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Two topics 

• Low-rank matrix approximation (PCA). 

• Subset selection:  
Approximate a matrix using another matrix 
whose columns lie in the span of a few 
columns of the original matrix. 



Motivating example: DNA microarray 

• [Drineas, Mahoney] Unsupervised feature selection for 
classification 
– Data: table of gene expressions (features) v/s patients 

– Categories: cancer types 

– Feature selection criterion: Leverage scores (importance of 
a given feature in determining top principal components) 

• Empirically: Leverage scores are correlated with 
“information gain”, a supervised measure of influence. 
Somewhat unexpected.  

• Leads to clear separation (clusters) from selected 
features. 



In matrix form: 

• 𝐴 is 𝑚 × 𝑛 matrix, 𝑚 patients, 𝑛 genes 
(features), find  

𝐴 ≈ 𝐶𝑋, 

where the columns of 𝐶 are a few columns of 𝐴 (so 
𝑋 = 𝐶+𝐴). 

• They prove error bounds when columns of 𝐶 
are selected at random according to leverage 
scores (importance sampling). 



(P1) Matrix approximation 

• Given 𝑚-by-𝑛 matrix, find low rank 
approximation … 

• … for some norm:  

– 𝐴 𝐹
2 =  𝐴𝑖𝑗

2
𝑖𝑗   (Frobenius) 

– 𝐴 2 = 𝜎max 𝐴 = max
𝑥

𝐴𝑥 / 𝑥   (spectral) 



Geometric view 

• Given points in 𝑅𝑛, find subspace close to 
them. 

• Error: Frobenius norm corresponds to sum of 
squared distances. 

 



Classical solution 

• Best rank-k approximation 𝐴𝑘 in ∙ 𝐹
2  and 

∙ 2: 

– Top 𝑘 terms of singular value decomposition 

(SVD): if 𝐴 =  𝜎𝑖𝑢𝑖𝑣𝑖
𝑇

𝑖  then 𝐴𝑘 =  𝜎𝑖𝑢𝑖𝑣𝑖
𝑇𝑘

𝑖=1  

• Best k-dim. subspace: rowspan(𝐴𝑘), i.e. 

– Span of top 𝑘 eigenvectors of 𝐴𝑇𝐴. 

• Leads to iterative algorithm.  
Essentially, in time 𝑚𝑛2. 



Want algorithm 

• With better error/time trade-off. 

• Efficient for very large data: 
– Nearly linear time 

– Pass efficient: if data does not fit in main memory, 
algorithm should not need random access, but 
only a few sequential passes. 

• Subspace equal to or contained in the span of 
a few rows (actual rows are more informative 
than arbitrary linear combinations). 



Idea [Frieze Kannan Vempala] 

• Sampling rows. 
Uniform does not work (e.g. a single non-zero 
entry) 

• By “importance”: sample s rows, each 
independently with probability proportional 
to squared length. 

 



[FKV] 

Theorem 1. Let S be a sample of k=² rows where

P(row i is picked) / kAik2:

Then the span of S contains the rows of a matrix ~A of rank k for which

E(kA¡ ~Ak2F ) · kA¡ Akk2F + ²kAk2F :

This can be turned into an e±cient algorithm: 2 passes, complexityO(kmn=²):

(to compute 𝐴 , SVD in span of 𝑆, which is fast 
because 𝑛 becomes 𝑘/𝜖). 



One drawback of [FKV] 

• Additive error can be large (say if matrix is 
nearly low rank). 
Prefer relative error, something like 

kA¡ ~Ak2F · (1 + ²)kA¡Akk2F :



Several ways: 

• [Har-Peled ‘06] (first linear time relative 
approximation) 

• [Sarlos ‘06]: Random projection of rows onto a 
𝑂(𝑘/𝜖)-dim. subspace. Then SVD. 

• [Deshpande R Vempala Wang ‘06] [Deshpande 
Vempala ‘06] Volume sampling (rough 
approximation) + adaptive sampling. 



Some more relevant work 

• [Papadimitriou Raghavan Tamaki Vempala ‘98]: 
Introduced random projection for matrix 
approximation. 

• [Achlioptas McSherry ‘01][Clarkson Woodruff ’09] 
One-pass algorithm. 

• [Woolfe Liberty Rokhlin Tygert ’08] [Rokhlin Szlam 
Tygert ‘09] Random projection + power iteration 
to get very fast practical algorithms.  
Read survey [Halko Martinsson Tropp ‘09]. 

• D’Aspremont, Drineas, Ipsen , Mahoney, 
Muthukrishnan, … 
 



(P2) Algorithmic Problems: Volume 
sampling and subset selection 

• Given 𝑚-by-𝑛 matrix, pick set 
of k rows at random with 
probability proportional to 
squared volume of 𝑘-simplex 
spanned by them and origin. 
[DRVW] 
(equivalently, squared 
volume of parallelepiped 
determined by them) 



Volume sampling 

• Let S be k-subset of rows of A 

– [k! vol(conv(0, AS))]
2 = vol((AS))

2 =                      (*) 

– volume sampling for A is equivalent to: pick k by k 
principal minor “S  S” of A AT with prob. 
proportional to 

 

– For(*): complete AS to a square matrix B by adding 
orthonormal rows, orthogonal to span(AS). 

