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Sylvester’s problem

e 4 random points: what is the probability that
they are in convex position?

. Pf: convex hull of n random points in convex
body K.

e Which convex bodies K are extremal for
E vol PX
vol K




Questions by Meckes and Reitzner

K CM = EvolP% < ¢®Evol PV

e M’s weak conjecture: for n=d+1 (random
simplex) there exists some c.

e M’s strong conjecture: for n=d+1 and c=1
e R’s question: for arbitrary n and c=1.



Connection with slicing

e Slicing conjecture: every d-dimensional convex
body of volume one has a hyperplane section
of area >=c for some universal c.

e Equivalent: for K a d-dimensional convex body
Ly = (det A(K)/(vol K)?)'/?4 has a universal upper bound.
e M’s weak conjecture < slicing

M’s weak conjecture:
Jc > 0 such that for any pair K, M of d-dimensional convex bodies

K CM = EvolPj\; < cEvol P},



Main result

e About M’s strong conjecture:
— True in dimension 1,2
— False in dimension >=4
— Strong numerical evidence for falsity in dim. 3.

M’s strong conjecture:
For any pair K, M of d-dimensional convex bodies

? K M
K g M — EVOlPd+1 SEVOIPd—l—].



Busemann-Petty
(V0 € Sq_1) volg_1 (K NO+) < voly_q1(L N6O+)

:?> vol K < c¢volL

Classical: when c=1, true iff dim<5

[ ¢ = slicing

Similarity with our problem:

— Dimension-dependent answer, connection with slicing

Difference with our problem:

— QOurs has “elementary” solution, no Fourier analysis.



Question by Vempala
KCM = det A(K) < ¢ det A(M)

e A(K) = covariance matrix of K
e Original question: for c=1.



Question by Vempala

>
KCM = detA(K) < c*det A(M)
e [lc - slicing:
det A(K)/vol(K)* = L3¢«

[1: easy from * and bounded isotropic constant

m—

1. Let K,M be two convex bodies. Assumption with *

imply L, < c/2d(K,M) L, :

By affine invariance, w.l.0.g. K,M are in position such
that K O M O d(K,M)K. Implies vol M < d(K,M)¢ vol K.

2. Use Klartag’s isomorphic slicing problem:
e given K,g, there exists M s.t. d(K,M)< 1+€ and

Ly < 1/Ve



Question by Vempala

 Connection with random simplexes:
(L(K)=centroid of K)

det A(K) = d!Ex,cx ((volconv u(K), Xi,...,X4)°)
d!
T d+1
e |.e. “second moment” version of Meckes’s
guestion.

E((vol Py 1)),




Second result

 \We also solve Vempala’s question for c=1
— True in dimension 1,2
— False in dimension >=3

e Our solution to Vempala’s question inspired
our solution to Meckes’s strong conjecture.

Vempala’s question (for ¢ = 1):

K CL = det A(K) < det A(L)



Solution to Vempala’s question

* Intuition: extreme point near the centroid

e E(random simplex using L\K) < E(... using L)



Solution to Vempala’s question

e |dea: Monotonicity of K+ det A(K) holds for
dimension d iff for every K L1 L there is a non-

increasing “path” of convex bodies from L to
K. We will:

— define “path”,
— compute derivative along path, and
— study sign of derivative.



Solution to Vempala’s question

W.l.0.g. K is a polytope (by continuity, if there is a
counterexample, then there is one where K is a polytope)

“Path”: “push” hyperplanes parallel to facets of K “in”, one
by one.

(=




Solution to Vempala’s question

o det A([)Jcontinuous along path, piecewise
continuously differentiable.

 Enough to compute derivative with respect
intersection with moving halfspace.

 Enough to compute derivative in isotropic

position (sign of derivative is invariant under
affine transformations).

