The centroid body: algorithms and statistical estimation for heavy-tailed distributions

Luis Rademacher
Athens GA, March 2016
Joint work with Joseph Anderson, Navin Goyal and Anupama Nandi
Challenge.

• Covariance matrix is frequently used in algorithmic statistical analysis of data.
• What if data is heavy-tailed? What if data seems to follow a distribution with infinite second moment?
• Our work: Finite first moment \Rightarrow replace covariance matrix by centroid body in certain algorithmic application: Independent Component Analysis (ICA)
Independent Component Analysis (ICA)

• INPUT: samples $X^{(1)}, X^{(2)}, \ldots$ from random vector $X = AS$, where:
 • S is d-dimensional random vector with independent coordinates. Assume 0-mean for simplicity.
 • A is square invertible matrix.
• GOAL: estimate (directions of columns of) A.
• S, A are not observed. Distribution of S is unknown.
Example: How to learn a parallelepiped? [Frieze Jerrum Kannan]

• Illustrative case:
 Estimate a parallelepiped from uniformly random samples \(X^{(1)}, X^{(2)}, \ldots \)
 Model:
 \(S \): uniform in axis aligned cube.
 \(X = AS \): uniform in a parallelepiped

• By estimating covariance and applying \(\text{Cov}(X)^{-1/2} \), can assume it is a rotated cube centered at 0.

• To estimate rotation: Enumerate all local minima of directional 4th moment on unit sphere.
 \textbf{Theorem}: Normals to facets are a complete set of local minima.

\[F(v) = E((X \cdot v)^4) \]
An ICA algorithm: unexpected usefulness of local optima

[Delfosse-Loubaton SignalProcessing95] [Frieze-Jerrum-Kannan FOCS96] [Hyvarinen IEEE NeuralNets99]

- Orthogonalization:
 - Apply a linear transformation to reduce to the case where A has orthogonal columns.
 - Implemented by multiplying samples by estimated $\text{Cov}(X)^{-1/2}$.

- Recover rotation (simplified):
 - Enumerate all local minima of directional 4th moment on unit sphere. ± columns of rotation are a complete set of local minima.

- All previously known provably efficient ICA methods require at least 4 moments.

\[F(v) = E((X \cdot v)^4) \]
Heavy-tailed ICA

- All previously known provably efficient ICA methods require at least 4 moments.
- Heavy-tailed distribution ≈ no moments or only a few moments exists.
- Heavy-tailed ICA instances appear naturally in speech and financial data.
- [Anderson Goyal Nandi R.]
 - Preprocessing: Gaussian damping.
 A provably efficient algorithm that works with no moment assumption when the unknown matrix A is unitary.
 - Preprocessing: Gaussian damping + centroid body orthogonalization.
 A provably efficient algorithm that works assuming finite 1st moment, for any matrix.
Orthogonalization

• For distributions with infinite second moment, \(\text{Cov}(X) \) does not make sense. Instead:

• **Orthogonalization**: Given ICA model \(X = AS \), find matrix \(B \) such that \(BA \) has orthogonal columns.

• Idea: think of Legendre’s ellipsoid of inertia, having support function

\[
h(y) = \sqrt{E(X \cdot y)^2} = \sqrt{y^T \text{Cov}(X)y}
\]

(Unique ellipsoid having the same covariance matrix as \(X \), up to a constant factor)
Orthogonalization via the centroid body

- **Definition** (Petty 1961):
 Given random vector X, the centroid body of X, denoted Γ_X, is the convex body with support function
 \[h_{\Gamma_X}(\theta) = E(|X \cdot \theta|). \]
Orthogonalization via the centroid body

• Idea: Replace covariance of X in orthogonalization step by covariance of uniform distribution in centroid body of X.

Apply $\text{Cov}(Y)^{-1/2}$
Orthogonalization via the centroid body

• What property of the ellipsoid of inertia makes the square root of its covariance an orthogonalizer?

• Centroid body ΓX, defined by support function $h_{\Gamma X}(y) = E(|X \cdot y|)$
 • If S has a product distribution and is symmetrically distributed, then it is unconditional, and therefore ΓS is unconditional (symmetric around axis-aligned hyperplane reflections).
 • **linear equivariant**: $\Gamma A X = A \Gamma X$, for any invertible matrix A.

• For an algorithm:
 • need to be able to estimate ΓX efficiently.
 • need efficient membership test.

• Trick: If S is not symmetrically distributed then ΓS may not be unconditional. But $\Gamma (S - S')$ is unconditional, as $S - S'$ is symmetrically distributed (where S' is an independent copy of S).
More generally: Lemma

- U: family of d-dim. product distributions.
- \bar{U}: closure of U under invertible linear transformations.
- For any $P \in \bar{U}$, pick a distribution $Q(P)$ (e.g. uniform in ΓP)
- If
 1. For all $P \in U$, $Q(P)$ is unconditional.
 2. Map Q is linear equivariant.
 3. $\text{Cov}(Q(P))$ is positive definite for any $P \in \bar{U}$.

Then for any ICA model $X = AS$ with $S \in U$ we have $\text{Cov}(Q(P))^{-1/2}$ is an orthogonalizer for X.
Proof Idea

1. For all $P \in U$, $Q(P)$ is unconditional.
2. Map Q is linear equivariant.
3. $\text{Cov}(Q(P))$ is positive definite for any $P \in \bar{U}$.

- unconditional \Rightarrow covariance is diagonal
- unconditional \Rightarrow axes of $Q(S)$ aligned with axes of independence of S
- equivariance \Rightarrow axes of independence of transformed $X = AS$ aligned with axes of $Q(X)$.

Orthogonalizing $Q(X)$ orthogonalizes X. $\text{Cov}(Q(X))^{-1/2}$ is an orthogonalizer for $Q(X)$ and therefore for X.
How to estimate $\text{Cov}(\Gamma X)$?

• Use random points from ΓX.

• Given membership oracle for ΓX, use random walk-based methods to generate random points. We use [Kannan Lovasz Simonovits].

• Membership oracle for ΓX: Given finite $1 + \epsilon$ moments of X, can estimate support function of ΓX pointwise efficiently from samples. In theory, use ellipsoid algorithm to decide membership in ΓX from support function.

• More practical: Use “dual” (zonoid) expression of ΓX to get explicit linear program:

$$\Gamma X = \{ E(\lambda(X)X): -1 \leq \lambda(x) \leq 1, \lambda: R^n \rightarrow R \}$$

"$\Gamma X = E[-X,X]"
After orthogonalization: Recover rotation?

• Model: $X = RS$, where R has orthogonal columns. We need no moment assumptions on S.

• Gaussian Damping:
 • Construct model \tilde{X} by multiplying density of X by Gaussian e^{-x^2/R^2}, for suitable $R > 0$.
 • \tilde{X} has same axes of independence as X and all moments of \tilde{X} are finite.
 • Implemented by rejection sampling.

• Apply known higher moment-based ICA algorithm to \tilde{X} (e.g. [Goyal Vempala Xiao]).
Orthogonalization with no moment assumption?

• Tempting: Use convex floating body of [Schütt and Werner] in place of centroid body.
 • Also linearly equivariant and unconditional when S is symmetric.
 • Appears to be computationally intractable. No efficient access to support function or membership.