On the smoothed complexity of Frank-Wolfe methods

Luis Rademacher, UC Davis ITA, February 2020 Joint work with Chang Shu

Frank-Wolfe methods

 $\min f(x)$
s.t. $x \in C$

- $C \subseteq R^d$: a compact convex set
- $f: C \rightarrow R$: a differentiable function
- Basic iterative Frank-Wolfe method, to minimize:
 - 1. Start from any point $x_0 \in C$. Let k = 0.
 - 2. Repeat
 - a. Find minimum, y, of $x \mapsto (\nabla f(x_k))^T x$ over C.
 - b. Let $x_{k+1} = x_k + \alpha^* (y x_k)$, where α^* is a suitable step size.
 - c. Let k = k + 1.

Wolfe's method

• A specialized refinement of F-W for $\min \|x\|_2^2$ $s.t. \ x \in P$

where *P* is a polytope (bounded convex polyhedron).

Complexity

- [De Loera, Haddock, Rademacher] Exponential time lower bound for Wolfe's method.
- Many results on linear convergence of F-W.
- [Lacoste-Julien, Jaggi '13 '15], [Beck, Shtern '15 '16], [Peña Rodriguez Soheili '15 '17] [Peña Rodriguez] Global linear convergence of certain variations of F-W:
 - F-W with away steps,
 - pairwise F-W,
 - Wolfe's method,

when feasible region is a polytope $C = \operatorname{conv}(A)$.

Speed depends on a condition number of *C*.

Global linear convergence and polytope conditioning

• Linear convergence results depend on a "condition number" κ of polytope $C = \operatorname{conv}(A)$ (sketch):

$$f(u_t) - f^* \le (1 - \kappa)^t (f(u_0) - f^*)$$
"

- If κ is small, convergence is slow.
- $\kappa = \frac{"something"}{\operatorname{diam}(C)}$, where "something" can be
 - [L-J J] minwidth $(A) = \min_{S \subseteq A}$ width(S)
 - [L-J J] pyramidal width PWidth(A)
 - [B S] vertex-facet distance $vf(C) = \min_{F \in facets(C)} d(aff F, vertices(C) \setminus F)$
 - [P R] facial distance $\Phi(C) = \min_{\substack{F \in faces(C) \\ \emptyset \subseteq F \subseteq C}} d(F, conv(vertices(C) \setminus F))$
- Relationships:
 - [P R] PWidth(A) = $\Phi(C)$
 - $[L-J J] minwidth(A) \le PWidth(A)$
 - [our work] $\Phi(\mathcal{C}) \leq vf(\mathcal{C})$
 - \Rightarrow all are sandwiched between minwidth(A) and vf(C).
- All of them can be exponentially small as a function of bit-length of A [De Loera, Haddock, Rademacher].
- **[our work]** There is a 0-1 simplex in \mathbb{R}^d where all of them are exponentially small in d (follows from observation of [L-J J], based on [Alon Vu '97]).

Smoothed analysis [Spielman Teng]

• Complexity of small random perturbations of any given input $x \in \mathbb{R}^n$: T(x + g)

where

- 1. g is N(0, $\sigma^2 I_{n \times n}$), and
- 2. T is "complexity" (e.g. time of an algorithm).
- (Probabilistic) polynomial smoothed complexity: $\max_{x \in \mathbb{R}^{n}, \|x\| \leq 1} P_{g} \left[T(x+g) \geq \operatorname{poly}\left(n, \frac{1}{\sigma}, \delta\right) \right] \leq \delta$

Our results: simplex case

- Our results:
 - There is a 0-1 simplex in \mathbb{R}^d where all condition numbers κ are exponentially small in d (follows from observation of [L-J J], based on [Alon Vu '97]).
 - "minwidth" has good smoothed complexity, implies polynomial smoothed complexity of several F-W methods for minimum norm on any simplex: Let A be matrix of vertices, then

$$P_g\left(\operatorname{minwidth}(A+g) \ge \frac{1}{\operatorname{poly}\left(d,\frac{1}{\sigma}\right)}\right) \ge 1 - o(1)$$

- Contrast with:
 - [De Loera, Haddock, Rademacher] Linear programming reduces to the minimum norm point on a simplex.

⇒No known "simple" worst case polynomial time algorithm to find the minimum norm point in a simplex.

Our results: general polytopes

- V-polytope conv(*A*).
 - Smoothed vertex-facet distance is exponentially small. For g = "2d standard Gaussian random points in R^{d} " and with constant probability :

$$\operatorname{vf}(g) \leq \frac{1}{c^d}$$

Proof idea for...

- ... smoothed vertex-facet distance is exponentially small:
 - Want: for the convex hull of 2*d* random Gaussian points in *R^d*, with constant probability some vertex is exponentially close to aff(some facet) (not containing the vertex).
 - Warm-up case: given 2d random Gaussian points in \mathbb{R}^d , with constant probability one point is exponentially close to span of d 1 others.
 - Warm-up case relates to conditioning of random matrices and RIP in compressed sensing:
 - Warm up same as: given a $d \times 2d$ random Gaussian matrix, with constant probability there is a $d \times d$ submatrix with exponentially small σ_d .

Our results

• Bad smoothed conditioning of random matrices: Let A be a $d \times 2d$ random matrix with iid standard Gaussian entries. Then there exists c > 1 such that with constant probability $\min_{S \subseteq [2d], |S| = d} \sigma_d(A_S) \le 1/c^d$

Proof idea:

- Warm-up case is enough: given 2d random Gaussian points in \mathbb{R}^d , with constant probability one point is exponentially close to span of d-1 others
- Let F be the family of sets of d 1 columns of A. For $S \in F$, let B_S be the set of points within distance ϵ of span(S).
- Let $D_{\epsilon} = \bigcup_{S \in F} B_S$.
- Show that for $\epsilon = 1/c^d$ the Gaussian volume $G(D_{\epsilon})$ is at least a constant by lower bounding it using the **first two terms of** inclusion-exclusion:

$$G(D_{\epsilon}) \ge \sum_{S} G(B_{S}) - \sum_{S,T} G(B_{S} \cap B_{T})$$

• $B_S \cap B_T$ can be large if S, T share many columns. Restrict the definition of F above to a subfamily of submatrices of A having few columns in common: packing bound = Gilbert-Varshamov bound.

Conclusion

- We show
 - polynomial time smoothed complexity for several F-W methods for minimum norm point in a simplex.
 - Known notions of polytope conditioning do not have polynomial smoothed complexity.
 - New results about conditioning of random matrices and random polytopes.
- No smoothed exponential time lower bound for F-W, only smoothed exponential bound for known condition numbers.
 Q: Polynomial smoothed complexity for F-W via analysis of better condition number?