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Frank-Wolfe methods
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min f (x)

s.t. x el
* C C R%: a compact convex set
* f:C — R: adifferentiable function

* Basic iterative Frank-Wolfe method, to minimize:
1. Startfrom any pointx, € C. Letk = 0.
2. Repeat

a. Find minimum, y, of x — (Vf(xk))Tx over C.

b. Letxi, = x; +a (y —xi), where a” is a suitable step
Size.

c. lLetk=k+1.




Wolfe’s method

* A specialized refinement of F-W for
min||x||5
s.t. x P

where P is a polytope (bounded convex polyhedron).



Complexity

 [De Loera, Haddock, Rademacher] Exponential time lower bound for
Wolfe’s method.

* Many results on linear convergence of F-W.

 [Lacoste-Julien, Jaggi ‘13 ‘15], [Beck, Shtern ‘15 ‘16], [Pena Rodriguez

Soheili ’15 “17] [Pena Rodriguez] Global linear convergence of certain
variations of F-W:

* F-W with away steps,

* pairwise F-W,

* Wolfe’s method,

when feasible region is a polytope C = conv(4).

Speed depends on a condition number of C.



Global linear convergence and polytope
conditioning

* Linear convergence results depend on a “condition number” k of polytope C = conv(A) (sketch):
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* If k is small, convergence is slow. e e
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* [L-JJ] minwidth(4) = gciﬁl width(S) .

e [L-JJ] pyramidal width PWidth(A)

» [BS] vertex-facet distance vf(C) = min _d(aff F,vertices(C) \ F)
Fefacets(C)

» [P R] facial distance ®(C) = Fegleersl(C) d(F, conv(vertices(C) \ F))

PSFEC
* Relationships:
« [P R] PWidth(4) = ®(C)
* [L-JJ] minwidth(A4) < PWidth(A)
* [our work] ®(C) < vf(C)
= all are sandwiched between minwidth(A4) and vf(C).

* All of them can be exponentially small as a function of bit-length of A [De Loera, Haddock, Rademacher].

oi.lr work] T]f)\ere is a 0-1 simplex in R% where all of them are exponentially small in d (follows from observation of [L-J J], based on
Alon Vu 97]).



Smoothed analysis [Spielman Teng]

* Complexity of small random perturbations of any given input x € R":
T(x+ g)

where
1. gisN(0,0%l,4,), and
2. T is “complexity” (e.g. time of an algorithm).

* (Probabilistic) polynomial smoothed complexity:

1
max P, [T(x + g) = poly (n,;,&)

x€RM ||x]|=1

<0




Our results: simplex case

e Our results:

* Thereis a 0-1 simplex in R% where all condition numbers k are exponentially small in
d (follows from observation of [L-J J], based on [Alon Vu ‘97]).

* “minwidth” has good smoothed complexity, implies polynomial smoothed
complexity of several F-W methods for minimum norm on any simplex:
Let A be matrix of vertices, then

P, [ minwidth(4 + g) >

>1—0(1)
v(d L

poly (d,5)

 Contrast with:

* [De Loera, Haddock, Rademacher] Linear programming reduces to the minimum
norm point on a simplex.

=No known “simple” worst case polynomial time algorithm to find the minimum norm
point in a simplex.



Our results: general polytopes

* \/-polytope conv(4).
* Smoothed vertex-facet distance is exponentially small. For g = “2d standard

Gaussian random points in R%” and with constant probability :
1
vi(g) < e



Proof idea for...

* ... smoothed vertex-facet distance is exponentially small:

* Want: for the convex hull of 2d random Gaussian points in R4, with constant
probability some vertex is exponentially close to aff(some facet) (not
containing the vertex).

 Warm-up case: given 2d random Gaussian points in R¢, with constant
probability one point is exponentially close to span of d — 1 others.

 Warm-up case relates to conditioning of random matrices and RIP in

compressed sensing:

 Warm up same as: given a d X 2d random Gaussian matrix, with constant probability
thereis a d X d submatrix with exponentially small o,.



Our results

* Bad smoothed conditioning of random matrices:
Let A be a d X 2d random matrix with iid standard Gaussian entries. Then there exists ¢ > 1 such that with constant probability

sein 04(4s) < 1/c
Proof idea:

« Warm-up case is enough: given 2d random Gaussian points in R%, with constant probability one point is exponentially close to
span of d — 1 others

* Let F be the family of sets of d — 1 columns of A. For S € F, let B be the set of points within distance € of span(S).
o Let Dé‘ =USEF Bs.

* Show that for e = 1/c® the Gaussian volume G(D,) is at least a constant by lower bounding it using the first two terms of
inclusion-exclusion:

G(D) = ) G(Bs) = ) G(Bs N By)
S ST

* Bgs N By can be large if S, T share many columns. Restrict the definition of F above to a subfamily of submatrices of A having few
columns in common: packing bound = Gilbert-Varshamov bound.



Conclusion

e We show

* polynomial time smoothed complexity for several F-W methods for minimum
norm point in a simplex.

* Known notions of polytope conditioning do not have polynomial smoothed
complexity.

* New results about conditioning of random matrices and random polytopes.

* No smoothed exponential time lower bound for F-W, only smoothed
exponential bound for known condition numbers.
Q: Polynomial smoothed complexity for F-W via analysis of better
condition number?



