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Two topics

* Low-rank matrix approximation (PCA).

* Subset selection:
Approximate a matrix using another matrix

whose columns lie in the span of a few
columns of the original matrix.



Motivating example: DNA microarray

* [Drineas, Mahoney] Unsupervised feature selection for
classification
— Data: table of gene expressions (features) v/s patients
— Categories: cancer types

— Feature selection criterion: Leverage scores (importance of
a given feature in determining top principal components)

 Empirically: Leverage scores are correlated with
“information gain”, a supervised measure of influence.

Somewhat unexpected.

e Leads to clear separation (clusters) from selected
features.



In matrix form:

* Aism X n matrix, m patients, n genes

(features), find
A= CX,

where the columns of C are a few columns of A4 (so
X =CTA).

* They prove error bounds when columns of C
are selected at random according to leverage
scores (importance sampling).



(P1) Matrix approximation

e Given m-by-n matrix, find low rank
approximation ...

e ...forsome norm:
— |All% = ZU ij (Frobenius)
— [|All; = omax(4) = m;IXIIAxII/IIxII (spectral)



Geometric view

* Given points in R"™, find subspace close to
them.

* Error: Frobenius norm corresponds to sum of
squared distances.



Classical solution

* Best rank-k approximation 4, in ||*||% and

||||2

— Top k terms of singular value decomposition
(SVD): if A = ¥, o;u;v] then Ay = é('=1 o;U; V]

* Best k-dim. subspace: rowspan(4y), i.e.
— Span of top k eigenvectors of AT A.

* Leads to iterative algorithm.
Essentially, in time mn?.



Want algorithm

e With better error/time trade-off.

* Efficient for very large data:
— Nearly linear time

— Pass efficient: if data does not fit in main memory,
algorithm should not need random access, but
only a few sequential passes.

e Subspace equal to or contained in the span of
a few rows (actual rows are more informative
than arbitrary linear combinations).



ldea [Frieze Kannan Vempala]

 Sampling rows.

Uniform does not work (e.g. a single non-zero
entry)

* By “importance”: sample s rows, each

independently with probability proportional
to squared length.



[FKV]

Theorem 1. Let S be a sample of k/e rows where
P(row i is picked) oc || A;]]°.
Then the span of S contains the rows of a matriz A of rank k for which
E(1A— AJ2) - [[A— Ag]2 + ] AlI3-

This can be turned into an efficient algorithm: 2 passes, complexity O(kmn/e).

(to compute A4, SVD in span of S, which is fast
because n becomes k /€).



One drawback of [FKV]

* Additive error can be large (say if matrix is
nearly low rank).
Prefer relative error, something like

|A—Alf - (1+e)lA— Ayl



Several ways:

e [Har-Peled ‘06] (first linear time relative
approximation)

e [Sarlos ‘06]: Random projection of rows onto a
O (k/e)-dim. subspace. Then SVD.

* [Deshpande R Vempala Wang ‘06] [Deshpande
Vempala ‘06] Volume sampling (rough
approximation) + adaptive sampling.



Some more relevant work

[Papadimitriou Raghavan Tamaki Vempala ‘98]:
Introduced random projection for matrix
approximation.

[Achlioptas McSherry ‘01][Clarkson Woodruff "09]
One-pass algorithm.

[Woolfe Liberty Rokhlin Tygert '08] [Rokhlin Szlam
Tygert ‘09] Random projection + power iteration
to get very fast practical algorithms.

Read survey [Halko Martinsson Tropp ‘09].

D’Aspremont, Drineas, Ipsen , Mahoney,
Muthukrishnan, ...



(P2) Algorithmic Problems: Volume
sampling and subset selection

* Given m-by-n matrix, pick set A
of k rows at random with .
probability proportional to ,f \ ‘
squared volume of k-simplex \/\» Al
spanned by them and origin. A\
[DR\{W] ha_——r
(equivalently, squared "
volume of parallelepiped [ 7

determined by them) ;



Volume sampling

e LetS be k-subset of rows of A

— [k! vol(conv(0, Ag))J? = vol(CI(Ag))? = det(Ag AT) (*)
— volume sampling for A is equivalent to: pick k by k
principal minor “S x S” of A A" with prob.

proportional to det(AgA%) A o i{w’/g\‘\]
o

5
— For(*): complete A to a square matrix B by adding
orthonormal rows, orthogonal to span(A).

