Avoiding the curse of dimensionality: Computational efficiency in high dimensional inference

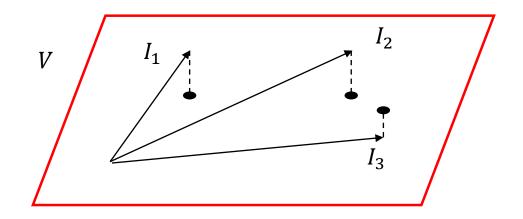
Luis Rademacher

Computer Science and Engineering

The Ohio State University

Inference helps us understand data

- Example: Principal Component Analysis
- Geometrically, given a set of n-dimensional vectors, determine whether there is a k-dimensional subspace such that they are close to it.



Algorithmic lens: Does a model have a provably efficient algorithm?

- Algorithm = Turing machine or similar formalization
- Efficient = polynomial time
 - = polynomial number of steps as a

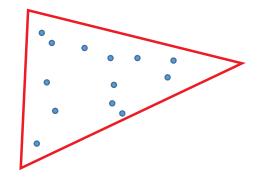
function of problem size.

Example 1: Nash equilibrium

- An example of a superb model without a provably efficient algorithm.
- Given interacting agents, Nash equilibrium is a prediction of how they will act.
- An efficient algorithm is a requisite of a sound model
 - "If your laptop can't find it, then neither can the market..." (Kamal Jain)

Example 2: Simplex learning

- Simplex learning problem [Frieze Jerrum Kannan '96]: Given uniformly random points from a simplex in Rⁿ, estimate the simplex.
- Maximum Likelihood Estimator (MLE): minimum volume simplex containing sample.
- **Theorem:** For MLE to be within constant L_1 distance, $O^*(n^2)$ samples are enough **Proof:** follows from the theory of empirical processes [Vapnik Chervonenkis]
- But finding the minimum volume simplex containing a given set of points is an NPhard problem [Packer]. (No efficient algorithm unless P=NP)



Linear feature extraction

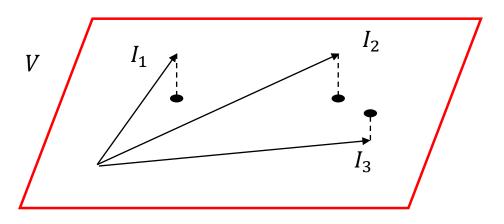
Given *n*-dimensional points, find new coordinates that highlight some structure of the data

- Principal component analysis (PCA) Find a basis of a subspace so that points are close to its span.
- Column subset selection (CSS)
 Find *a few data points* that are a basis of a subspace so that all points are close to its span.
- Independent component analysis (ICA)
 Find a basis so that coordinates of points in
 this basis appear statistically independent.

Part I: Column subset selection

Example: Eigenfaces

- First successful face recognition algorithm.
- Preprocessing: Principal Component Analysis (dimensionality reduction)
 Given set of 100x100 training images (faces I₁, I₂, I₃, ...), interpret as 10000-dimensional vector, find subspace V of low dimension (say 100) that is "close" to given vectors (=faces). Store projections of vectors onto V.



Example: Eigenfaces

- Dimensionality reduction via PCA:
 - Decreases computational cost
 - Highlights relevant features (de-noising).

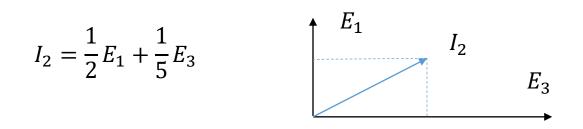


Image credit: AT&T Laboratories Cambridge.

- Numbers are weights in weighted combination of 100 "representative" images in V: singular vectors of data matrix or "Eigenfaces".
- But Eigenfaces are not faces. Can we find actual representative faces as the basis of V and write all faces as linear combinations of a few actual faces?

Formalization:

Column subset selection

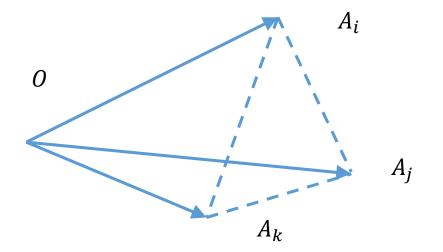
[Golub Businger] [Gu Eisentat] [Boutsidis Mahoney Drineas] [Deshpande R]...

- A refinement of principal component analysis: Given a matrix A of data points as columns,
 - PCA: find k-dim subspace V that minimizes $\|A \pi_V(A)\|_F^2$
 - Subset selection: find V spanned by k columns of A.
 - Seemingly harder, combinatorial flavor.

