f : (Rd)
k → R be a symmetric continuous function. Let X1, . . . , Xk be random

points in K. Then

∣
d

dt
E f(X1 , . . . , Xk)

∣∣∣∣
t=a

= k
(
E f(X1 , . . . , Xk)−E

(
f(X1 , . . . , Xk) | X1 ∈ Sa

))vold−1 Sa
volK



Solution to Meckes’s strong conjecture

• Dimension dependent condition (same proof):

Lemma. Monotonicity under inclusion of

K �→ EXi∈K vol convX0, . . . , Xd

holds for some dimension d iff for any convex body K ⊆ Rd and any x ∈ bdryK
and X0, . . . , Xd random in K we have

E vol convX0, X1, . . . , Xd ≤ E vol convx,X1, . . . , Xd.



When does the condition hold?
Fails for d ≥ 4: K = half ball, x = 0, L = ball of same volume as K.

EvolPKd+1 ≥ EvolPLd+1 (Blaschke-Groemer)

=
1

d!

(
κd+1
κd

)d+1 κd(d+2)
κ(d+1)2

1

ωd+1
(known)

On the other hand,On the other hand,

EK vol conv(0, X1, . . . , Xd) = EBd
vol conv(0, X1, . . . , Xd) (symmety)

=
1

d!

(
κd+1
κd

)d
2

ωd+1
(known)

Combine to get

EK vol conv(0, X1, . . . , Xd)

E volPKd+1
≤ 2

√
d+ 2

d+ 1



When does the condition hold?

• true for d=1, easy (directly, without the 

condition)



When does the condition hold?
True for d = 2:

Theorem (Blaschke). Among all 2-dimensional convex bodies,

EXi∈K(vol conv(X0, X1, X2))

vol(K)
≤ 1

12

with equality iff K is a triangle.with equality iff K is a triangle.

Lemma. Let K ⊆ R2 be a convex body and let x ∈ bdryK. Then

EX1 ,X2∈K(vol conv x,X1, X2)

volK
≥ 8

9π2
. (1)

Proof idea: Worst case, K is half ellipse, x its “center”. Then Steiner
symmetrization, Blaschke’s Schüttelung (shaking), symmetrization around x,
Busemann’s inequality.



When does the condition hold?

• d=3? The proof doesn’t handle it, but 

numerical integration strongly suggests “false” 

(same counterexample).



Open questions

• Higher moments?

• (Reitzner) What about more than d+1 points?

• (technical) 3-D case

• Weak conjecture via Crofton’s differential • Weak conjecture via Crofton’s differential 

equation?