T
A5645 3) _ det(AgAL)

vol(Ag)? = (det B)? = det(BBT) = det (



Original motivation:

* Relative error low rank matrix approximation [DRVW]:
— S: k-subset of rows according to volume sampling

— A, : best rank-k approximation, given by principal
components (SVD)

— T projection of rows onto rowspan(A.)
— Es([A—7ms(A)]7) - (k+1)[[A— Axll7

e Factor “k+1” is best possible [DRVW]
* Interesting existential result (there exist k rows...). Alg.?

* Lead to linear time, pass-efficient algorithm for relative
approximation of A, [DV]. (1+¢€) in span of O"(k/g) rows



Where does volume sampling come
from?

* No self-respecting architect leaves the
scaffolding in place after completing the
building.

Gauss?



Where does volume sampling come

from?
Jes 2
* ldea: \/_:b\\/}
— For picking k out of
k + 1 points, k with o’
maximum volume is
optimal. V=
— For picking 1 out of
m, random according
to squared length is ¢ %
better than max. “le
length. I\
— For k out of m, this
suggest volume W\"’\_/\;_ﬁ‘/

sampling.



Where does volume sampling come
from?

 Why does the algebra work? Idea:

— When picking 1 out of m random according to
squared length, expected error is sum of squares of
areas of triangles:

145 1%
E(error) = Y Zt“ztllz :d(4;, span(4,))?
(

Alws b | AN A

— This sum corresponds to certain coefficient of the
characteristic polynomial of AAT

—




Later motivation [BDM,...]

* (row/column) Subset selection.
A refinement of principal component analysis:
Given a matrix A,

— PCA: find k-dim subspace V that minimizes
|A — 7y (A)||F
— Subset selection: find V spanned by k rows of A.
* Seemingly harder, combinatorial flavor.

(Tt projects rows)



Why subset selection?

* PCA unsatisfactory:

— top components are linear combinations of rows
(all rows, generically). Many applications prefer
individual, most relevant rows, e.g.:

 feature selection in machine learning

* linear regression using only most relevant independent
variables

* out of thousands of genes, find a few that explain a
disease



Known results

 [Deshpande-Vempala] Polytime k!-approximation
to volume sampling, by adaptive sampling:

— pick a row with probability proportional to squared
length

— project all rows orthogonal to it
— repeat

* Implies for random k-subset S with that
distribution:

Es(lIA—ms(A)r) - (k+ DA - AxllF



Known results

* [Boutsidis, Drineas, Mahoney] Polytime
randomized algorithm to find k-subset S:

|A —7s(A)|l7 - Ok logk)||A — Ax |7
* [Gu-Eisenstat] Deterministic algorithm,

|A—7s(A)2 - (1+ f2k(n — k)| A — A

in time O((m + n log; n)n?)
Spectral norm:
|All2 = sup,cgn || Az| /|||




Known results

* Remember, volume sampling equivalent to
sampling k by k minor “S x S” of AAT with
probability proportional to

(*) det(AgAT)

* [Goreinoyv, Tyrtishnikov, Zamarashkin] Maximizing
(*) over S is good for subset selection.

* [Civril , Magdon-Ismail] [see also Koutis ‘06]
But maximizing is NP-hard, even approximately to
within an exponential factor.




Results

* Volume sampling: Polytime exact alg.
O(mn® log n) (arithmetic ops.)
(some ideas earlier in [Houges Krishnapur Peres
Virag])

* Implies alg. with optimal approximation for
subset selection under Frobenius norm. Can be
derandomized by conditional expectation. O(mn®
log n)

* 1+g approximations to the previous 2 algorithms
in nearly linear time, using volume-preserving
random projection [M Z].



