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Location/shape of data/distribution

• Data 𝑋 1 , 𝑋(2), … , 𝑋 𝑛 ∈ 𝑅𝑑.

• Can be interpreted as iid samples from a distribution or random 
vector (model) 𝑋.

• Location: 
• Mean 𝜇 = 𝐸(𝑋)

• “Shape”:
• Covariance matrix Σ = cov(𝑋) = 𝐸( 𝑋 − 𝜇 𝑋 − 𝜇 𝑇)

• Same for data via empirical distribution (uniform distribution on 
{𝑋 1 , 𝑋(2), … , 𝑋 𝑛 }).



Legendre’s ellipsoid of inertia

• How is covariance = shape?

• Consider Legendre’s ellipsoid of inertia of 𝑋: 
unique ellipsoid with the same covariance 
matrix as 𝑋.

𝑋 The only surviving portrait of 
Legendre



Depth, distance of point to data/distribution

• Mahalanobis distance is norm induced by ellipsoid of inertia. 

𝑑 𝑝, 𝑋 = 𝑝𝑇cov 𝑋 −1𝑝

• Mahalanobis depth: depth(𝑝, 𝑋) =
1

1+𝑑 𝑝,𝑋 2

𝑋



Challenge.

• cov(𝑋) is frequently used in algorithmic statistical analysis of data.

• What if data/distribution is heavy-tailed 
(some moments are undefined)?
What if data seems to follow a distribution with infinite second 
moment?
(𝑘th moment of r.v. 𝑋 is 𝐸 𝑋𝑘 )



Towards more general shapes

• Support function of a convex body 𝐾: 

ℎ𝐾 𝜃 = sup
𝑥∈𝐾

𝑥𝑇𝜃

• Support function of Legendre’s ellipsoid 
(𝐸 𝑋 = 0 case):

ℎ 𝜃 = 𝑐 𝐸( 𝑋𝑇𝜃 2) = 𝑐 𝜃𝑇cov 𝑋 𝜃



Shape if 2nd moment is infinite? 
Centroid body

• Definition (Petty 1961): 
Given random vector 𝑋, the centroid body of 𝑋, 
denoted Γ𝑋, is the convex body with support function

ℎΓ𝑋 𝜃 = 𝐸 𝑋𝑇𝜃 .

centroid body of −1,1 2 centroid body, support function and 
supporting hyperplane at 45⁰ of a rectangle

𝜃



Shape if 2nd moment is infinite? 
Centroid body

• It is not obvious that

ℎΓ𝑋 𝜃 = 𝐸 𝑋𝑇𝜃

is the support function of a convex body. But it is 
obvious given:
Thm: 𝑓: 𝑅𝑛 → 𝑅 is a support function iff 𝑓 is convex
and positively homogeneous.



Without first moment?

• A shape that works for any distribution?



Quantiles

• Median and quantiles are robust against 
noise, outliers, heavy-tails.

• Multi-dimensional analogue?

• Start with quantile function:
𝑄𝑞 𝑋 = 𝐹𝑋

−1 𝑞 ≔ inf 𝑡: 𝑃 𝑋 ≤ 𝑡 ≥ 𝑞 .

• Directional quantile function:
𝜃 ↦ 𝑄𝑞 𝑋𝑇𝜃

𝑄3
4
(𝑋)

𝑋

𝜃

𝑄𝑞(𝑋
𝑇𝜃)



Depth region – Convex Floating body

• [Tukey ‘75] (Halfspace) depth 𝑥 = inf{𝑃 𝐻 : 𝑥 ∈ 𝐻 halfspace}

• Depth region 
[Tukey ‘75] [Donoho Gasko ‘92]

ሩ

𝐻 halfspace, 𝑃 𝐻 >𝑞

𝐻

= {𝑥: depth 𝑥 ≥ 1 − 𝑞}

• (Convex) Floating body 
[Dupin 1822] [Schütt Werner ‘90] [Bárány Larman ‘88]

Φ𝑞𝑋 = ሩ

𝐻 halfspace, 𝑃 𝐻 ≥𝑞

𝐻

= {𝑥: (∀𝜃)𝑥𝑇𝜃 ≤ 𝑄𝑞 𝑋𝑇𝜃 }

• Floating body = depth region when supp(𝑋) is connected.