(π_V projects columns onto V) $||A||_F^2 = \sum_{ij} A_{ij}^2$ (Frobenius norm, corresponds to sum of squared distances in geometric view)

Volume sampling

 Given n-by-m matrix, pick set of k columns at random with probability proportional to squared volume of k-simplex spanned by them and origin. [Deshpande R. Vempala Wang]



CSS via volume sampling

- Theorem: Relative error column subset selection [Deshpande R. Vempala Wang]:
 - S: k-subset of columns according to volume sampling
 - A_k: best rank-k approximation to A in Frobenius norm, given by principal components (or Singular Value Decomposition)
 - π_S : projection of columns onto $columnspan(A_S)$ $\Rightarrow E_S(||A - \pi_S(A)||_F^2) \le (k+1)||A - A_k||_F^2$
- Factor "k + 1" is best possible [DRVW]

Volume sampling: probabilistic method in linear algebra

- Choose a suitable distribution over a set of objects $\omega \in \Omega$.
- Show that in expectation

 a quantity of interest
 X(ω) is small
- Conclude that X(ω) is small for some ω.

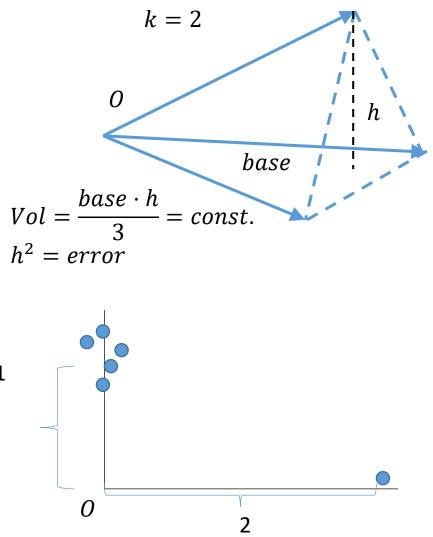
- Volume sampling over *k*-subsets of columns of *A*.
- $E_S(||A \pi_S(A)||_F^2) \le (k+1)||A A_k||_F^2$
- \Rightarrow there exist k columns of A such that $\|A - \pi_S(A)\|_F^2 \le (k+1)\|A - A_k\|_F^2$

Where does volume sampling come from?

 No self-respecting architect leaves the scaffolding in place after completing the building. Gauss?

Where does volume sampling come from?

- Illustrative simple cases:
 - For picking k out of k + 1 points, k with maximum volume is optimal.
 - For picking 1 out of *m*, random according to squared length is better than max. length.
 - For k out of m, this suggest volume sampling.



Where does volume sampling come from?

- Why does the algebra work? Idea:
 - When picking 1 out of *m* random according to squared length, expected error is sum of squares of areas of triangles:

$$E(error) = \sum_{s} \frac{\|A_{s}\|^{2}}{\sum_{t} \|A_{t}\|^{2}} \sum_{i} d(A_{i}, span(A_{s}))^{2}$$
$$= \frac{1}{\sum_{t} \|A_{t}\|^{2}} \sum_{s,i} \|A_{s}\|^{2} d(A_{i}, span(A_{s}))^{2}$$
$$\underbrace{A_{i}}_{A_{s}} d(A_{i}, span A_{s})$$
$$A_{s}$$

• This sum corresponds to certain coefficient of the characteristic polynomial of $A^T A$, which can be computed efficiently.

An example of Valiant's observation? Many algorithms that count efficiently are based on efficient computation of the determinant.

Efficient volume sampling: Key idea [Deshpande R.][Deshpande Kundu R.]

 For every column, compute probability of including it (given past choices) and include it with that probability.
 For 1st column and S according to volume sampling:

$$P(1 \notin S) = \frac{\sum_{S' \subseteq \{2...m\}, |S'|=k} (\operatorname{vol} A_{S'})^2}{\sum_{S' \subseteq \{1...m\}, |S'|=k} (\operatorname{vol} A_{S'})^2}$$
$$= \frac{\sum_{S' \subseteq \{2...m\}, |S'|=k} \det A_{S'}^T A_{S'}}{\sum_{S' \subseteq \{1...m\}, |S'|=k} \det A_{S'}^T A_{S'}} = \frac{c_{m-k} (A_{-1}^T A_{-1})}{c_{m-k} (A^T A)}$$
$$c_i(A) = i^{\text{th}} \text{ coefficient of characteristic polynomial of } A)$$
$$A_{-1} = A \text{ without the first column}$$

• Similar formula for subsequent rows.

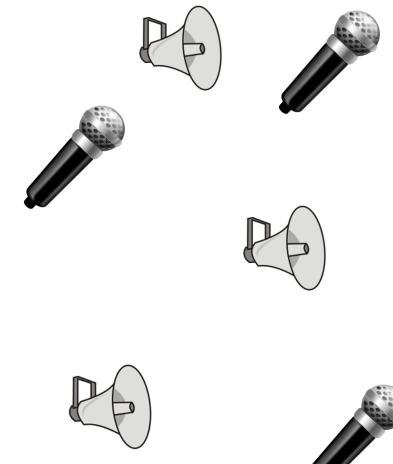
Other applications of volume sampling

- The "Paris Hilton" problem: If Google simply returns top ranked results for "paris hilton", then no results about Hilton hotel in Paris ...
 - [Kulesza Taskar (ICML '11)]
 Volume sampling to select a set of "diverse" data points (large volume ≈ diverse).
- [Guruswami, Sinop (FOCS '11)]
 - Improved approximation algorithms for Quadratic Integer Programs using subset selection for Semidefinite Programming rounding.