Ki=Kn{z:a'z <t}

%)

E det A(Kt)

t



Solution to Vempala’s question

* Simple value of derivative in isotropic position:

Proposition. Let K C R? be an|isotropic convex body.| Let v € RY be a unit
vector. Let a = infycxgv -z, b =sup,cxv-z. Let Ho={x € R :v-x > t}.
Let Ki = KN H;, 5 =K Nbdry H;. Then

d 2 VOld_lsa
2 det A(K _(d-E X
g At AED)] (4 Bxes, 1XI°) <%
/-
K
~— ‘ ' 5 t




Solution to Vempala’s question

e Derivative implies dimension dependent
condition:

Lemma. Monotonicity under inclusion of K — det A(K) holds for some di-
mension d iff for any isotropic conver body K C R? we have

VdB; C K. Y&
* Proof:
— “if part”: condition Y implies negative derivative
along path.
L et a(k,)| = (d ~ Exes quz) vold—1 5
dt i “ vol K




Proof (cont’d)

e “Onlyif” part:

— There is an isotropic convex body L’ with a boundary point x at
distance <d'/2 from the origin.

— By an approximation argument can assume x is extreme point
(keeping isotropy and distance condition) of new body L.

— Positive derivative as one pushes hyperplane “in” at x a little bit.
— If K'is “L truncated near x”, det A(K) > det A(L).




When does the condition hold?

* Condition: for any isotropic convex body K
VdB,; C K.

 Milman-Pajor, Kannan-Lovasz-Simonovits: For
any isotropic convex body K:

2
\/d; By C K C+/d(d+2)By

and this is best possible.
e |.e., condition fails iff d = 3.




Solution to Meckes’s strong conjecture

 Argument parallels case of det A(K):

— same path between K and L (push hyperplanes in),
same derivative (i.e. with respect to moving
hyperplane)

e Our derivative is a special case Crofton’s

differential equation:
CrortoN, M. W. Article “Probability”’. Encyclopaedia Britannica, 9th edn. (1885).

(from Kendall and Moran, “Geometrical
Probability”, 1963)



Derivative

Proposition (general derivative, Crofton). Let K C R? be a convex body.
Let v € R? be a unit vector. Let a = infyegv -z, b = Sup,cxv - r. Let
Ht = {x c Rd VA 2 t} LGth = KﬂHt, St = KﬂbdryHt Let
f: (]Rd)lC — R be a|symmetric|continuous function. Let Xi,..., Xy be random
points in K. Then

d
—E f(X,..., X
dt f( ].7 Y k)

VOld_l Sa
vol K

- k([@f(xl,...,Xk)—E(f(Xl,...,Xk) | X1 € Sa))

t=a

/-

&1




Solution to Meckes’s strong conjecture

 Dimension dependent condition (same proof):
Lemma. Monotonicity under inclusion of
K — Ex,cx volconv X, ..., Xq4

holds for some dimension d iff for any convez body K C R? and any x € bdry K
and Xg, ..., Xq random in K we have

Evolconv Xy, X1,..., X4y <Evolconvz, Xq,...,X4.



When does the condition hold?

Fails for d > 4: K = half ball, = 0, L = ball of same volume as K.

Evol P;*; > Evol Py, (Blaschke-Groemer)

_1 (“dﬂ)dﬂ Ka(d+2) 1
d! Kd K(d+1)2 Wd+1

(known)

On the other hand,

Ex volconv(0, X1, ..., X3) = Ep, volconv(0, X1, ..., Xyg) (symmety)

d

1 2

= = (feHd (known)
d! KRd Wd+1

Combine to get

Ex volconv(0, X1, ..., X4) - 2\/d+ 2
EVOIPC{j_l — d+1




When does the condition hold?

e true for d=1, easy (directly, without the
condition)



When does the condition hold?

True for d = 2:

Theorem (Blaschke). Among all 2-dimensional convex bodies,

EXieK(VOlCOIlV(X(),Xl,XQ)) < L
vol(K) — 12

with equality iff K 1s a triangle.
Lemma. Let K C R? be a convex body and let x € bdry K. Then

EXl,XQEK(VOICOHV$,X1,X2) > 8
vol K — 92’

(1)

Proof idea: Worst case, K is half ellipse, = its “center”. Then Steiner
symmetrization, Blaschke’s Schiittelung (shaking), symmetrization around =,
Busemann’s inequality.



When does the condition hold?

e d=37? The proof doesn’t handle it, but
numerical integration strongly suggests “false”
(same counterexample).



Open questions

e Higher moments?
e (Reitzner) What about more than d+1 points?
e (technical) 3-D case

 Weak conjecture via Crofton’s differential
equation?