Why “floating”? 
From mechanics, hydrostatics [Dupin 1822]
• Motivation: Archimedes principle implies 

submerged part of a uniform body floating in a 
fluid is the same fraction in every orientation.

• For 𝑋 uniform in 𝐾, convex floating body Φ𝑞(𝑋)
is the set of points that are submerged in every 
orientation (for 𝑞 determined by density of 𝐾
and fluid).

𝐾

Φ𝑞(𝑋)



Importance of floating body/depth curves

• Given a dataset or distribution
• Estimator of :

• Shape

• Dispersion

• Depth of a point

• Robust
• Defined for any distribution, even heavy-tailed

• No moment assumption

• Difficulty: more complex than an ellipsoid (covariance matrix).



Issue-question: computational efficiency

• Can we answer questions about inertia ellipsoid?
• Yes, given estimate of cov(𝑋): depth, distance, membership.

• Can we answer questions about centroid body or floating body?
• Not clear.

• Basic question (depth and distance reduce to it): 
Membership: given point 𝑥 ∈ 𝑅𝑑 and level 𝑞, is 𝑥 contained in floating body 
Φ𝑞𝑋 = 𝐻ځ halfspace, 𝑃 𝐻 ≥𝑞𝐻?

• Difficulty: representation as intersection of an infinite family of half-
spaces.



Issue-question: computational efficiency

• Determining membership of a point in depth region 
(of a finite dataset) is coNP-complete 
[Johnson Preparata ‘78].

• Many existing works on exact computation, fixed 
dimension, hardness of approximation, 
approximation algorithms.

• How to cope?
• Support function of a convex body 𝐾: 

ℎ𝐾 𝜃 = sup
𝑥∈𝐾

𝑥𝑇𝜃

• If one has efficient evaluation of support function of 
convex body then one can decide membership efficiently.
• Proof: ellipsoid algorithm
• Also true with approximate support function and approximate 

membership.



Ellipsoid algorithm

• Efficient algorithm to solve the following problem:
• Given

• A point 𝑥

• evaluation access to the support function ℎ𝐾 of a convex body 𝐾

• Determine whether 𝑥 ∈ 𝐾.



Is quantile function the support?

⇔Is every 𝑞-quantile hyperplane 
tangent to Φ𝑞𝑋?

⇔ℎΦ𝑞𝑋 𝜃 =
?
𝑄𝑞(𝜃).

• Example: 𝑋 uniform in square: YES.

• Example: 𝑋 uniform in triangle: NO.

• Example: 𝑋 discrete: NO.

Not tangent



Quantile function = support function 
sometimes:
1. Symmetric log-concave distribution 

[Meyer Reisner ‘91] [Ball]. Generalized by 
[Bobkov ‘10]

2. Product distribution with symmetric 𝛼-stable 
coordinates, 𝛼 ≥ 1.
• Floating body Φ𝑞 𝑋 is scaled 𝑙𝛽 ball, 1 =

1

𝛼
+

1

𝛽
.

• Preserved under affine transformation
⇒Affine transformations of (2.).

• Datasets that are iid samples of any of the above 
distributions (approximately, via uniform 
convergence of empirical distribution).



Log-concave distribution

• A distribution with density 𝑓 so that log 𝑓 is concave.

• Includes:
• Gaussian

• Uniform distribution in a convex body.

• Exponential

• Dirichlet …



Stable distribution

• CLT (informal): distribution of normalized sum of iid random variables 
with finite second moment converges to Gaussian distribution. 