 

 

det(ASA
T
S)

det(ASA
T
S)

vol¤(AS)
2
= (detB)2 = det(BBT ) = det

µ
ASA

T
S 0

0 I

¶
= det(ASA

T
S )



Original motivation:  

• Relative error low rank matrix approximation [DRVW]: 
– S: k-subset of rows according to volume sampling 
– Ak: best rank-k approximation, given by principal 

components (SVD) 
–  S: projection of rows onto rowspan(AS) 

 

 
• Factor “k+1” is best possible [DRVW] 
• Interesting existential result (there exist k rows…). Alg.? 
• Lead to linear time, pass-efficient algorithm for relative 

approximation of Ak [DV].  (1+) in span of O*(k/) rows 

=) ES(kA¡¼S(A)k2F ) · (k+1)kA¡Akk2F



Where does volume sampling come 
from? 

• No self-respecting architect leaves the 
scaffolding in place after completing the 
building. 
     Gauss? 

 

 



Where does volume sampling come 
from? 

• Idea: 
– For picking 𝑘 out of 

𝑘 + 1 points, 𝑘 with 
maximum volume is 
optimal. 

– For picking 1 out of 
𝑚, random according 
to squared length is 
better than max. 
length. 

– For 𝑘 out of 𝑚, this 
suggest volume 
sampling. 



Where does volume sampling come 
from? 

• Why does the algebra work? Idea: 
– When picking 1 out of 𝑚 random according to 

squared length, expected error is sum of squares of 
areas of triangles:  

E error =  𝑠  
𝐴𝑠

2

 𝑡 𝐴𝑡
2
 𝑖𝑑 𝐴𝑖 , 𝑠𝑝𝑎𝑛 𝐴𝑠

2 

 
 
 

– This sum corresponds to certain coefficient of the 
characteristic polynomial of 𝐴𝐴𝑇 



Later motivation [BDM,…] 

• (row/column) Subset selection. 
A refinement of principal component analysis: 
Given a matrix A, 

– PCA: find k-dim subspace V that minimizes 

 

– Subset selection:  find V spanned by k rows of A. 

• Seemingly harder, combinatorial flavor. 

( projects rows) 

kA¡ ¼V (A)k2F



Why subset selection? 

• PCA unsatisfactory: 

– top components are linear combinations of rows 
(all rows, generically). Many applications prefer 
individual, most relevant rows, e.g.: 

• feature selection in machine learning 

• linear regression using only most relevant independent 
variables 

• out of thousands of genes, find a few that explain a 
disease 



Known results 

• [Deshpande-Vempala] Polytime k!-approximation 
to volume sampling, by adaptive sampling: 
– pick a row with probability proportional to squared 

length 

– project all rows orthogonal to it 

– repeat 

• Implies for random k-subset S with that 
distribution: 

ES(kA¡¼S(A)k2F ) · (k+1)!kA¡Akk2F



Known results 

• [Boutsidis, Drineas, Mahoney] Polytime 
randomized algorithm to find k-subset S:   

 

• [Gu-Eisenstat] Deterministic algorithm, 
 
 
in time O((m + n logf n)n2) 
Spectral norm:  

kA¡ ¼S(A)k2F · O(k2 logk)kA¡Akk2F

kA¡ ¼S(A)k22 · (1 + f2k(n¡ k))kA¡Akk22

kAk2 = supx2Rn kAxk=kxk



Known results 

• Remember, volume sampling equivalent to 
sampling k by k minor “S  S” of AAT with 
probability proportional to 
(*) 

 

• [Goreinov, Tyrtishnikov, Zamarashkin] Maximizing  
(*) over S is good for subset selection. 

• [Çivril , Magdon-Ismail] [see also Koutis ‘06]  
But maximizing is NP-hard, even approximately to 
within an exponential factor. 

det(ASA
T
S)



Results 

• Volume sampling: Polytime exact alg.  
O(mn log n)    (arithmetic ops.) 
(some ideas earlier in [Houges Krishnapur Peres 
Virág]) 

• Implies alg. with optimal approximation for 
subset selection under Frobenius norm. Can be 
derandomized by conditional expectation. O(mn 
log n) 

• 1+ approximations to the previous 2 algorithms 
in nearly linear time, using volume-preserving 
random projection [M Z]. 



Results 

• Observation: Bound in Frobenius norm easily 
implies bound in spectral norm: 

 

 

 

using 

 

 

 

kA¡ ¼S(A)k22 · kA¡ ¼S(A)k2F
· (k + 1)kA¡Akk2F
· (k + 1)(n¡ k)kA¡Akk22

kAk2F =
X

i

¾2i kAk22 = ¾2max

¾max = ¾1 ¸ ¾2 ¸ ¢ ¢ ¢ ¸ ¾n ¸ 0 are the singular values of A



Comparison for subset selection 

Frobenius 
norm sq 

Spectral norm 
sq 

Time (assuming m>n) 
: exponent of matrix mult. 

