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Challenge.

• Covariance matrix is frequently used in algorithmic 
statistical analysis of data.

• What if data is heavy-tailed?
What if data seems to follow a distribution with 
infinite second moment?

• Our work: 
Finite first moment ⇒ replace covariance matrix by 
centroid body in certain algorithmic application:
Independent Component Analysis (ICA)



Independent Component Analysis 
(ICA)
• INPUT: samples 𝑋(1), 𝑋(2), … from random vector 
𝑋 = 𝐴𝑆, where: 
• 𝑆 is 𝑑-dimensional random vector with independent 

coordinates. Assume 0-mean for simplicity.

• 𝐴 is square invertible matrix.

• GOAL: estimate (directions of columns of) 𝐴.

• 𝑆, 𝐴 are not observed. Distribution of 𝑆 is 
unknown.



Example: How to learn a 
parallelepiped? 
[Frieze Jerrum Kannan]
• Illustrative case: 

Estimate a parallelepiped from uniformly random samples 𝑋(1), 𝑋(2), …
Model:

𝑆: uniform in axis aligned cube.
𝑋 = 𝐴𝑆: uniform in a parallelepiped

• By estimating covariance and applying Cov 𝑋 −1/2, can assume it is a rotated 
cube centered at 0.

• To estimate rotation: Enumerate all local minima of directional 4th moment on 
unit sphere. 
Theorem: Normals to facets are a complete set of local minima.

𝑋

𝐹 𝑣 = 𝐸 𝑋 ⋅ 𝑣 4

Apply Cov 𝑋 −1/2



An ICA algorithm: unexpected 
usefulness of local optima
[Delfosse-Loubaton SignalProcessing95] [Frieze-Jerrum-Kannan FOCS96] [Hyvarinen
IEEE NeuralNets99] 
• Orthogonalization: 

• Apply a linear transformation to reduce to the case where 𝐴 has 
orthogonal columns.

• Implemented by multiplying samples by estimated Cov 𝑋 −1/2. 

• Recover rotation (simplified):
• Enumerate all local minima of directional 4th moment on unit sphere. 

±columns of rotation are a complete set of local minima.

• All previously known provably efficient ICA methods require at 
least 4 moments. 

𝑋

𝐹 𝑣 = 𝐸 𝑋 ⋅ 𝑣 4

Apply Cov 𝑋 −1/2



Heavy-tailed ICA

• All previously known provably efficient ICA methods require 
at least 4 moments.

• Heavy-tailed distribution ≈ no moments or only a few 
moments exists.

• Heavy-tailed ICA instances appear naturally in speech and 
financial data.

• [Anderson Goyal Nandi R.] 
• Preprocessing: 

Gaussian damping.
A provably efficient algorithm that works with no moment 
assumption when the unknown matrix 𝐴 is unitary.

• Preprocessing: 
Gaussian damping + 
centroid body orthogonalization.
A provably efficient algorithm that works assuming finite 1st

moment, for any matrix.



Orthogonalization

• For distributions with infinite second moment, 
Cov(𝑋) does not make sense. Instead:

• Orthogonalization: Given ICA model 𝑋 = 𝐴𝑆, find 
matrix 𝐵 such that 𝐵𝐴 has orthogonal columns.

• Idea: think of Legendre’s ellipsoid of inertia, having 
support function

ℎ 𝑦 = 𝐸 𝑋 ⋅ 𝑦 2 = 𝑦𝑇𝐶𝑜𝑣 𝑋 𝑦

(Unique ellipsoid having the same covariance matrix 
as 𝑋, up to a constant factor)



Orthogonalization via the centroid 
body
• Definition (Petty 1961): 

Given random vector 𝑋, the centroid body of 𝑋, 
denoted Γ𝑋, is the convex body with support function

ℎΓ𝑋 𝜃 = 𝐸 𝑋 ⋅ 𝜃 .

centroid body of −1,1 2 centroid body, support function and 
supporting hyperplane at 45⁰ of a rectangle

𝜃



Orthogonalization via the centroid 
body
• Idea: Replace covariance of 𝑋 in orthogonalization 

step by covariance of uniform distribution in 
centroid body of 𝑋.

