Efficiency of the floating body as a robust measure of dispersion

Luis Rademacher

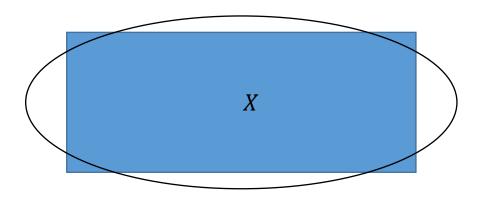
UC Davis, March 2019 Joint work with Joseph Anderson, Navin Goyal, Anupama Nandi

Location/shape of data/distribution

- Data $X^{(1)}, X^{(2)}, ..., X^{(n)} \in \mathbb{R}^d$.
- Can be interpreted as iid samples from a distribution or random vector (model) *X*.
- Location:
 - Mean $\mu = E(X)$
- "Shape":
 - Covariance matrix $\Sigma = \operatorname{cov}(X) = E((X \mu)(X \mu)^T)$
- Same for data via empirical distribution (uniform distribution on $\{X^{(1)}, X^{(2)}, \dots, X^{(n)}\}$).

Legendre's ellipsoid of inertia

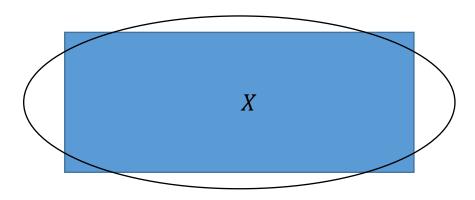
- How is covariance = shape?
- Consider Legendre's ellipsoid of inertia of X: unique ellipsoid with the same covariance matrix as X.



The only surviving portrait of Legendre

Depth, distance of point to data/distribution

• Mahalanobis distance is norm induced by ellipsoid of inertia. $d(p,X) = \sqrt{p^T \operatorname{cov}(X)^{-1} p}$ • Mahalanobis depth: depth(p,X) = $\frac{1}{1+d(p,X)^2}$



Challenge.

- cov(X) is frequently used in algorithmic statistical analysis of data.
- What if data/distribution is heavy-tailed (some moments are undefined)? What if data seems to follow a distribution with infinite second moment?

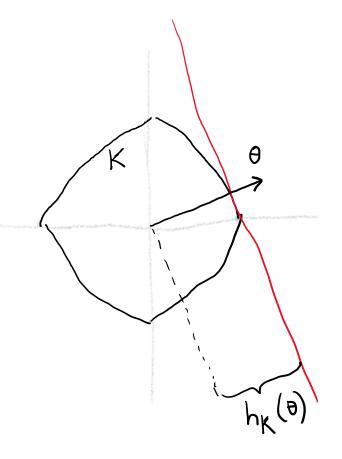
(kth moment of r.v. X is $E(X^k)$)

Towards more general shapes

• Support function of a convex body *K*:

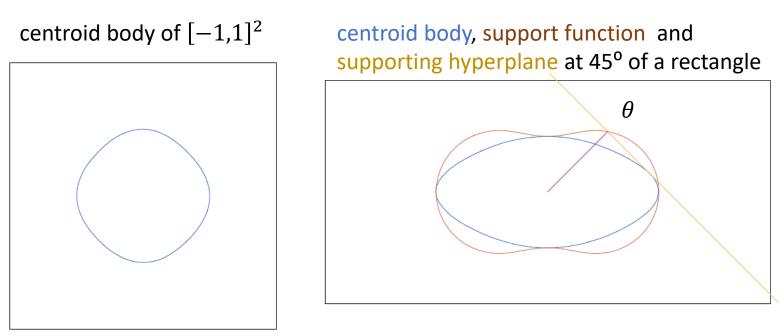
$$h_K(\theta) = \sup_{x \in K} x^T \theta$$

• Support function of Legendre's ellipsoid (E(X) = 0 case): $h(\theta) = c\sqrt{E((X^T\theta)^2)} = c\sqrt{\theta^T \text{cov}(X)\theta}$



Shape if 2nd moment is infinite? Centroid body

• **Definition** (Petty 1961): Given random vector X, the centroid body of X, denoted ΓX , is the convex body with support function $h_{\Gamma X}(\theta) = E(|X^T \theta|).$