Results

* Observation: Bound in Frobenius norm easily
implies bound in spectral norm:

|A—ms(A)5 - |A—7s(A)|%
(k+1)||A — Ag||%

(k+1)(n — k)| A — Ax3
using

2
AR =) i IAl; = 0fax
)

Omax = 01 > 09 > --+ > 0, > 0 are the singular values of A



Comparison for subset selection
Find S s.t. ||A—mg(A)|2 - ?||A— Al

Frobenius Spectral norm Time (assuming m>n)
norm sq sq ®: exponent of matrix mult.

[DRV W] k+1 Existential

[Despande (k+1)! kmn R
Vempala]

[Gu Eisenstat] 1+k(n-k) Existential

[Gu Eisenstat] 1+f2k(n-k) ((m + n log; n)n? D
[Boutsidis k? log k k? (n-k) log k mn?

Drineas (F implies

Mahoney] spectral)

[Desphande R] k+1 (optimal)  (k+1)(n-k) kmn® log n D

[Desphande R] (1+¢g)(k+1) (1+€) (k+1)(n-k) O"(mnk%/e?2 + m k2e+1/g20)



Proofs: volume sampling

 Want (w.l.o.g.) k-tuple S of rows of m by n
matrix A with probability
det(AsAL)
ZS, |k det(Ag  AL)




Proofs: volume sampling

* |dea: pick S=(S,, S,, ..., S;) in sequence. Need
marginal distribution of S; to begin:

P(S, = i) = tuples with S1 =i _ ZS,G[mk o —; det(Ag AL))

all tuples D _srem]* det(Ag AL)

* Remember characteristic polynomlaI:
DAAT (CU) = det(a:[ — AAT) — ZCZ(AAT)Q;Z

7

em—k(AAT) = > det(AsAf)
SClm),|S|=k



Proofs: volume sampling

* SO, for C; =A —7TAZ.(A)
P(S, = i) D srefm)t s1= det(As Ag)
1 p— p—
ZS/E[m]k det(AS/Ag/)

k! ZS’Q[m],\Sﬂzk det(AS/A%:/)

Al lem—k 1 (CiC]) A
kf|Cm_k(AAT)| A3

intuition for numerator: ://
U(Ax, Az, A3)| = [[Ax][|O(m 4L (A2, As))]




Proofs: volume sampling

* So: o AP em—ks (CiCE)]
P =1) = — A,
Cz' — A — TA, (A)

 Can be computed in polytime.

* AfterS,, project rows orthogonal to picked
row, repeat marginal computation for S,,...
(use intuition for numerator)

e “flops”: k * m * (m?n + m®log m)



Proofs: volume sampling

e Faster: (we assume m > n)
—use p(AAT) =z "p(AL A)
as A'A is n by n (smaller than m by m)

— use rank-1 updates:
1
Ci=A— ———AAA]
| Aq]?
ATAAAT A AT AT A N A; AT AT AA; AT
[ Aq]? [ A2 [ Aqfl* |

— total flops: mn? + km(n? + n®log n) =k m n® log n

Clrey=A%7A -




Even faster

e Volume sampling only cares about volumes of
k-subsets,
—> can get 1+¢ approximation using a volume
preserving random projection [Magen,

Zouzias] (generalizing Johnson Lindenstrauss,
not same as Feige).



Even faster

* [Magen Zouzias]:

Forany A € Rmxn 1<k<n,g<1/2thereisa

d =0(k? €2 log m) s.t. for all S, k-subset of [m]:

det AgAL - det AgAL - (1 +¢€)det AgAL,
A=AG, G e R random Gaussian matrix, scaled

e k=1islL
* This as preprocessing implies 1+ volume

sampling in time

O (mnk?/e? + m k2© +1/g20)



Recent news

* [Boutsidis, Drineas, Magdon-Ismail (FOCS ‘11)]:
improved subset selection using [BSS].

e [Guruswami, Sinop (SODA “12)]:
— Volume sampling in time 0 (kmn?)

— Relative (1 + €) matrix approximation with one round
ofr =k — 1+ k/e rows of volume sampling.
More precisely, for S a sample of size r = k according
to volume sampling:

r—+1

ES(HA—WS(A)H%)' r+ 1 —

kHA_AkH%‘



Open question

* For a subset of rows S according to volume
sampling, lower bound (in expectation?):

Omin (AS)

— Want A; to be well conditioned.



