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Two topics

* Low-rank matrix approximation (PCA).

* Subset selection:
Approximate a matrix using another matrix

whose columns lie in the span of a few
columns of the original matrix.



Motivating example: DNA microarray

* [Drineas, Mahoney] Unsupervised feature selection for
classification
— Data: table of gene expressions (features) v/s patients
— Categories: cancer types

— Feature selection criterion: Leverage scores (importance of
a given feature in determining top principal components)

* Empirically: Leverage scores are correlated with
“information gain”, a supervised measure of influence.

Somewhat unexpected.

* Leads to clear separation (clusters) from selected
features.



In matrix form:

* Aism X n matrix, m patients, n genes

(features), find
A= CX,

where the columns of C are a few columns of A (so
X =CTA).

* They prove error bounds when columns of C
are selected at random according to leverage
scores (importance sampling).



Question

* Supervised feature selection...

— ... for classification and regression with theoretical
guarantees, without statistical assumptions?



(P1) Matrix approximation

* Given m-by-n matrix, find low rank
approximation ...

e ...for some norm:
— ”A”IZ;' — Zl] Alzj (FrObeniUS)
— [lAll, = omax(4) = m3XIIAxII/IIXII (spectral)



Geometric view

* Given points in R™, find subspace close to
them.

* Error: Frobenius norm corresponds to sum of
squared distances.



Classical solution

* Best rank-k approximation A4, in ||*||% and
IRIPE
— Top k terms of singular value decomposition
(SVD): if A = }; aiuiviT then 4, = Z{-‘zl aiuivf
* Best k-dim. subspace: rowspan(A4y), i.e.
— Span of top k eigenvectors of AT A.
* Leads to iterative algorithm

— Convergence: is it a polynomial time algorithm?
Dependence on eigenvalue gap.



Want algorithm

* With better error/time guarantees.

e Efficient for very large data:
— Nearly linear time

— Pass efficient: if data does not fit in main memory,
algorithm should not need random access, but
only a few sequential passes.

e Subspace equal to or contained in the span of
a few rows (actual rows are more informative
than arbitrary linear combinations).



ldea [Frieze Kannan Vempala]

e Sampling rows.

Uniform does not work (e.g. a single non-zero
entry)

* By “importance”: sample s rows, each

independently with probability proportional
to squared length.



[FKV]

Theorem 1. Let S be a sample of k/e rows where
P(row i is picked) oc || A;]|%.
Then the span of S contains the rows of a matriz A of rank k for which
E( A~ AllF) < 1A~ ARllF + el Al

This can be turned into an efficient algorithm: 2 passes, complexity O(kmn/e).

(to compute A, SVD in span of S, which is fast
because n becomes k/e).



Drawback of [FKV]

e Additive error can be large (say if matrix is
nearly low rank).
Prefer relative error, something like

A= Allf < (L+ )| A~ A7



3 ways

* [Har-Peled ‘06] (first linear time relative
approximation)

e [Sarlos ‘06]: Random projection of rows onto a
O (k/e)-dim. subspace. Then SVD.

* [Deshpande R Vempala Wang] [Deshpande
Vempala ‘06] Volume sampling (rough
approximation) + adaptive sampling.



(P2) Algorithmic Problems: Volume
sampling and subset selection

* Given m-by-n matrix, pick set At
of k rows at random with .
probability proportional to L \ ‘
squared volume of k-simplex “ \KN Al
spanned by them and origin. A\
[DRVW] A

: KT
(equivalently, squared —
. - 'A;\ /-
volume of parallelepiped 4

determined by them) ;



Volume sampling

 LetS be k-subset of rows of A
— [k! vol(conv(0, A.))]2 = vol((A.))2 = det (AsAL) (*)

— volume sampling for A is equivalent to: pick k by k
principal minor “S x S” of A AT with prob.

proportional to det(AsAg) A AT i{(/&gﬂ/_}z}\;z
.

35
— For(*): complete A to a square matrix B by adding
orthonormal rows, orthogonal to span(A).

AsAL 0
0 I

vol (D(AS))2 — (det B)2 — det(BBT) — det ( ) — det(AsAg)



Original motivation:

* Relative error low rank matrix approximation [DRVW]:
— S: k-subset of rows according to volume sampling

— A,: best rank-k approximation, given by principal
components (SVD)

— T projection of rows onto rowspan(A.)

—= Es(|A—ms(A)|p) < (k+ DA - Akl

e Factor “k+1” is best possible [DRVW]
* |nteresting existential result (there exist k rows...). Alg.?

* Lead to linear time, pass-efficient algorithm for relative
approximation of A, [DV]. (1+¢) in span of O"(k/g) rows



Where does volume sampling come
from?

* No self-respecting architect leaves the
scaffolding in place after completing the
building.

Gauss?



Where does volume sampling come
from?

* |dea:

— For picking k out of k + 1 points, k with maximum
volume is optimal.

— For picking 1 out of m, random according to squared
length is better than max. length.

— For k out of m, this suggest volume sampling.

* Why does the algebra work? Idea:

— When picking 1 out of m random according to
squared length, expected error is sum squares of
areas of triangles. This sum corresponds to certain
coefficient of the characteristic polynomial of AAT



Later motivation [BDM,...]

* (row/column) Subset selection.
A refinement of principal component analysis:
Given a matrix A,

— PCA: find k-dim subspace V that minimizes
| A= mv (Al
— Subset selection: find V spanned by k rows of A.
* Seemingly harder, combinatorial flavor.

(Tt projects rows)



Why subset selection?

