On the smoothed complexity of Frank-Wolfe methods

Luis Rademacher, UC Davis
ITA, February 2020
Joint work with Chang Shu
Frank-Wolfe methods

$$\min f(x) \quad s.t. \ x \in C$$

- $C \subseteq R^d$: a compact convex set
- $f: C \to R$: a differentiable function
- Basic iterative Frank-Wolfe method, to minimize:
 1. Start from any point $x_0 \in C$. Let $k = 0$.
 2. Repeat
 a. Find minimum, y, of $x \mapsto (\nabla f(x_k))^T x$ over C.
 b. Let $x_{k+1} = x_k + \alpha^* (y - x_k)$, where α^* is a suitable step size.
 c. Let $k = k + 1$.

\[\min_{x \in C} \|x\|_2^2 \]
Wolfe’s method

• A specialized refinement of F-W for

\[\min \|x\|_2^2 \]
\[s. t. \ x \in P \]

where \(P \) is a polytope (bounded convex polyhedron).
Complexity

• [De Loera, Haddock, Rademacher] Exponential time lower bound for Wolfe’s method.
• Many results on linear convergence of F-W.
 • F-W with away steps,
 • pairwise F-W,
 • Wolfe’s method,
when feasible region is a polytope $C = \text{conv}(A)$.

Speed depends on a condition number of C.
Global linear convergence and polytope conditioning

- Linear convergence results depend on a “condition number” κ of polytope $C = \text{conv}(A)$ (sketch):

 \[f(u_t) - f^* \leq (1 - \kappa)^t (f(u_0) - f^*) \]

- If κ is small, convergence is slow.

- $\kappa = \text{"something"} \frac{\text{diam}(C)}{\text{diam}(C)}$, where “something” can be
 - [L-J J] minwidth $A = \min \text{width}(S)$
 - [L-J J] pyramidal width $\text{PWidth}(A)$
 - [B S] vertex-facet distance $\text{vf}(C) = \min_{F \in \text{faces}(C)} d(\text{aff}(F), \text{vertices}(C) \setminus F)$
 - [P R] facial distance $\Phi(C) = \min_{F \in \text{faces}(C) \setminus \emptyset} d(F, \text{conv}(\text{vertices}(C) \setminus F))$

- Relationships:
 - [P R] $\text{PWidth}(A) = \Phi(C)$
 - [L-J J] $\text{minwidth}(A) \leq \text{PWidth}(A)$
 - [our work] $\Phi(C) \leq \text{vf}(C)$
 \[\Rightarrow \text{all are sandwiched between minwidth}(A) \text{ and } \text{vf}(C). \]

- All of them can be exponentially small as a function of bit-length of A [De Loera, Haddock, Rademacher].

- [our work] There is a 0-1 simplex in R^d where all of them are exponentially small in d (follows from observation of [L-J J], based on [Alon Vu ‘97]).
Smoothed analysis [Spielman Teng]

• Complexity of small random perturbations of any given input $x \in \mathbb{R}^n$:
 $$T(x + g)$$

where

1. g is $\mathcal{N}(0, \sigma^2 I_{n \times n})$, and
2. T is “complexity” (e.g. time of an algorithm).

• (Probabilistic) polynomial smoothed complexity:
 $$\max_{x \in \mathbb{R}^n, \|x\| \leq 1} P_g \left[T(x + g) \geq \text{poly} \left(n, \frac{1}{\sigma}, \delta \right) \right] \leq \delta$$
Our results: simplex case

• Our results:
 • There is a 0-1 simplex in R^d where all condition numbers κ are exponentially small in d (follows from observation of [L-J J], based on [Alon Vu ’97]).
 • “minwidth” has good smoothed complexity, implies polynomial smoothed complexity of several F-W methods for minimum norm on any simplex: Let A be matrix of vertices, then
 \[
P_g \left(\text{minwidth}(A + g) \geq \frac{1}{\text{poly}(d, \frac{1}{\sigma})} \right) \geq 1 - o(1)
 \]
• Contrast with:
 • [De Loera, Haddock, Rademacher] Linear programming reduces to the minimum norm point on a simplex.
 \Rightarrow No known “simple” worst case polynomial time algorithm to find the minimum norm point in a simplex.
Our results: general polytopes

• V-polytope \(\text{conv}(A) \).

• **Smoothed vertex-facet distance is exponentially small.** For \(g = "2d\) standard Gaussian random points in \(R^d\)” and with constant probability:

\[
\text{vf}(g) \leq \frac{1}{c^d}
\]
Proof idea for...

• ... smoothed vertex-facet distance is exponentially small:
 • Want: for the convex hull of $2d$ random Gaussian points in \mathbb{R}^d, with constant probability some vertex is exponentially close to $\text{aff}(\text{some facet})$ (not containing the vertex).
 • Warm-up case: given $2d$ random Gaussian points in \mathbb{R}^d, with constant probability one point is exponentially close to span of $d - 1$ others.
 • Warm-up case relates to conditioning of random matrices and RIP in compressed sensing:
 • Warm up same as: given a $d \times 2d$ random Gaussian matrix, with constant probability there is a $d \times d$ submatrix with exponentially small σ_d.
Our results

• Bad smoothed conditioning of random matrices:

Let A be a $d \times 2d$ random matrix with iid standard Gaussian entries. Then there exists $c > 1$ such that with constant probability

$$\min_{S \subseteq [2d], |S| = d} \sigma_d(A_S) \leq 1/c^d$$

Proof idea:

• Warm-up case is enough: given $2d$ random Gaussian points in R^d, with constant probability one point is exponentially close to span of $d - 1$ others

• Let F be the family of sets of $d - 1$ columns of A. For $S \in F$, let B_S be the set of points within distance ϵ of span(S).

• Let $D_\epsilon = \bigcup_{S \in F} B_S$.

• Show that for $\epsilon = 1/c^d$ the Gaussian volume $G(D_\epsilon)$ is at least a constant by lower bounding it using the first two terms of inclusion-exclusion:

$$G(D_\epsilon) \geq \sum S G(B_S) - \sum_{S,T} G(B_S \cap B_T)$$

• $B_S \cap B_T$ can be large if S, T share many columns. Restrict the definition of F above to a subfamily of submatrices of A having few columns in common: packing bound = Gilbert-Varshamov bound.
Conclusion

• We show
 • polynomial time smoothed complexity for several F-W methods for minimum norm point in a simplex.
 • Known notions of polytope conditioning do not have polynomial smoothed complexity.
 • New results about conditioning of random matrices and random polytopes.

• No smoothed exponential time lower bound for F-W, only smoothed exponential bound for known condition numbers.
Q: Polynomial smoothed complexity for F-W via analysis of better condition number?