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Inference helps us understand 
data
• Example: Principal Component Analysis

• Geometrically, given a set of 𝑛-dimensional vectors, 
determine whether there is a 𝑘-dimensional 
subspace such that they are close to it.

𝑉 𝐼1
𝐼2

𝐼3



Algorithmic lens: Does a model have 
a provably efficient algorithm?

• Algorithm = Turing machine or similar formalization

• Efficient = polynomial time
= polynomial number of steps as a 

function of problem size.



Example 1: Nash equilibrium

• An example of a superb model without a provably 
efficient algorithm.

• Given interacting agents, Nash equilibrium is a 
prediction of how they will act.

• An efficient algorithm is a requisite of a sound 
model
• “If your laptop can’t find it, then neither can the 

market…” (Kamal Jain)



Example 2: Simplex learning

• Simplex learning problem [Frieze Jerrum
Kannan ‘96]: 
Given uniformly random points from a 
simplex in 𝑅𝑛, estimate the simplex.

• Maximum Likelihood Estimator (MLE): 
minimum volume simplex containing 
sample. 

• Theorem: For MLE to be within constant 
𝐿1 distance, 𝑂∗ 𝑛2 samples are enough
Proof: follows from the theory of 
empirical processes [Vapnik Chervonenkis]

• But finding the minimum volume simplex 
containing a given set of points is an NP-
hard problem [Packer]. (No efficient 
algorithm unless P=NP)



Linear feature extraction

Given 𝑛-dimensional points, find new coordinates 
that highlight some structure of the data

• Principal component analysis (PCA)
Find a basis of a subspace so that points are 

close to its span.

• Column subset selection (CSS)
Find a few data points that are a basis of a 

subspace so that all points are close to its span.

• Independent component analysis (ICA)
Find a basis so that coordinates of points in 

this basis appear statistically independent.



Part I: Column subset 
selection



Example: Eigenfaces

• First successful face recognition algorithm.

• Preprocessing: Principal Component Analysis 
(dimensionality reduction)
Given set of 100x100 training images (faces 𝐼1, 𝐼2, 𝐼3, …), 
interpret as 10000-dimensional vector, find subspace 𝑉
of low dimension (say 100) that is “close” to given 
vectors (=faces). Store projections of vectors onto 𝑉.
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Example: Eigenfaces
• Dimensionality reduction via PCA:

• Decreases computational cost
• Highlights relevant features (de-noising).

• Numbers are weights in weighted combination 
of 100 “representative” images in 𝑉: singular 
vectors of data matrix or “Eigenfaces”.

• But Eigenfaces are not faces.
Can we find actual representative faces as the 
basis of 𝑉 and write all faces as linear 
combinations of a few actual faces?

Image credit: AT&T 
Laboratories Cambridge.
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Formalization: 
Column subset selection
[Golub Businger] [Gu Eisentat] [Boutsidis Mahoney Drineas]
[Deshpande R]…

• A refinement of principal component analysis:
Given a matrix 𝐴 of data points as columns,
• PCA: find 𝑘-dim subspace 𝑉 that minimizes

𝐴 − 𝜋𝑉 𝐴 𝐹
2

• Subset selection:  find 𝑉 spanned by k columns of A.
• Seemingly harder, combinatorial flavor.

(𝜋𝑉 projects columns onto 𝑉)
𝐴 𝐹

2 = σ𝑖𝑗 𝐴𝑖𝑗
2 (Frobenius norm, corresponds to sum 

of squared distances in geometric view)



Volume sampling

• Given 𝑛-by-𝑚 matrix, pick set of 𝑘 columns at 
random with probability proportional to squared 
volume of 𝑘-simplex spanned by them and origin. 
[Deshpande R. Vempala Wang]
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CSS via volume sampling

• Theorem: Relative error column subset selection 
[Deshpande R. Vempala Wang]:
• 𝑆: 𝑘-subset of columns according to volume sampling

• 𝐴𝑘: best rank-𝑘 approximation to 𝐴 in Frobenius norm, 
given by principal components (or Singular Value 
Decomposition)

• 𝑆: projection of columns onto 𝑐𝑜𝑙𝑢𝑚𝑛𝑠𝑝𝑎𝑛(𝐴𝑆)
⇒ 𝐸𝑆 𝐴 − 𝜋𝑆 𝐴 𝐹

2 ≤ (𝑘 + 1) 𝐴 − 𝐴𝑘 𝐹
2

• Factor “𝑘 + 1” is best possible [DRVW]



Volume sampling: probabilistic 
method in linear algebra
• Choose  a suitable 

distribution over a set of 
objects 𝜔 ∈ Ω.

