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Two topics 

• Low-rank matrix approximation (PCA). 

• Subset selection:  
Approximate a matrix using another matrix 
whose columns lie in the span of a few 
columns of the original matrix. 



Motivating example: DNA microarray 

• [Drineas, Mahoney] Unsupervised feature selection for 
classification 
– Data: table of gene expressions (features) v/s patients 

– Categories: cancer types 

– Feature selection criterion: Leverage scores (importance of 
a given feature in determining top principal components) 

• Empirically: Leverage scores are correlated with 
“information gain”, a supervised measure of influence. 
Somewhat unexpected.  

• Leads to clear separation (clusters) from selected 
features. 



In matrix form: 

• 𝐴 is 𝑚 × 𝑛 matrix, 𝑚 patients, 𝑛 genes 
(features), find  

𝐴 ≈ 𝐶𝑋, 

where the columns of 𝐶 are a few columns of 𝐴 (so 
𝑋 = 𝐶+𝐴). 

• They prove error bounds when columns of 𝐶 
are selected at random according to leverage 
scores (importance sampling). 



Question 

• Supervised feature selection… 

– … for classification and regression with theoretical 
guarantees, without statistical assumptions? 

 



(P1) Matrix approximation 

• Given 𝑚-by-𝑛 matrix, find low rank 
approximation … 

• … for some norm:  

– 𝐴 𝐹
2 =  𝐴𝑖𝑗

2
𝑖𝑗  (Frobenius) 

– 𝐴 2 = 𝜎max 𝐴 = max
𝑥

𝐴𝑥 / 𝑥  (spectral) 



Geometric view 

• Given points in 𝑅𝑛, find subspace close to 
them. 

• Error: Frobenius norm corresponds to sum of 
squared distances. 

 



Classical solution 

• Best rank-k approximation 𝐴𝑘 in ∙ 𝐹
2  and 

∙ 2: 
– Top 𝑘 terms of singular value decomposition 

(SVD): if 𝐴 =  𝜎𝑖𝑢𝑖𝑣𝑖
𝑇

𝑖  then 𝐴𝑘 =  𝜎𝑖𝑢𝑖𝑣𝑖
𝑇𝑘

𝑖=1  

• Best k-dim. subspace: rowspan(𝐴𝑘), i.e. 
– Span of top 𝑘 eigenvectors of 𝐴𝑇𝐴. 

• Leads to iterative algorithm 
– Convergence: is it a polynomial time algorithm? 

Dependence on eigenvalue gap. 

 



Want algorithm 

• With better error/time guarantees. 

• Efficient for very large data: 
– Nearly linear time 

– Pass efficient: if data does not fit in main memory, 
algorithm should not need random access, but 
only a few sequential passes. 

• Subspace equal to or contained in the span of 
a few rows (actual rows are more informative 
than arbitrary linear combinations). 



Idea [Frieze Kannan Vempala] 

• Sampling rows. 
Uniform does not work (e.g. a single non-zero 
entry) 

• By “importance”: sample s rows, each 
independently with probability proportional 
to squared length. 

 



[FKV] 

(to compute 𝐴 , SVD in span of 𝑆, which is fast 
because 𝑛 becomes 𝑘/𝜖). 



Drawback of [FKV] 

• Additive error can be large (say if matrix is 
nearly low rank). 
Prefer relative error, something like 



3 ways 

• [Har-Peled ‘06+ (first linear time relative 
approximation) 

• [Sarlos ‘06+: Random projection of rows onto a 
𝑂(𝑘/𝜖)-dim. subspace. Then SVD. 

• [Deshpande R Vempala Wang] [Deshpande 
Vempala ‘06+ Volume sampling (rough 
approximation) + adaptive sampling. 



(P2) Algorithmic Problems: Volume 
sampling and subset selection 

• Given 𝑚-by-𝑛 matrix, pick set 
of k rows at random with 
probability proportional to 
squared volume of 𝑘-simplex 
spanned by them and origin. 
[DRVW] 
(equivalently, squared 
volume of parallelepiped 
determined by them) 



Volume sampling 

• Let S be k-subset of rows of A 

– [k! vol(conv(0, AS))]
2 = vol((AS))

2 =                      (*) 

– volume sampling for A is equivalent to: pick k by k 
principal minor “S  S” of A AT with prob. 
proportional to 

 

– For(*): complete AS to a square matrix B by adding 
orthonormal rows, orthogonal to span(AS). 

 

 



Original motivation:  

• Relative error low rank matrix approximation [DRVW]: 
– S: k-subset of rows according to volume sampling 
– Ak: best rank-k approximation, given by principal 

components (SVD) 
–  S: projection of rows onto rowspan(AS) 

 

 
• Factor “k+1” is best possible *DRVW+ 
• Interesting existential result (there exist k rows…). Alg.? 
• Lead to linear time, pass-efficient algorithm for relative 

approximation of Ak [DV].  (1+) in span of O*(k/) rows 



Where does volume sampling come 
from? 

• No self-respecting architect leaves the 
scaffolding in place after completing the 
building. 
     Gauss? 

 

 



Where does volume sampling come 
from? 

• Idea: 
– For picking 𝑘 out of 𝑘 + 1 points, 𝑘 with maximum 

volume is optimal. 
– For picking 1 out of 𝑚, random according to squared 

length is better than max. length. 
– For 𝑘 out of 𝑚, this suggest volume sampling. 

