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Location/shape of data/distribution

* Data XD, x®@ . x(™ e R4,
* Can be interpreted as iid samples from a distribution or random
vector (model) X.
* Location:
* Mean u = E(X)
* “Shape”:
e Covariance matrixX = cov(X) = E((X — )X — )b
e Same for data via empirical distribution (uniform distribution on
{X(l),X(z), ,X(")}).



Legendre’s ellipsoid of inertia

* How is covariance = shape?

* Consider Legendre’s ellipsoid of inertia of X:
unique ellipsoid with the same covariance
matrix as X.

The only surviving portrait of
Legendre




Depth, distance of point to data/distribution

* Mahalanobis distance is norm induced by ellipsoid of inertia.
d(p,X) = y/pTcov(X)~1p

* Mahalanobis depth: depth(p, X) = 1+d(1p X)2




Challenge.

* cov(X) is frequently used in algorithmic statistical analysis of data.

* What if data/distribution is heavy-tailed
(some moments are undefined)?
What if data seems to follow a distribution with infinite second
moment?

(kth moment of rv. X is E(X*))



Towards more general shapes

e Support function of a convex body K:

he(0) =supx’6

XEK

e Support function of Legendre’s ellipsoid
(E(X) = 0 case):

h(0) = c\/E((XTH)Z) = c\/HTcov(X)H




Shape if 2" moment is infinite?
Centroid body

 Definition (Petty 1961):
Given random vector X, the centroid body of X,
denoted I'X, is the convex body with support function

hFX(Q) — E(|XT9|)-

centroid body of [—1,1]? centroid body, support function and
at 45° of a rectangle




Shape if 2" moment is infinite?
Centroid body

* [t is not obvious that
hFX(H) — E(|XT3|)

is the support function of a convex body. But it is

obvious given:
Thm: f: R"™ = R is a support function iff f is convex

and positively homogeneous.



Without first moment?

* A shape that works for any distribution?



Quantiles

 Median and quantiles are robust against
noise, outliers, heavy-tails. |

* Multi-dimensional analogue?
 Start with quantile function: \

Q,(X) =Fxt (@) =inf{t: P(X < t) = q}. X/H

* Directional quantile function:
6~ Q,(X"0)

Qq(X"0)



Depth region — Convex Floating body

* [Tukey ‘75] (Halfspace) depth(x) = inf{P(H): x € H halfspace}
e Depth region
[Tukey ‘75] [Donoho Gasko ‘92]

H
H halfspace, P(H)>q
= {x:depth(x) =1 —q}

* (Convex) Floating body
Dupin 1822] [Schiitt Werner ‘90] [Barany Larman ‘88]

O X = ﬂ H

H halfspace, P(H)=q
= {x: (VO)xTO < Qq(XTH)}

* Floating body = depth region when supp(X) is connected.




Why “tloating”?
From mechanics, hydrostatics [Dupin 1822]

* Motivation: Archimedes principle implies
submerged part of a uniform body floating in a

fluid is the same fraction in every orientation. o0
* For X uniform in K, convex floating body @, (X) !

is the set of points that are submerged in every

orientation (for g determined by density of K
and fluid). | /




Importance of floating body/depth curves

e Given a dataset or distribution

e Estimator of :
* Shape
* Dispersion
* Depth of a point
* Robust
* Defined for any distribution, even heavy-tailed
* No moment assumption

 Difficulty: more complex than an ellipsoid (covariance matrix).



Issue-question: computational efficiency

e Can we answer questions about inertia ellipsoid?
* Yes, given estimate of cov(X): depth, distance, membership.

* Can we answer questions about centroid body or floating body?
* Not clear.

» Basic question (depth and distance reduce to it):
Membership: given point x € R and level q, is x contained in floating body

CDCIX — nH halfspace, P(H)=q H?
e Difficulty: representation as intersection of an infinite family of half-
spaces.



Issue-question: computational efficiency

* Determining membership of a point in depth region
of a finite dataset) is coNP-complete
Johnson Preparata ‘78].