• Show that in expectation 
a quantity of interest 
𝑋(𝜔) is small

• Conclude that 𝑋(𝜔) is 
small for some 𝜔.

• Volume sampling over 𝑘-
subsets of columns of 𝐴. 

• 𝐸𝑆 𝐴 − 𝜋𝑆 𝐴 𝐹
2 ≤

(𝑘 + 1) 𝐴 − 𝐴𝑘 𝐹
2

• ⇒ there exist 𝑘 columns 
of 𝐴 such that
𝐴 − 𝜋𝑆 𝐴 𝐹

2

≤ (𝑘 + 1) 𝐴 − 𝐴𝑘 𝐹
2



Where does volume sampling 
come from?
• No self-respecting architect leaves the scaffolding 

in place after completing the building.
Gauss?



Where does volume sampling 
come from?
• Illustrative simple 

cases:
• For picking 𝑘 out of 𝑘 +
1 points, 𝑘 with 
maximum volume is 
optimal.

• For picking 1 out of 𝑚, 
random according to 
squared length is better 
than max. length.

• For 𝑘 out of 𝑚, this 
suggest volume 
sampling.

1

𝑂
2

𝑂
ℎ

𝑉𝑜𝑙 =
𝑏𝑎𝑠𝑒 ⋅ ℎ

3
= 𝑐𝑜𝑛𝑠𝑡.

ℎ2 = 𝑒𝑟𝑟𝑜𝑟

𝑘 = 2

𝑏𝑎𝑠𝑒



Where does volume sampling 
come from?
• Why does the algebra work? Idea:

• When picking 1 out of 𝑚 random according to squared length, expected error is 
sum of squares of areas of triangles:

E error = σ𝑠

𝐴𝑠
2

σ𝑡 𝐴𝑡
2
σ𝑖𝑑 𝐴𝑖 , 𝑠𝑝𝑎𝑛 𝐴𝑠

2

=
1

σ𝑡 𝐴𝑡
2
σ𝑠,𝑖 𝐴𝑠

2 𝑑 𝐴𝑖 , 𝑠𝑝𝑎𝑛 𝐴𝑠
2

• This sum corresponds to certain coefficient of the characteristic polynomial of 
𝐴𝑇𝐴, which can be computed efficiently.

An example of Valiant’s observation? Many algorithms that count efficiently are 
based on efficient computation of the determinant.

𝐴𝑖

𝐴𝑠

𝑑 𝐴𝑖 , 𝑠𝑝𝑎𝑛 𝐴𝑠



Efficient volume sampling: Key idea
[Deshpande R.][Deshpande Kundu R.]

• For every column, compute probability of including it  
(given past choices) and include it with that probability.
For 1st column and 𝑆 according to volume sampling:

𝑃 1 ∉ 𝑆 =
σ𝑆′⊆ 2…𝑚 , 𝑆′ =𝑘 vol 𝐴𝑆′

2

σ𝑆′⊆ 1…𝑚 , 𝑆′ =𝑘 vol 𝐴𝑆′
2

=
σ𝑆′⊆ 2…𝑚 , 𝑆′ =𝑘 det 𝐴𝑆′

𝑇 𝐴𝑆′

σ𝑆′⊆ 1…𝑚 , 𝑆′ =𝑘 det 𝐴𝑆′
𝑇 𝐴𝑆′

=
𝑐𝑚−𝑘(𝐴−1

𝑇𝐴−1)

𝑐𝑚−𝑘(𝐴
𝑇𝐴)

(𝑐𝑖(𝐴) = 𝑖th coefficient of characteristic polynomial of 𝐴)

(𝐴−1 = 𝐴 without the first column)

• Similar formula for subsequent rows. 



Other applications of volume 
sampling
• The “Paris Hilton” problem:

If Google simply returns top ranked results for 
“paris hilton”, then no results about Hilton hotel in 
Paris …
• [Kulesza Taskar (ICML ‘11)] 

Volume sampling to select a set of “diverse” data points 
(large volume ≈ diverse).

• [Guruswami, Sinop (FOCS ‘11)]
• Improved approximation algorithms for Quadratic 

Integer Programs using subset selection for Semidefinite 
Programming rounding.