• Generalized CLT (informal): distribution of normalized sum of iid 
random variables converges to some stable distribution.

• Formally, symmetric 𝛼-stable distribution is distribution with 
characteristic function 𝜑 𝑡 = 𝑒− 𝑡 𝛼

, 𝛼 ∈ (0,2].
• 2-stable is Gaussian

• 1-stable is Cauchy

• 𝛼-stable with 𝛼 < 2 is heavy-tailed: no moments of order ≥ 𝛼.



Our results

• Sample and time bounds for efficient membership in floating body in 
cases 1. (“log-concave”) and 2. (“stable”).
• Proof idea: 

• Quantile estimation error bounds +

• ellipsoid algorithm + 

• Vapnik–Chervonenkis theory (uniform convergence of empirical distribution)

• Application: Provably efficient ICA (independent component analysis) 
with components that are symmetric 𝛼-stable for 𝛼 ≥ 1.



Our results

• Approximate geometry of product distribution with power-law 
distributed coordinates via GCLT:

• Thm: 𝑋 symmetric r.v. with indep. coordinates with tails 1 − 𝐹 𝑥 ≈
1

𝑥
.

𝑆𝑘 = sum of 𝑘 iid copies of 𝑋. Then
• Floating body of 𝑆𝑘 is close to floating body of product of Cauchy (=1-stable, hypercube).

• Proof: Generalized CLT with rate.

• Application: Provably efficient ICA with components that are 
symmetric power-law distributions (even with infinite first moment).



Proof idea for log-concave case

• Thm: 𝑋 symmetric log-concave r.v. On input 𝑥, 𝑞, 𝜖, 𝛿, can 𝜖-
weak decide whether 𝑥 ∈ Φ𝑞(𝑋) in time 
𝑝𝑜𝑙𝑦(𝑑,

1

1−𝑞
,

1

𝜎𝑚𝑖𝑛 Σ
, 𝜎𝑚𝑎𝑥 Σ ,

1

𝜖
, log

1

𝛿
).

• VC-theory implies: Let 𝑋 be random vector, let 𝑌 follow empirical 
distribution of sample 𝑋 1 , 𝑋(2), … , 𝑋 𝑁 . Then for 𝑁 ≥

𝑐

𝜖2
ቀ

ቁ

𝑑 log
𝑑

𝜖
+

log
1

𝛿
:

𝑃 sup
𝐻 halfspace

𝜇𝑌 𝐻 − 𝜇𝑋 𝐻 < 𝜖 ≥ 1 − 𝛿.

• This implies quantile function 𝑄𝑞 𝑌 of sample close to 𝑄𝑞 𝑋 : 
For 

𝑁 ≥
𝑐

𝜖2 1 − 𝑞 2
𝑑 log

𝑑

𝜖(1 − 𝑞)
+ log

1

𝛿

and 𝑋 symmetric logconcave with cov 𝑋 = 𝐼 we have

𝑃 sup
𝜃∈𝑆𝑑−1

|𝑄𝑞 𝑌𝑇𝜃 − 𝑄𝑞 𝑋𝑇𝜃 | ≤ 𝜖 ≥ 1 − 𝛿.
𝜇𝑌 𝐻 = 𝑃 𝑌 ∈ 𝐻

=
#{𝑋 1 , 𝑋 2 , … , 𝑋 𝑁 } ∩ 𝐻

𝑁

𝐻

𝑋(𝑖)



Conclusion

• If dataset follows “good” distribution, then halfspace depth and 
membership in floating body is efficient.
• If dataset is just “a set of points”, then depth is NP-hard

• If dataset is a sample from a symmetric logconcave distribution (say), then 
approximate depth is efficient (whp).

• Open questions:
• For which distributions is quantile function 𝑄𝑞(𝜃) the support function of 

floating body Φ𝑞𝑋?

• Ellipsoid algorithm is not practical. Practically efficient algorithm?


