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ON THE MONOTONICITY OF THE EXPECTED VOLUME
OF A RANDOM SIMPLEX

LUIS RADEMACHER

Abstract. Consider a random simplex in a d-dimensional convex body which
is the convex hull of d + 1 random points from the body. We study the following
question: as a function of the convex body, is the expected volume of such a random
simplex monotone non-decreasing under inclusion? We show that this is true when
d is 1 or 2, but does not hold for d ≥ 4. We also prove similar results for higher
moments of the volume of a random simplex, in particular for the second moment,
which corresponds to the determinant of the covariance matrix of the convex body.
These questions are motivated by the slicing conjecture.

§1. Introduction. For a d-dimensional convex body K , let VK denote the
(random) volume of the convex hull of d + 1 independent random points in K .
In [13], Meckes asked whether for any pair of convex bodies K , L ⊆ Rd ,

K ⊆ L implies E(VK )≤ E(VL).

His “strong conjecture” claims that this is true. He also posed the following
“weak conjecture”: there exists a universal constant c > 0 such that

K ⊆ L implies E(VK )≤ cd E(VL).

Clearly, the strong conjecture implies the weak conjecture. Meckes also
wondered about natural generalizations to more than d + 1 points, random
polytopes, and higher moments. Later, Reitzner discussed the problem in [18]
and [19, §2.2.1]; he asked whether K ⊆ L implies

EX0,...,Xn∈K (vol conv X0, . . . , Xn)≤ EX0,...,Xn∈L(vol conv X0, . . . , Xn)

for arbitrary n.
While these are natural questions in understanding random polytopes, one

of their motivations arises from their connection with the slicing conjecture
(also known as the hyperplane conjecture or slicing problem), which says
that all d-dimensional convex bodies of volume 1 have a hyperplane section
of (d − 1)-dimensional volume greater than or equal to a universal positive
constant. Meckes’s weak conjecture is equivalent to the slicing conjecture
(see Appendix A). The slicing problem was apparently mentioned for the first
time by Bourgain [4], and some equivalent formulations were discussed by
Ball in [2]. Milman and Pajor [15] studied the problem systematically. It is
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one of the outstanding open problems in asymptotic convex geometry, and has
attracted great interest because of its connections with some classical problems in
convexity, such as the Busemann–Petty problem and Sylvester’s problem [7, 15].

In this paper we show that Meckes’s strong conjecture has a negative answer
if d ≥ 4 and a positive answer if d is 1 or 2. More precisely, we prove the
following theorem.

THEOREM 1 (Random simplex). If d is 1 or 2, and K and L are two
d-dimensional convex bodies, then K ⊆ L implies

E(VK )≤ E(VL).

If d ≥ 4, then there exist two convex bodies K ⊆ L ⊆ Rd such that

E(VK ) > E(VL).

For the case of d = 3, numerical integration suggests that the same
counterexample used for d ≥ 4 should work for d = 3. However, the proof for
higher d uses certain approximations for the integrals, which fail for d = 3; exact
evaluation of the integrals might work but seems somewhat involved and is left
as an open question.

From the proof of Theorem 1 one can infer the following counterexample:
in d dimensions, let L be the convex hull of a half-ball (the unit ball with the
constraint x1 ≥ 0, say) and a point at distance ε > 0 from the center of the ball
(the point (−ε, 0, . . . , 0), say). In other words, L is the union of a half-ball and
a cone. Let K be L with the tip of the cone truncated at distance δ > 0 (say,
K = L ∩ {x : x1 ≥−ε + δ}). Then the proof of Theorem 1 shows that the pair
K and L constitutes a counterexample to the monotonicity for d ≥ 4 and ε, δ
sufficiently small. Numerical integration suggests the same for d = 3.

The same counterexample and analysis work for higher moments and all
dimensions greater than one (it is easy to see that for d = 1 the monotonicity
holds for all moments). More precisely, we show the following.

THEOREM 2 (Higher moments). If d is 2 or 3, then there exist an integer
k0 ≥ 1 and two convex bodies K ⊆ L ⊆ Rd such that for any integer k ≥ k0 we
have

E(V k
K ) > E(V k

L ).

If d ≥ 4, then there exist two convex bodies K ⊆ L ⊆ Rd such that for any integer
k ≥ 1 we have

E(V k
K ) > E(V k

L ).