Part II: Independent 
Component Analysis



Cocktail Party Problem 
(prototypical)
• Problem:  𝑛 persons 

speaking in a room with 
𝑛 microphones.

• Microphones capture a 
superposition of the 
speech signals.

• Goal:  Recover each 
persons’ speech.



Independent Component Analysis 
(ICA)
• INPUT: samples 𝑋(1), 𝑋(2), … from random vector 
𝑋 = 𝐴𝑆, where: 
• 𝑆 is 𝑑-dimensional random vector with independent 

coordinates. Assume 0-mean for simplicity.
• 𝐴 is square invertible matrix.

• GOAL: estimate (directions of columns of) 𝐴.

• 𝑆, 𝐴 are not observed. Distribution of 𝑆 is 
unknown.

• Wanted: provably efficient and accurate algorithms 
with wide applicability.



Cocktail party problem as ICA

• Source signals (speech) at time 𝑡: 

𝑆1
(𝑡)
, … , 𝑆𝑛

(𝑡)
, assumed to be statistically 

independent.

• Observed signals: 𝑋1
(𝑡)
, … , 𝑋𝑛

(𝑡)
, satisfy

𝑋(𝑡) = 𝐴𝑆(𝑡)

(Unknown mixing matrix 𝐴 encodes geometry of 
persons and microphones)

• Estimate 𝐴 and 𝑆 from 𝑋1
(𝑡)
, … , 𝑋𝑛

(𝑡)
.



An ICA algorithm: unexpected 
usefulness of local optima
[Delfosse-Loubaton SignalProcessing95] [Frieze-Jerrum-Kannan FOCS96] 
[Hyvarinen IEEE NeuralNets99] 
• Illustrative case: Estimate a parallelepiped from uniformly random 

samples 𝑋(1), 𝑋(2), … Model:
𝑆: uniform in axis aligned cube.
𝑋 = 𝐴𝑆: uniform in a parallelepiped

• By estimating mean and covariance, can assume it is a rotated 
cube centered at 0.

• To estimate rotation: Enumerate all local minima of directional 4th

moment on unit sphere. 
Theorem: Normals to facets are a complete set of local minima.

𝑋

𝐹 𝑣 = 𝐸 𝑋 ⋅ 𝑣 4



Independent component analysis 
beyond independence
• Simplex learning problem: 

Given uniformly random points 𝑋(1), 𝑋(2), …from a 
simplex in 𝑅𝑛, estimate the simplex.
• An open problem from [Frieze Jerrum Kannan FOCS ‘96]

• Applications to topic modeling [Anandkumar Foster Hsu 
Kakade Liu] [Anandkumar Ge Hsu Kakade Telgarsky]



Simplex learning via ICA
• Idea [Anderson Goyal R. ’13]: 

Use the following transformation.
Theorem: Let 𝑋 be uniformly random in standard simplex. 
Let 𝑌 = 𝑇𝑋, where 𝑇 ∼ 𝐸𝑥𝑝(𝑛) and independent of 𝑋. 
Then 𝑌𝑖 ∼ 𝐸𝑥𝑝(1) and independent.

• This works even after linear transformation!

• 𝑌 has independent coordinates in some basis.
ICA algorithm recovers that basis, which recovers the vertices of the 
simplex.

𝑋 = (𝑋1, 𝑋2)

𝑌 = 𝑇𝑋

𝑌1

𝑌2



Heavy-tailed ICA

• All previously known provably efficient ICA methods 
require at least 4 moments.

• Heavy-tailed distribution ≈ no moments or only a few 
moments exists.

• Heavy-tailed ICA instances appear naturally in speech 
and financial data.

• [Anderson Goyal Nandi R.] 
• Preprocessing: Gaussian damping.

A provably efficient algorithm that works with no moment 
assumption when the unknown matrix 𝐴 is unitary.

• Preprocessing: Gaussian damping + centroid body 
orthogonalization.
A provably efficient algorithm that works assuming finite 1st

moment, for any matrix.



Practical 
implementation: 
Experimental
results
ICA on 10-dimensional 
synthetic data with two-
heavy tailed components. 

“None”: Hyvarinen’s
FastICA, a popular ICA 
algorithm. No proof of 
correctness for heavy tailed 
data.

“Centroid”: our 
preprocessing followed by 
FastICA.

“Exact”: Exact 
orthogonalization followed 
by damping and FastICA



Questions?