* Many existing works on exact computation, fixed
dimension, hardness of approximation,
approximation algorithms.

* How to cope?
e Support function of a convex body K:

h(8) = supx’0
. XEK .
* If one has efficient evaluation of support function of
convex body then one can decide membership efficiently.
* Proof: ellipsoid algorithm

* Also true with approximate support function and approximate
membership.

!

X




Ellipsoid algorithm

e Efficient algorithm to solve the following problem:
* Given
* Apoint x
 evaluation access to the support function hy of a convex body K
* Determine whether x € K.



s quantile function the support? X

-
| Qo
Sls every g-quantile hyperplane
tangent to &, X? \
? e
< hCDqX(H) — Qq (9) 7/|—|

* Example: X uniform in square: YES. X

i —— mangent

 Example: X uniform in triangle: NO.

* Example: X discrete: NO.



Quantile function = support function
sometimes:

1. Symmetric log-concave distribution

[Meyer Reisner ‘91] [Ball]. Generalized by —
[Bobkov ‘10] \

2. Product distribution with symmetric a-stable
coordinates, a = 1.

* Floating body @, (X) is scaled [ ball, 1 ==+

RIr

‘%.Ir—\

* Preserved under affine transformation
=Affine transformations of (2.).

e Datasets that are iid samples of any of the above
distributions (approximately, via uniform
convergence of empirical distribution).




Log-concave distribution

* A distribution with density f so that log f is concave.

* Includes:
* Gaussian
* Uniform distribution in a convex body.
* Exponential
* Dirichlet ...



Stable distribution

e CLT (informal): distribution of normalized sum of iid random variables
with finite second moment converges to Gaussian distribution.

e Generalized CLT (informal): distribution of normalized sum of iid
random variables converges to some stable distribution.

* Formally, symmetric a-stable distribution is distribution with
characteristic function ¢(t) = e~ ItI%, & € (0,2].
e 2-stable is Gaussian
e 1-stable is Cauchy
e a-stable with @ < 2 is heavy-tailed: no moments of order > «.



Our results

* Sample and time bounds for efficient membership in floating body in
cases 1. (“log-concave”) and 2. (“stable”).
* Proof idea:
* Quantile estimation error bounds +
 ellipsoid algorithm +
* Vapnik—Chervonenkis theory (uniform convergence of empirical distribution)

* Application: Provably efficient ICA (independent component analysis)
with components that are symmetric a-stable fora = 1.



Our results

* Approximate geometry of product distribution with power-law
distributed coordinates via GCLT:

* Thm: X symmetric r.v. with indep. coordinates with tails 1 — F(x) = i .

S, = sum of k iid copies of X. Then
* Floating body of Sj, is close to floating body of product of Cauchy (=1-stable, hypercube).
* Proof: Generalized CLT with rate.

* Application: Provably efficient ICA with components that are
symmetric power-law distributions (even with infinite first moment).



Proof idea for log-concave case

* Thm: X symmetric log- concave rv. Oninput x, g, €, &, can €-
weak decide whcfther x € Zq) )f in t|me
(

1
poly(d,— o ,log )

e VC-theory |mpI|es Let X be random vector let Y follow em |r|caI
distribution of sample XV, x@ . x(N) Then for N > (d log +

log 6).

P( sup |uy(H) — ux(H)| < E) >1-9.
H halfspace

* This implies quantile function Q,(Y) of sample close to Q, (X):

For c 1
(1 - q>2< cd—q o8 )

and X symmetric logconcave with cov(X) = I we have

P( sup 1Q,(YT0) — Q,(X70)| < E) >1-34.
fesd-1

Gm ax

N =

d log




Conclusion

* If dataset follows “good” distribution, then halfspace depth and
membership in floating body is efficient.
* |f dataset is just “a set of points”, then depth is NP-hard
* If dataset is a sample from a symmetric logconcave distribution (say), then
approximate depth is efficient (whp).
* Open questions:
* For which distributions is quantile function @, (6) the support function of
floating body @, X7
* Ellipsoid algorithm is not practical. Practically efficient algorithm?