Shape if 2nd moment is infinite? Centroid body

• It is not obvious that

$$h_{\Gamma X}(\theta) = E(|X^T \theta|)$$

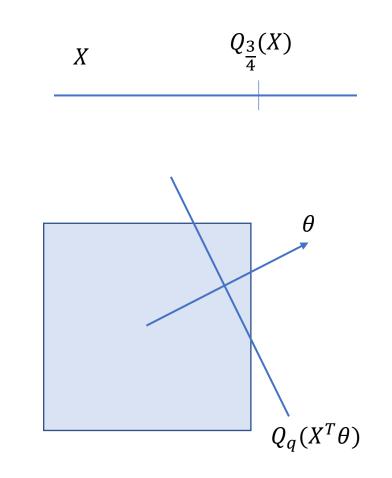
is the support function of a convex body. But it is obvious given: **Thm**: $f: \mathbb{R}^n \to \mathbb{R}$ is a support function iff f is **convex** and **positively homogeneous**.

Without first moment?

• A shape that works for any distribution?

Quantiles

- Median and quantiles are robust against noise, outliers, heavy-tails.
- Multi-dimensional analogue?
- Start with **quantile function**: $Q_q(X) = F_X^{-1}(q) \coloneqq \inf\{t: P(X \le t) \ge q\}.$
- Directional quantile function: $\theta \mapsto Q_q(X^T \theta)$



Depth region – Convex Floating body

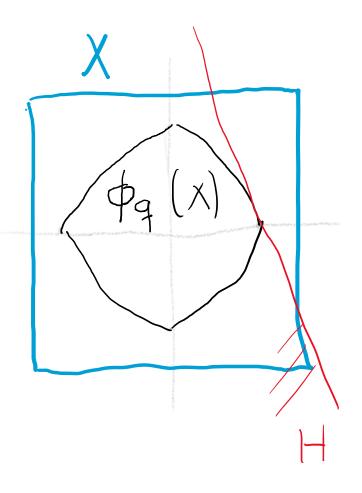
- [Tukey '75] (Halfspace) depth(x) = inf{P(H): $x \in H$ halfspace}
- Depth region [Tukey '75] [Donoho Gasko '92]

$$\bigcap_{\substack{H \text{ halfspace, } P(H) > q}} H$$
$$= \{x: \operatorname{depth}(x) \ge 1 - q\}$$

• (Convex) Floating body [Dupin 1822] [Schütt Werner '90] [Bárány Larman '88] $\Phi_a X = \prod_{i=1}^{n} H$

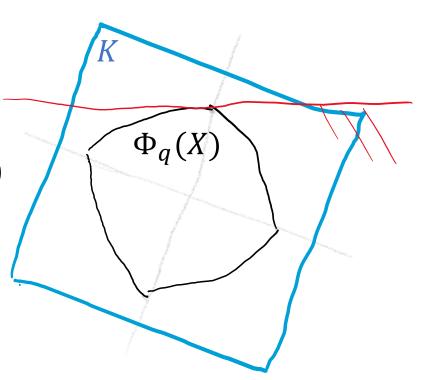
$$\frac{1}{P_{H}} = \begin{cases} H \text{ halfspace, } P(H) \ge q \\ = \{x : (\forall \theta) x^{T} \theta \le Q_{q}(X^{T} \theta)\} \end{cases}$$

• Floating body = depth region when supp(X) is connected.



Why "floating"? From mechanics, hydrostatics [Dupin 1822]

- Motivation: Archimedes principle implies submerged part of a uniform body floating in a fluid is the same fraction in every orientation.
- For X uniform in K, convex floating body $\Phi_q(X)$ is the set of points that are submerged in every orientation (for q determined by density of K and fluid).



Importance of floating body/depth curves

- Given a dataset or distribution
 - Estimator of :
 - Shape
 - Dispersion
 - Depth of a point
 - Robust
 - Defined for any distribution, even heavy-tailed
 - No moment assumption
 - Difficulty: more complex than an ellipsoid (covariance matrix).