The intuition for our answer to Meckes’s question came from our solution
to a simpler but related question posed by Vempala: is the determinant of the
covariance matrix of a convex body monotone under inclusion? (The covariance
matrix A(·) is defined in §2.) We answer Vempala’s question by proving the
following theorem.

THEOREM 3 (Determinant of covariance). If d is 1 or 2 and K and L are
two d-dimensional convex bodies, then K ⊆ L implies det A(K )≤ det A(L). If
d ≥ 3, then there exist two convex bodies K ⊆ L ⊆ Rd such that det A(K ) >
det A(L).
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Vempala’s question was also motivated by the slicing conjecture. As we shall
show in Appendix A, the following weaker version of Theorem 3 is equivalent
to the slicing conjecture: there exists a universal constant c1 > 0 such that for
any pair of convex bodies K , M ⊆ Rd we have

K ⊆ M H⇒ det A(K )≤ cd
1 det A(M).

The high-level idea of the proof of Theorem 3 is as follows: to understand
the monotonicity, it suffices to compute and understand the derivative of det A(·)
as one intersects the convex body with a moving half-space (Proposition 15).
We then find conditions under which this derivative always has the right sign
(Lemma 11 and the proof of Theorem 3). In the proof of Theorem 3 we show
that understanding such a derivative is enough.

The following formula explains the connection between the determinant of
the covariance matrix and the expected volume of a random simplex.

LEMMA 4. Let K be a d-dimensional convex body, let X1, . . . , Xd be
random in K , and let µ(K ) := EX1 be the centroid of K . Then

det A(K ) = d! EX i∈K ((vol conv µ(K ), X1, . . . , Xd)
2)

=
d!

d + 1
E(V 2

K ). (1)

The first equality is known and easy to verify; see, for instance, [7,
Proposition 1.3.3]. The second equality is a slight extension; see §3 for a proof.

In view of equation (1), one would think that if a pair of convex bodies
provides an example that the monotonicity of det A(·) does not hold, then it
will also be such an example for the functional

K 7→ E(VK ).

Given these similarities, it should come as no surprise that techniques and
examples similar to those used for det A(·) also work for the expected volume of
a random simplex and higher moments.

To prove Theorem 1, we use a special case of Crofton’s theorem†; see [21,
Ch. 5] or [11, Ch. 2]. Our special case is Proposition 16, which we prove here
for completeness, partly because the proof of this version is elementary and
partly because the formula was originally given as an informal statement
rather than a theorem. Crofton’s theorem has been formalized at least twice,
once with differential geometry [1] and on another occasion with conditional
probability [6]. It is likely that by using either of these two versions one could
prove Theorem 1 in a simpler but less elementary way.

§2. Preliminaries. Let K ⊆ Rd be a convex body, and let X0, . . . , Xd be
random points in K . Let vol(·) be the d-dimensional volume function and volk(·)
the k-dimensional volume function. Let VK denote the random variable VK =

vol(conv(X0, . . . , Xd)). Suppose that X is random in K . Let µ(K ) denote the

† Crofton’s theorem is sometimes called Crofton’s differential equation; it gives an expression for
the derivative of a symmetric function of random points from a domain as the domain is perturbed.
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centroid of K : µ(K )= E(X). Let A(K ) be the covariance matrix of K :

A(K )= E((X − µ(K ))(X − µ(K ))T .

We say that K is isotropic if and only if µ(K )= 0 and A(K ) is the identity
matrix. It is easy to see that any convex body can be made isotropic by applying
an affine transformation to it.

Given K and a hyperplane H , the Steiner symmetrization of K with respect
to H is the convex body that results from the following process: for every line
L orthogonal to H such that the segment L ∩ K is non-empty, shift the segment
along L so that its midpoint lies in H . Similarly, given K and a half-space H ,
Blaschke’s shaking (Schüttelung) of K with respect to H is the convex body that
results from the following process: for every line L orthogonal to H such that
the segment L ∩ K is non-empty, shift the segment along L so that one endpoint
lies on the boundary of H while the whole segment stays inside H (see [17] for a
discussion). If a given hyperplane H does not intersect the interior of K , then we
define Blaschke’s shaking of K with respect to H as the shaking defined before
with respect to the half-space containing K and having H as boundary.

If we have a function f defined on an interval [a, b], whenever we write the
derivative of f at a we mean (implicitly) the one-sided derivative.