[D R V W] k+1 Existential 

[Despande 
Vempala] 

(k+1)! kmn R 

[Gu Eisenstat] 1+k(n-k) Existential 

[Gu Eisenstat] 1+f2k(n-k) ((m + n logf n)n2 D 

[Boutsidis 
Drineas 
Mahoney] 

k2 log k k2 (n-k) log k 
(F implies 
spectral) 

mn2 R 

[Desphande R] k+1 (optimal) (k+1)(n-k) kmn log n D 

[Desphande R] (1+)(k+1) (1+) (k+1)(n-k) 
 

O*(mnk2/2 + m k2  + 1/2 ) 
 

R 

Find S s.t. kA¡ ¼S(A)k2? · ?kA¡Akk2?



Proofs:  volume sampling 

• Want (w.l.o.g.) k-tuple S of rows of m by n 
matrix A with probability  

det(ASA
T
S )P

S02[m]k det(AS0A
T
S0)



Proofs: volume sampling 

• Idea: pick S=(S1, S2, …, Sk) in sequence. Need 
marginal distribution of S1 to begin: 

 

 

• Remember characteristic polynomial: 

P(S1 = i) =
tuples with S1 = i

all tuples
=

P
S02[m]k ;S01=i

det(AS0A
T
S0)P

S02[m]k det(AS0A
T
S0)

pAAT (x) = det(xI ¡AAT ) =
X

i

ci(AA
T )xi

jcm¡k(AAT )j =
X

Sµ[m];jSj=k

det(ASA
T
S )



• So, for 

 

 

 

 

 

intuition for numerator: 

 

Proofs: volume sampling 

P(S1 = i) =

P
S02[m]k ;S01=i

det(AS0A
T
S0)P

S02[m]k det(AS0A
T
S0)

=
(k ¡ 1)!kAik2

P
S0µ[m];jS0j=k¡1 det((Ci)S0(Ci)

T
S0)

k!
P

S0µ[m];jS0j=k det(AS0A
T
S0)

=
kAik2jcm¡k+1(CiCT

i )j
kjcm¡k(AAT )j

Ci = A¡¼Ai(A)

j¤(A1; A2; A3)j = kA1kj¤(¼A?1 (A2; A3))j

det(AAT ) = kA1k2 det(A¡¼A1(A¡1))(A¡¼A1(A¡1))
T



• So: 

 

 

• Can be computed in polytime. 

• After S1, project rows orthogonal to picked 
row, repeat marginal computation for S2,… 
(use intuition for numerator) 

• “flops”: k * m * (m2n + mlog m) 

Proofs: volume sampling 

P(S1 = i) =
kAik2jcm¡k+1(CiCT

i )j
kjcm¡k(AAT )j

Ci = A¡¼Ai(A)



Proofs: volume sampling  

• Faster: (we assume m > n) 

– use 

as ATA is n by n (smaller than m by m) 

– use rank-1 updates: 

 

 

 

– total flops: mn2 + km(n2 + n log n) = k m n log n 

p(AAT ) = xm¡np(ATA)

Ci = A¡ 1

kAik2
AAiA

T
i ;

CT
i Ci = ATA¡ ATAAiA

T
i

kAik2
¡ AiA

T
i A

TA

kAik2
+
AiA

T
i A

TAAiA
T
i

kAik4
:



Even faster 

• Volume sampling only cares about volumes of 
k-subsets, 
 can get 1+ approximation using a volume 
preserving random projection [Magen, 
Zouzias] (generalizing Johnson Lindenstrauss, 
not same as Feige). 



Even faster 

• [Magen Zouzias]:  
For any A  Rm  n, 1  k  n,  < 1/2 there is a  
d =O(k2 -2 log m) s.t. for all S, k-subset of [m]: 

 

 

• k=1 is JL 

• This as preprocessing implies 1+ volume 
sampling in time 

  O*(mnk2/2 + m k2 + 1/2) 

detASA
T
S · det ~AS ~ATS · (1+ ²)detASA

T
S ;

~A=AG; G 2 Rn£d random Gaussian matrix, scaled



Recent news 

• [Boutsidis, Drineas, Magdon-Ismail (FOCS ‘11)]: 
improved subset selection using [BSS]. 

• [Guruswami, Sinop (SODA ‘12)]:  
– Volume sampling in time 𝑂 𝑘𝑚𝑛2  

– Relative 1 + 𝜖  matrix approximation with one round 
of 𝑟 = 𝑘 − 1 + 𝑘/𝜖 rows of volume sampling. 
More precisely, for 𝑆 a sample of size 𝑟 ≥ 𝑘 according 
to volume sampling: 

ES(kA¡ ¼S(A)k2F ) ·
r+1

r+ 1¡ k
kA¡Akk2F



Open question 

• For a subset of rows 𝑆 according to volume 
sampling, lower bound (in expectation?): 

 

– Want 𝐴𝑆 to be well conditioned. 

 

¾min(AS)