Issue-question: computational efficiency

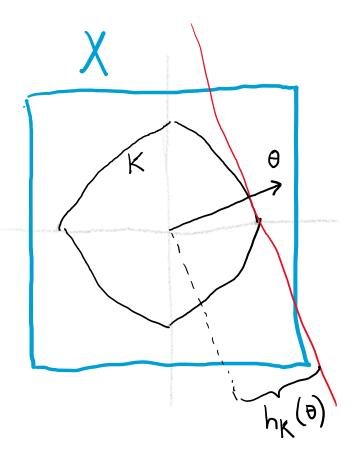
- Can we answer questions about inertia ellipsoid?
 - Yes, given estimate of cov(X): depth, distance, membership.
- Can we answer questions about centroid body or floating body?
 - Not clear.
 - Basic question (depth and distance reduce to it): **Membership**: given point $x \in R^d$ and level q, is x contained in floating body $\Phi_q X = \bigcap_{H \text{ halfspace}, P(H) \ge q} H$?
- Difficulty: representation as intersection of an **infinite** family of half-spaces.

Issue-question: computational efficiency

- Determining membership of a point in depth region (of a finite dataset) is coNP-complete [Johnson Preparata '78].
- Many existing works on exact computation, fixed dimension, hardness of approximation, approximation algorithms.
- How to cope?
 - Support function of a convex body *K*:

$$h_K(\theta) = \sup_{x \in K} x^T \theta$$

- If one has efficient evaluation of support function of convex body then one can decide membership efficiently.
 - Proof: ellipsoid algorithm
 - Also true with approximate support function and approximate membership.



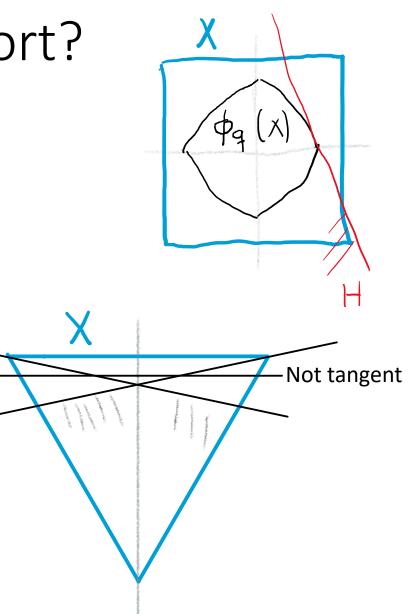
Ellipsoid algorithm

- Efficient algorithm to solve the following problem:
 - Given
 - A point *x*
 - evaluation access to the support function h_K of a convex body K
 - Determine whether $x \in K$.

Is quantile function the support?

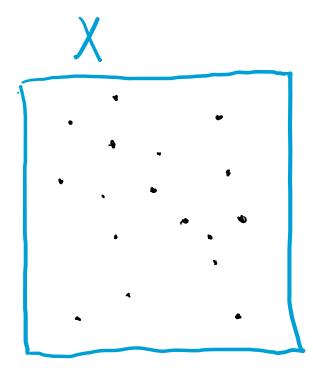
 $\Leftrightarrow \text{Is every } q \text{-quantile hyperplane} \\ \text{tangent to } \Phi_q X ? \\ \Leftrightarrow h_{\Phi_q X}(\theta) \stackrel{?}{=} Q_q(\theta).$

- Example: X uniform in square: YES.
- Example: X uniform in triangle: NO.
- Example: X discrete: NO.



Quantile function = support function sometimes:

- Symmetric log-concave distribution [Meyer Reisner '91] [Ball]. Generalized by [Bobkov '10]
- 2. Product distribution with symmetric α -stable coordinates, $\alpha \ge 1$.
 - Floating body $\Phi_q(X)$ is scaled l_β ball, $1 = \frac{1}{\alpha} + \frac{1}{\beta}$.
- Preserved under affine transformation ⇒Affine transformations of (2.).
- Datasets that are iid samples of any of the above distributions (approximately, via uniform convergence of empirical distribution).