We will need the following known results.

THEOREM 5 (Blaschke [20, §8.2.3, Note 1]). For any two-dimensional
convex body K we have

E(VK )

vol(K )
≤

1
12
,

with equality if and only if K is a triangle.

THEOREM 6 (Blaschke–Groemer [20, Theorem 8.6.3]). Let k ≥ 1 be an
integer. Among all d-dimensional convex bodies,

K 7→
E(V k

K )

vol(K )k

is minimized if and only if K is an ellipsoid.

Let Bd be the d-dimensional unit ball and let Sd−1 be the boundary of Bd .
Let κd := vol(Bd)= π

d/2/0(1+ d/2) and ωd := vold−1(Sd−1)= dκd .

THEOREM 7 (Random simplex in ball; see [14] or [20, Theorem 8.2.3]). For
any integer k ≥ 1,

E(V k
Bd
)=

1
(d!)k

(
κd+k

κd

)d+1
κd(d+k+1)

κ(d+1)(d+k)

ω1 · · · ωk

ωd+1 · · · ωd+k
.

THEOREM 8 (Simplex with origin in ball; see [14] or [20, Theorem 8.2.2]).
For any integer k ≥ 1,

EX i∈Bd ((vol conv 0, X1, . . . , Xd)
k)=

1
(d!)k

(
κd+k

κd

)d
ω1 · · · ωk

ωd+1 · · · ωd+k
.
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LEMMA 9 (Busemann random simplex inequality; see [5] or [20, Theo-
rem 8.6.1]). Among all d-dimensional convex bodies,

K 7→
EX i∈K (vol conv(0, X1, . . . , Xd))

vol(K )

is minimized if and only if K is an ellipsoid centered at the origin. The minimum
value is

1
d!

(
κd

d+1

κd+1
d

)
2

ωd+1
.

LEMMA 10 (Ball volume ratio [3, p. 455]).√
d

2π
≤
κd−1

κd
≤

√
d + 1

2π
.

Proof. The convexity of log 0(x) implies that

(x + α − 1)α ≤
0(x + α)

0(x)
≤ xα for α ∈ (0, 1) and x ≥ 1.

The desired inequality follows. 2

§3. Proofs.

3.1. Proof of Theorem 3. We will prove Theorem 3 first. Most of the work
lies in proving the following dimension-dependent condition.

LEMMA 11. Monotonicity under inclusion of K 7→det A(K ) holds for
some dimension d if and only if for any isotropic convex body K ⊆ Rd we have
√

d Bd ⊆ K .

Proof. For the “if” part, suppose for a contradiction that K , L ⊆ Rd are two
convex bodies for which the monotonicity does not hold, i.e. K ⊆ L but

det A(K ) > det A(L).

By the continuity of det A(·) and the density of polytopes, we can assume
without loss of generality that K is a polytope satisfying the same properties.
Let m be the number of facets of K . Label the facets of K arbitrarily with
labels 1, . . . , m. Let Fi ⊆ Rd , i = 0, . . . , m, be the following non-increasing
sequence of convex bodies: F0 = L , Fm = K , and Fi = Fi−1 ∩ Hi where Hi is
the unique half-space containing K and containing facet i of K in its boundary.
Then there exists i such that the pair Fi , Fi−1 is also a counterexample to the
monotonicity. Let v be the unit outer normal to facet i of K . Consider the path
from Fi−1 to Fi induced by pushing Hi in; formally, the path is given by

F(t)= Fi−1 ∩ H(t) for t ∈ [a, b],

where H(t)= {x ∈ Rd
: v · x ≤ t}, a = supx∈Fi−1

v · x and b = supx∈Fi
v · x .