Apply Cov 𝑌 −1/2

𝑋

𝑌 ∈ Γ𝑋



Orthogonalization via the centroid 
body
• What property of the ellipsoid of inertia makes the square 

root of its covariance an orthogonalizer?

• Centroid body Γ𝑋, defined by support function ℎΓ𝑋 𝑦 =
𝐸 𝑋 ⋅ 𝑦
• If 𝑆 has a product distribution and is symmetrically distributed, then 

it is unconditional, and therefore Γ𝑆 is unconditional (symmetric 
around axis-aligned hyperplane reflections).

• linear equivariant: Γ𝐴𝑋 = 𝐴Γ𝑋, for any invertible matrix 𝐴.

• For an algorithm: 
• need to be able to estimate Γ𝑋 efficiently.
• need efficient membership test.

• Trick: If 𝑆 is not symmetrically distributed then Γ𝑆 may not be 
unconditional. But Γ(𝑆 − 𝑆′) is unconditional, as 𝑆 − 𝑆′ is symmetrically 
distributed (where 𝑆’ is an independent copy of 𝑆).



More generally: Lemma

• 𝑈: family of 𝑑-dim. product distributions.

•  𝑈: closure of 𝑈 under invertible linear transformations.

• For any 𝑃 ∈  𝑈, pick a distribution 𝑄(𝑃) (e.g. uniform in 
Γ𝑃)

• If
1. For all 𝑃 ∈ 𝑈, 𝑄(𝑃) is unconditional.

2. Map 𝑄 is linear equivariant.

3. Cov(𝑄(𝑃)) is positive definite for any 𝑃 ∈  𝑈.

• Then for any ICA model 𝑋 = 𝐴𝑆 with 𝑆 ∈ 𝑈 we have 

Cov 𝑄 𝑃
−1/2

is an orthogonalizer for 𝑋.



Proof Idea

1. For all 𝑃 ∈ 𝑈, 𝑄(𝑃) is unconditional.
2. Map 𝑄 is linear equivariant.
3. Cov(𝑄(𝑃)) is positive definite for any 𝑃 ∈  𝑈.

• unconditional ⇒ covariance is diagonal

• unconditional ⇒ axes of 𝑄(𝑆) aligned with axes of independence of 𝑆

• equivariance ⇒ axes of independence of transformed 𝑋 = 𝐴𝑆 aligned with axes 
of 𝑄(𝑋). 
Orthogonalizing 𝑄(𝑋) orthogonalizes 𝑋. Cov 𝑄 𝑋

−1/2
is an orthogonalizer for 

𝑄 𝑋 and therefore for 𝑋.



How to estimate Cov(Γ𝑋))?

• Use random points from Γ𝑋. 
• Given membership oracle for Γ𝑋, use random walk-

based methods to generate random points. We use 
[Kannan Lovasz Simonovits].

• Membership oracle for Γ𝑋: Given finite 1 + 𝜖 moments 
of 𝑋, can estimate support function of Γ𝑋 pointwise 
efficiently from samples. In theory, use ellipsoid 
algorithm to decide membership in Γ𝑋 from support 
function.

• More practical: Use “dual” (zonoid) expression of Γ𝑋 to 
get explicit linear program:

Γ𝑋 = {𝐸 𝜆 𝑋 𝑋 : −1 ≤ 𝜆 𝑥 ≤ 1, 𝜆: 𝑅𝑛 → 𝑅}
"Γ𝑋 = 𝐸[−𝑋, 𝑋]"



After orthogonalization: Recover 
rotation?
• Model: 𝑋 = 𝑅𝑆, where 𝑅 has orthogonal columns. 

We need no moment assumptions on S.

• Gaussian Damping: 
• Construct model  𝑋 by multiplying density of 𝑋 by 

Gaussian 𝑒−𝑥2/𝑅2
, for suitable 𝑅 > 0. 

•  𝑋 has same axes of independence as 𝑋 and all moments 
of  𝑋 are finite.

• Implemented by rejection sampling.

• Apply known higher moment-based ICA algorithm 
to  𝑋 (e.g. [Goyal Vempala Xiao]).



Orthogonalization with no 
moment assumption?
• Tempting: Use convex floating body of [Schütt and 

Werner] in place of centroid body.
• Also linearly equivariant and unconditional when 𝑆 is 

symmetric.

• Appears to be computationally intractable. No efficient 
access to support function or membership.