Log-concave distribution

- A distribution with density *f* so that log *f* is concave.
- Includes:
 - Gaussian
 - Uniform distribution in a convex body.
 - Exponential
 - Dirichlet ...

Stable distribution

- CLT (informal): distribution of normalized sum of iid random variables with **finite second moment** converges to **Gaussian distribution**.
- Generalized CLT (informal): distribution of normalized sum of iid random variables converges to some **stable distribution**.
- Formally, symmetric α -stable distribution is distribution with characteristic function $\varphi(t) = e^{-|t|^{\alpha}}$, $\alpha \in (0,2]$.
 - 2-stable is Gaussian
 - 1-stable is Cauchy
 - α -stable with $\alpha < 2$ is heavy-tailed: no moments of order $\geq \alpha$.

Our results

- Sample and time bounds for efficient membership in floating body in cases 1. ("log-concave") and 2. ("stable").
 - Proof idea:
 - Quantile estimation error bounds +
 - ellipsoid algorithm +
 - Vapnik–Chervonenkis theory (uniform convergence of empirical distribution)
- Application: Provably efficient ICA (independent component analysis) with components that are symmetric α -stable for $\alpha \ge 1$.

Our results

- Approximate geometry of product distribution with power-law distributed coordinates via GCLT:
 - Thm: X symmetric r.v. with indep. coordinates with tails $1 F(x) \approx \frac{1}{x}$. $S_k = \text{sum of } k \text{ iid copies of } X$. Then
 - Floating body of S_k is close to floating body of product of Cauchy (=1-stable, hypercube).
 - Proof: Generalized CLT with rate.
- Application: Provably efficient ICA with components that are symmetric power-law distributions (even with infinite first moment).

Proof idea for log-concave case

- Thm: X symmetric log-concave r.v. On input x, q, ϵ, δ , can ϵ -weak decide whether $x \in \Phi_q(X)$ in time $poly(d, \frac{1}{1-q}, \frac{1}{\sigma_{min}(\Sigma)}, \sigma_{max}(\Sigma), \frac{1}{\epsilon}, \log \frac{1}{\delta})$.
 - VC-theory implies: Let X be random vector, let Y follow empirical distribution of sample $X^{(1)}, X^{(2)}, ..., X^{(N)}$. Then for $N \ge \frac{c}{\epsilon^2} \left(d \log \frac{d}{\epsilon} + \log \frac{1}{\delta} \right)$:

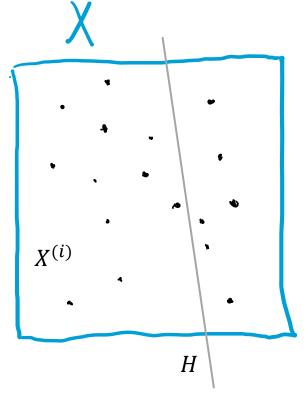
$$P\left(\sup_{H \text{ halfspace}} |\mu_Y(H) - \mu_X(H)| < \epsilon\right) \ge 1 - \delta.$$

• This implies quantile function $Q_q(Y)$ of sample close to $Q_q(X)$: For

$$N \ge \frac{c}{\epsilon^2 (1-q)^2} \left(d \log \frac{d}{\epsilon (1-q)} + \log \frac{1}{\delta} \right)$$

and X symmetric logconcave with cov(X) = I we have

$$P\left(\sup_{\theta\in S^{d-1}}|Q_q(Y^T\theta)-Q_q(X^T\theta)|\leq\epsilon\right)\geq 1-\delta.$$



$$\mu_Y(H) = P(Y \in H)$$

= $\frac{\#\{X^{(1)}, X^{(2)}, \dots, X^{(N)}\} \cap H}{N}$

Conclusion

- If dataset follows "good" distribution, then halfspace depth and membership in floating body is efficient.
 - If dataset is just "a set of points", then depth is NP-hard
 - If dataset is a sample from a symmetric logconcave distribution (say), then approximate depth is efficient (whp).
- Open questions:
 - For which distributions is quantile function $Q_q(\theta)$ the support function of floating body $\Phi_q X$?
 - Ellipsoid algorithm is not practical. Practically efficient algorithm?