• Why does the algebra work? Idea: 
– When picking 1 out of 𝑚 random according to 

squared length, expected error is sum squares of 
areas of triangles. This sum corresponds to certain 
coefficient of the characteristic polynomial of 𝐴𝐴𝑇 



Later motivation *BDM,…+ 

• (row/column) Subset selection. 
A refinement of principal component analysis: 
Given a matrix A, 

– PCA: find k-dim subspace V that minimizes 

 

– Subset selection:  find V spanned by k rows of A. 

• Seemingly harder, combinatorial flavor. 

( projects rows) 



Why subset selection? 

• PCA unsatisfactory: 

– top components are linear combinations of rows 
(all rows, generically). Many applications prefer 
individual, most relevant rows, e.g.: 

• feature selection in machine learning 

• linear regression using only most relevant independent 
variables 

• out of thousands of genes, find a few that explain a 
disease 



Known results 

• [Deshpande-Vempala] Polytime k!-approximation 
to volume sampling, by adaptive sampling: 
– pick a row with probability proportional to squared 

length 

– project all rows orthogonal to it 

– repeat 

• Implies for random k-subset S with that 
distribution: 



Known results 

• [Boutsidis, Drineas, Mahoney] Polytime 
randomized algorithm to find k-subset S:   

 

• [Gu-Eisenstat] Deterministic algorithm, 
 
 
in time O((m + n logf n)n2) 
Spectral norm:  



Known results 

• Remember, volume sampling equivalent to 
sampling k by k minor “S  S” of AAT with 
probability proportional to 
(*) 

 

• [Goreinov, Tyrtishnikov, Zamarashkin] Maximizing  
(*) over S is good for subset selection. 

• [Çivril , Magdon-Ismail] But maximizing is NP-
hard, even approximately to within an 
exponential factor. 



Results 

• Volume sampling: First polytime exact alg. 
O(mn log n)    (arithmetic ops.) 

• Implies alg. with optimal approximation for 
subset selection under Frobenius norm. Can 
be derandomized by conditional expectation. 
O(mn log n) 

• 1+ approximations to the previous 2 
algorithms in nearly linear time, using volume-
preserving random projection [M Z]. 



Results 

• Observation: Bound in Frobenius norm easily 
implies bound in spectral norm: 

 

 

 

using 

 

 

 



Comparison for subset selection 

Frobenius 
norm sq 

Spectral norm 
sq 

Time (assuming m>n) 
: exponent of matrix mult. 

[D R V W] k+1 Existential 

[Despande 
Vempala] 

(k+1)! kmn R 

[Gu Eisenstat] 1+k(n-k) Existential 

[Gu Eisenstat] 1+f2k(n-k) ((m + n logf n)n2 D 

[Boutsidis 
Drineas 
Mahoney] 

k2 log k k2 (n-k) log k 
(F implies 
spectral) 

mn2 R 

[Desphande R] k+1 (optimal) (k+1)(n-k) kmn log n D 

[Desphande R] (1+)(k+1) (1+) (k+1)(n-k) 
 

O*(mnk2/2 + m k2  + 1/2 ) 
 

R 



Proofs:  volume sampling 

• Want (w.l.o.g.) k-tuple S of rows of m by n 
matrix A with probability  



Proofs: volume sampling 

• Idea: pick S=(S1, S2, …, Sk) in sequence. Need 
marginal distribution of S1 to begin: 

 

 

• Remember characteristic polynomial: 



• So, for 

 

 

 

 

 

intuition for numerator: 

 

Proofs: volume sampling 



• So: 

 

 

• Can be computed in polytime. 

• After S1, project rows orthogonal to picked 
row, repeat marginal computation for S2,… 
(use intuition for numerator) 

• “flops”: k * m * (m2n + mlog m) 

Proofs: volume sampling 



Proofs: volume sampling  

• Faster: (we assume m > n) 

– use 

as ATA is n by n (smaller than m by m) 

– use rank-1 updates: 

 

 

 

– total flops: mn2 + km(n2 + n log n) = k m n log n 



Even faster 

• Volume sampling only cares about volumes of 
k-subsets, 
 can get 1+ approximation using a volume 
preserving random projection [Magen, 
Zouzias] (generalizing Johnson Lindenstrauss, 
not same as Feige). 



Even faster 

• [Magen Zouzias]:  
For any A  Rm  n, 1  k  n,  < 1/2 there is a  
d =O(k2 -2 log m) s.t. for all S, k-subset of [m]: 

 

 

• k=1 is JL 

• This as preprocessing implies 1+ volume 
sampling in time 

  O*(mnk2/2 + m k2 + 1/2) 



Recent news 

• Boutsidis, Drineas, Magdon-Ismail: near optimal 
subset selection. 

• Guruswami, Sinop:  
– Volume sampling in time 𝑂 𝑘𝑚𝑛2  

– Relative 1 + 𝜖  matrix approximation with one round 
of 𝑟 = 𝑘 − 1 + 𝑘/𝜖 rows of volume sampling. 
More precisely, for 𝑆 a sample of size 𝑟 ≥ 𝑘 according 
to volume sampling: 



Open question 

• For a subset of rows 𝑆 according to volume 
sampling, lower bound (in expectation?): 

 

– Want 𝐴𝑆 to be well conditioned. 

 