Part II: Independent Component Analysis

Cocktail Party Problem (prototypical)

- Problem: n persons speaking in a room with n microphones.
- Microphones capture a superposition of the speech signals.
- Goal: Recover each persons' speech.



Independent Component Analysis (ICA)

- INPUT: samples $X^{(1)}, X^{(2)}, ...$ from random vector X = AS, where:
 - *S* is *d*-dimensional random vector with independent coordinates. Assume 0-mean for simplicity.
 - A is square invertible matrix.
- GOAL: estimate (directions of columns of) A.
- *S*, *A* are not observed. Distribution of *S* is unknown.
- Wanted: provably efficient and accurate algorithms with wide applicability.

Cocktail party problem as ICA

- Source signals (speech) at time t:
 S₁^(t), ..., S_n^(t), assumed to be statistically independent.
- Observed signals: $X_1^{(t)}$, ..., $X_n^{(t)}$, satisfy $X^{(t)} = AS^{(t)}$

(Unknown mixing matrix A encodes geometry of persons and microphones)

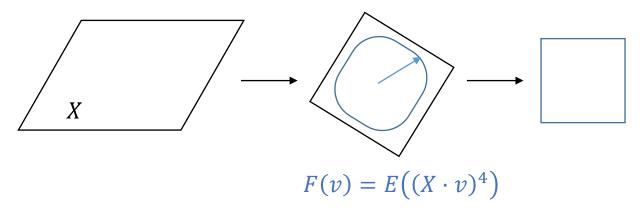
• Estimate A and S from $X_1^{(t)}$, ..., $X_n^{(t)}$.

An ICA algorithm: unexpected usefulness of local optima

[Delfosse-Loubaton SignalProcessing95] [Frieze-Jerrum-Kannan FOCS96] [Hyvarinen IEEE NeuralNets99]

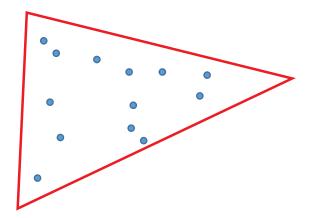
- Illustrative case: Estimate a parallelepiped from uniformly random samples $X^{(1)}, X^{(2)}, \dots$ Model: S: uniform in axis aligned cube. X = AS: uniform in a parallelepiped
- By estimating mean and covariance, can assume it is a rotated cube centered at 0.
- To estimate rotation: Enumerate all local minima of directional 4th moment on unit sphere.

Theorem: Normal's to facets are a complete set of local minima.



Independent component analysis beyond independence

- Simplex learning problem: Given uniformly random points $X^{(1)}, X^{(2)}$, ...from a simplex in \mathbb{R}^n , estimate the simplex.
 - An open problem from [Frieze Jerrum Kannan FOCS '96]
 - Applications to *topic modeling* [Anandkumar Foster Hsu Kakade Liu] [Anandkumar Ge Hsu Kakade Telgarsky]



Simplex learning via ICA

- Idea [Anderson Goyal R. '13]: Use the following transformation.
 Theorem: Let X be uniformly random in standard simplex. Let Y = TX, where T ~ Exp(n) and independent of X. Then Y_i ~ Exp(1) and independent.
- This works even after linear transformation!
- Y has independent coordinates in some basis. ICA algorithm recovers that basis, which recovers the vertices of the simplex.

$$Y_2$$

$$Y = TX$$

$$X = (X_1, X_2)$$

$$Y = TX$$

$$Y_1$$

Heavy-tailed ICA

- All previously known provably efficient ICA methods require at least 4 moments.
- Heavy-tailed distribution \approx no moments or only a few moments exists.
- Heavy-tailed ICA instances appear naturally in speech and financial data.
- [Anderson Goyal Nandi R.]
 - **Preprocessing: Gaussian damping.** A provably efficient algorithm that works with no moment assumption when the unknown matrix *A* is unitary.
 - Preprocessing: Gaussian damping + centroid body orthogonalization.

A provably efficient algorithm that works assuming finite 1st moment, for any matrix.

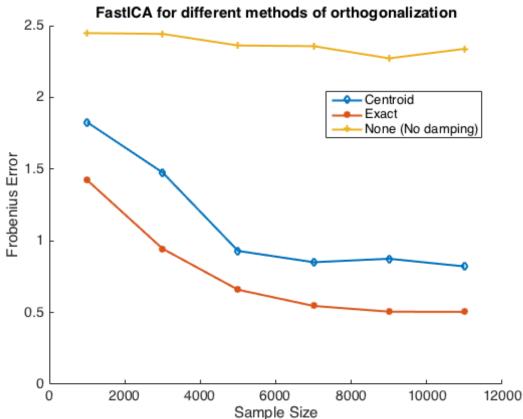
Practical implementation: Experimental results

ICA on 10-dimensional synthetic data with two-heavy tailed components.

"None": Hyvarinen's FastICA, a popular ICA algorithm. No proof of correctness for heavy tailed data.

"Centroid": our preprocessing followed by FastICA.

"Exact": Exact orthogonalization followed by damping and FastICA



Questions?