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Frank-Wolfe methods

min𝑓(𝑥)
𝑠. 𝑡. 𝑥 ∈ 𝐶

• 𝐶 ⊆ 𝑅𝑑: a compact convex set

• 𝑓: 𝐶 → 𝑅: a differentiable function

• Basic iterative Frank-Wolfe method, to minimize:
1. Start from any point 𝑥0 ∈ 𝐶. Let 𝑘 = 0.
2. Repeat

a. Find minimum, 𝑦, of 𝑥 ↦ ∇𝑓 𝑥𝑘
𝑇
𝑥 over 𝐶.

b. Let 𝑥𝑘+1 = 𝑥𝑘 + 𝛼∗(𝑦 − 𝑥𝑘), where 𝛼∗ is a suitable step 
size.

c. Let 𝑘 = 𝑘 + 1.



Wolfe’s method

• A specialized refinement of F-W for
min 𝑥 2

2

𝑠. 𝑡. 𝑥 ∈ 𝑃

where 𝑃 is a polytope (bounded convex polyhedron).



Complexity

• [De Loera, Haddock, Rademacher] Exponential time lower bound for 
Wolfe’s method.

• Many results on linear convergence of F-W.

• [Lacoste-Julien, Jaggi ‘13 ‘15], [Beck, Shtern ‘15 ‘16], [Peña Rodriguez 
Soheili ’15 ‘17] [Peña Rodriguez] Global linear convergence of certain 
variations of F-W: 
• F-W with away steps, 
• pairwise F-W, 
• Wolfe’s method, 
when feasible region is a polytope 𝐶 = conv(𝐴).
Speed depends on a condition number of 𝑪.



Global linear convergence and polytope
conditioning
• Linear convergence results depend on a “condition number” 𝜅 of polytope 𝐶 = conv(𝐴) (sketch):

" 𝑓 𝑢𝑡 − 𝑓∗ ≤ 1 − 𝜅 𝑡(𝑓 𝑢0 − 𝑓∗) "

• If 𝜅 is small, convergence is slow.

• 𝜅 =
"𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔"

diam(𝐶)
, where “something” can be

• [L-J J] minwidth 𝐴 = min
𝑆⊆𝐴

width(𝑆)

• [L-J J] pyramidal width PWidth(𝐴)
• [B S] vertex-facet distance vf 𝐶 = min

𝐹∈facets(𝐶)
𝑑(aff 𝐹, vertices 𝐶 ∖ 𝐹)

• [P R] facial distance Φ 𝐶 = min
𝐹∈faces(𝐶)

∅⊊F⊊𝐶

𝑑(𝐹, conv(vertices 𝐶 ∖ 𝐹))

• Relationships:
• [P R] PWidth 𝐴 = Φ 𝐶
• [L-J J] minwidth 𝐴 ≤ PWidth(𝐴)
• [our work] Φ 𝐶 ≤ vf 𝐶
⇒ all are sandwiched between minwidth 𝐴 and vf 𝐶 .

• All of them can be exponentially small as a function of bit-length of 𝐴 [De Loera, Haddock, Rademacher].

• [our work] There is a 0-1 simplex in 𝑅𝑑 where all of them are exponentially small in 𝑑 (follows from observation of [L-J J], based on 
[Alon Vu ‘97]).



Smoothed analysis [Spielman Teng]

• Complexity of small random perturbations of any given input 𝑥 ∈ 𝑅𝑛:
𝑇(𝑥 + 𝑔)

where 
1. 𝑔 is N(0, 𝜎2𝐼𝑛×𝑛), and 

2. 𝑇 is “complexity” (e.g. time of an algorithm).

• (Probabilistic) polynomial smoothed complexity:

max
𝑥∈R𝑛, 𝑥 ≤1

𝑃𝑔 𝑇 𝑥 + 𝑔 ≥ poly 𝑛,
1

𝜎
, 𝛿 ≤ 𝛿



Our results: simplex case

• Our results:
• There is a 0-1 simplex in 𝑅𝑑 where all condition numbers 𝜅 are exponentially small in 
𝑑 (follows from observation of [L-J J], based on [Alon Vu ‘97]).

• “minwidth” has good smoothed complexity, implies polynomial smoothed 
complexity of several F-W methods for minimum norm on any simplex: 
Let 𝐴 be matrix of vertices, then

𝑃𝑔 minwidth 𝐴 + 𝑔 ≥
1

poly 𝑑,
1
𝜎

≥ 1 − 𝑜 1

• Contrast with:
• [De Loera, Haddock, Rademacher] Linear programming reduces to the minimum 

norm point on a simplex.
⇒No known “simple” worst case polynomial time algorithm to find the minimum norm 
point in a simplex.



Our results: general polytopes

• V-polytope conv 𝐴 .
• Smoothed vertex-facet distance is exponentially small. For 𝑔 = “2𝑑 standard 

Gaussian random points in 𝑅𝑑” and with constant probability :

vf 𝑔 ≤
1

𝑐𝑑



Proof idea for…

• … smoothed vertex-facet distance is exponentially small:
• Want: for the convex hull of 2𝑑 random Gaussian points in 𝑅𝑑, with constant 

probability some vertex is exponentially close to aff(some facet) (not 
containing the vertex). 

• Warm-up case: given 2𝑑 random Gaussian points in 𝑅𝑑, with constant 
probability one point is exponentially close to span of 𝑑 − 1 others. 

• Warm-up case relates to conditioning of random matrices and RIP in 
compressed sensing:
• Warm up same as: given a 𝑑 × 2𝑑 random Gaussian matrix, with constant probability 

there is a 𝑑 × 𝑑 submatrix with exponentially small 𝜎𝑑.



Our results

• Bad smoothed conditioning of random matrices:
Let 𝐴 be a 𝑑 × 2𝑑 random matrix with iid standard Gaussian entries. Then there exists 𝑐 > 1 such that with constant probability

min
𝑆⊆ 2𝑑 , 𝑆 =𝑑

𝜎𝑑 𝐴𝑆 ≤ 1/𝑐𝑑

Proof idea: 

• Warm-up case is enough: given 2𝑑 random Gaussian points in 𝑅𝑑, with constant probability one point is exponentially close to 
span of 𝑑 − 1 others

• Let 𝐹 be the family of sets of 𝑑 − 1 columns of 𝐴. For 𝑆 ∈ 𝐹, let 𝐵𝑆 be the set of points within distance 𝜖 of span 𝑆 .

• Let 𝐷𝜖 =∪𝑆∈𝐹 𝐵𝑆.

• Show that for 𝜖 = 1/𝑐𝑑 the Gaussian volume G(𝐷𝜖) is at least a constant by lower bounding it using the first two terms of 
inclusion-exclusion:

G 𝐷𝜖 ≥

𝑆

G 𝐵𝑆 −

𝑆,𝑇

𝐺(𝐵𝑆 ∩ 𝐵𝑇)

• 𝐵𝑆 ∩ 𝐵𝑇 can be large if 𝑆, 𝑇 share many columns. Restrict the definition of 𝐹 above to a subfamily of submatrices of 𝐴 having few 
columns in common: packing bound = Gilbert-Varshamov bound.



Conclusion

• We show 
• polynomial time smoothed complexity for several F-W methods for minimum 

norm point in a simplex.

• Known notions of polytope conditioning do not have polynomial smoothed 
complexity.

• New results about conditioning of random matrices and random polytopes.

• No smoothed exponential time lower bound for F-W, only smoothed 
exponential bound for known condition numbers. 
Q: Polynomial smoothed complexity for F-W via analysis of better 
condition number?