* PCA unsatisfactory:

— top components are linear combinations of rows
(all rows, generically). Many applications prefer
individual, most relevant rows, e.g.:

 feature selection in machine learning

* linear regression using only most relevant independent
variables

* out of thousands of genes, find a few that explain a
disease



Known results

 [Deshpande-Vempala] Polytime k!-approximation
to volume sampling, by adaptive sampling:

— pick a row with probability proportional to squared
length

— project all rows orthogonal to it
— repeat

* Implies for random k-subset S with that
distribution:

Es(||A—ms(A)|%) < (k+ DYA — Ag%



Known results

* [Boutsidis, Drineas, Mahoney] Polytime
randomized algorithm to find k-subset S:

|A — 7ms(A)|5 < O(k*logk)|| A — Arll7

* [Gu-Eisenstat] Deterministic algorithm,

A —7ms(A))2 <1+ FPh(n—k)|A— Al

in time O((m + n log; n)n?)

Spectral norm:
[A[l, = sup e pn || Az|/]|]



Known results

* Remember, volume sampling equivalent to
sampling k by k minor “S x S” of AAT with
probability proportional to

(*) det(AgAL)

* [Goreinov, Tyrtishnikov, Zamarashkin] Maximizing
(*) over S is good for subset selection.

* [Civril , Magdon-Ismail] But maximizing is NP-
hard, even approximately to within an
exponential factor.



Results

* Volume sampling: First polytime exact alg.
O(mn?® log n) (arithmetic ops.)

* Implies alg. with optimal approximation for
subset selection under Frobenius norm. Can
be derandomized by conditional expectation.
O(mn? log n)

e 1+¢ approximations to the previous 2
algorithms in nearly linear time, using volume-
preserving random projection [M Z].



Results

* Observation: Bound in Frobenius horm easily
implies bound in spectral norm:

|A—7s(A)]; < | A - 7s(A)|| 7
< (k+ 1| A— Agll;
< (k+1)(n— k)| A — Agll;
using
A=Y of Al = o0h,y

Omax — 01 > 0o > -+ > g, > 0 are the singular values of A



Comparison for subset selection
Find S s.t. |4 —7s(A)l; <?)|A — A

Frobenius Spectral norm Time (assuming m>n)
norm sq sq ®: exponent of matrix mult.

[DRV W] k+1 Existential

[Despande (k+1)! kmn R
Vempala]

[Gu Eisenstat] 1+k(n-k) Existential

[Gu Eisenstat] 1+f2k(n-k) ((m + n log; n)n? D
[Boutsidis k? log k k? (n-k) log k mn?

Drineas (F implies

Mahoney] spectral)

[Desphande R] k+1 (optimal)  (k+1)(n-k) kmn® log n D

[Desphande R] (1+¢g)(k+1) (1+¢) (k+1)(n-k)  O*(mnk2/e2 + m k2e+1/g29) R



Proofs: volume sampling

 Want (w.l.o.g.) k-tuple S of rows of m by n
matrix A with probability
det(AgAL)
> srepmr det(Asr Ag)




Proofs: volume sampling

* |dea: pick S=(S,, S,, ..., S;) in sequence. Need
marginal distribution of S; to begin:

all tuples Z Srelm]k det(Agr Ag,)

e Remember characteristic polynomlaI:
paar(z) = det(z] — AAT) = Zci(AAT)gci

)

em—k(AAT) = ) det(AgAf)
SC[m],|S|=k



Proofs: volume sampling

° SO,fOr C; —A—’J’TA.(A)
ZSI % Sr det(ASfAT
N ZS’ ¥ det(Agf Ag,)

= DA Y0, 71— det((Ci) s (C) &)

k! Zngm],\Sf|:k det(As Ag)

A fem—r (€Ol A,
klem 1 (AAT), 4,

intuition for numerator: :J
O(A1, Az, As)| = [[A1|||[O(7 g2 (A2, A3))|




Proofs: volume sampling

So: AP lem—ra(C:CT)

klen kr(AAD)
C@; . A — TA, (A)

P(S; = i)

Can be computed in polytime.

After S,, project rows orthogonal to picked
row, repeat marginal computation for S,,...
(use intuition for numerator)

“flops”: k * m * (m?n + m®log m)



Proofs: volume sampling

e Faster: (we assume m > n)
—use p(AAT) =™ "p(AT A)
as A'A is n by n (smaller than m by m)
— use rank-1 updates:

= A— S AA AT
| A
T AT 4 ATAA AT A AT AT A N A; AT AT AA; AT
@ 1A 1A 1A I

— total flops: mn? + km(n% + n® log n) =k m n® log n



Even faster

* Volume sampling only cares about volumes of
k-subsets,
—> can get 1+¢ approximation using a volume
preserving random projection [Magen,

Zouzias] (generalizing Johnson Lindenstrauss,
not same as Feige).



Even faster

 [Magen Zouzias]:
Forany A e R™m*" 1<k<n,eg<1/2thereisa
d =0(k? €2 log m) s.t. for all S, k-subset of [m]:

det AgAL < det AgAL < (1 + ¢)det AgAL,
A= AG, G e R4 random Gaussian matrix, scaled
e k=1isJL
* This as preprocessing implies 1+¢ volume

sampling in time
O*(mnk2/e?2 + m k2o +1/g20)



Recent news

* Boutsidis, Drineas, Magdon-Ismail: near optimal
subset selection.

* Guruswami, Sinop:
— Volume sampling in time 0 (kmn?)

— Relative (1 + €) matrix approximation with one round
ofr = k — 1+ k/e rows of volume sampling.
More precisely, for S a sample of size r = k according
to volume sampling:

r—+1
r+1-—

Es (1A~ ms(A)}) < (|4 — A3



Open question

* For a subset of rows S according to volume
sampling, lower bound (in expectation?):

O min (AS)

— Want As to be well conditioned.