The function t 7→det A(F(t)) is continuous in [a, b] and differentiable in (a, b),
and the lack of monotonicity implies that there exists t̄ ∈ (a, b) such that its
derivative is positive at t̄ . Now, even though this derivative is not invariant under
non-singular affine transformations, its sign is invariant. Thus, we can assume
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without loss of generality that Ft̄ is in isotropic position, and Proposition 15 then
tells us that

EX∈St̄ (‖X‖
2) < d

where St̄ = Ft̄ ∩ bdry H(t̄). In particular, there exists x ∈ St̄ such that ‖x‖<
√

d , which implies
√

d Bd * Ft̄ .
For the “only if” part, suppose that there is an isotropic convex body K ⊆ Rd

and a point x ∈ bdry K such that ‖x‖<
√

d . By continuity and an approximation
argument we can, without loss of generality, replace K and x so that x is an
extreme point of K while still satisfying ‖x‖<

√
d and isotropy†. Let v ∈

Rd
\{0} and a < 0 determine a half-space H = {x ∈ Rn

: v · x ≥ a} containing
K whose boundary intersects K only at x . Let Ht = {x ∈ Rn

: v · x ≥ t}. Let L t
be the convex body K ∩ Ht . Then by continuity, Proposition 15 and the fact that
‖x‖< d , we have that there exists ε > 0 such that for all t ∈ (a, a + ε),

d

dt
det A(L t ) > 0.

This implies that det A(K ) < det A(La+ε) while La+ε ⊆ K . 2

Proof of Theorem 3. The assertions follow immediately from Lemma 11
and the fact that any d-dimensional isotropic convex body contains the ball
of radius

√
(d + 2)/d centered at the origin and that this is best possible; see

[15, 22] and [10, Theorem 4.1]. 2

3.2. Proof of Theorems 1 and 2. We will now prove Theorems 1 and 2. We
begin with a dimension-dependent condition similar to that in Lemma 11.

LEMMA 12. For a given integer k ≥ 1 and dimension d, monotonicity
under inclusion of

K 7→ E(V k
K )

holds as K ranges over d-dimensional convex bodies if and only if for any convex
body K ⊆ Rd , any x ∈ bdry K and any X1, . . . , Xd random in K we have

E(V k
K )≤ E((vol conv x, X1, . . . , Xd)

k). (2)

Proof. The proof is essentially the same as the proof of Lemma 11, with
Proposition 15 replaced by Proposition 16, q = d + 1 and

f (x0, . . . , xd)= (vol conv x0, . . . , xd)
k,

and without using isotropy. 2

Next, we verify the dimension-dependent condition for k = 1 in R2 by means
of the following lemma (which gives a lower bound on the right-hand side
of (2)) and Blaschke’s maximality of the triangle for Sylvester’s problem, i.e.
Theorem 5 (which gives an upper bound for the left-hand side).

† For example, add a point xα = αx for α > 1 and take the convex hull between K and xα to get
a convex body Kα . We have that xα is an extreme point of Kα . For some α sufficiently close to 1
and Tα = A(Kα)−1/2, we have that TαKα is isotropic and ‖Tαxα‖< d .
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LEMMA 13. Let K ⊆ R2 be a convex body and let x ∈ bdry K . Then

EX1,X2∈K (vol conv x, X1, X2)

vol K
≥

8

9π2 . (3)

Proof. The continuity and affine-invariance of the left-hand side of (3) and a
standard compactness argument imply existence of a minimum K and x .

To prove the inequality, we will show with a series of symmetrizations that
half of a ball centered at x minimizes the left-hand side. The intuition needed to
understand the effect of Steiner symmetrization and Blaschke’s shaking (see §2
for a brief review) is the following [17, §3]: if one picks three points at random
from three vertical segments in the plane that are allowed to move vertically (one
point from each segment), then the expected area of the convex hull of those three
points is a strictly increasing function of the area of the triangle formed by the
midpoints of the segments. This implies, for instance, that Steiner symmetriza-
tion decreases the expected area of a random triangle: the area of the triangle
formed by the midpoints is zero when the midpoints lie on a common line.

Here is the sequence of symmetrizations.
(1) Steiner symmetrization. Let L be any supporting line of K through x .

Let L⊥ be a line orthogonal to L through x . Let K̄ be the Steiner
symmetrization of K with respect to L⊥. If K̄ 6= K , then K̄ has a strictly
smaller value than K in the left-hand side of (3); see [9, Lemma 4] or [5].

(2) Blaschke’s shaking (Schüttelung) with respect to L. Take each chord of K̄
perpendicular to L and shift it in the direction orthogonal to L so that its
endpoint nearest to L lies on L . The union of the shifted chords is a convex
body that we denote by ¯̄K . Lemma 14 shows that this operation can only
decrease the value of the left-hand side of (3), so we now know that the set
of pairs that are invariant under the previous step and this step contains a
minimizer. Denote by S the family of pairs satisfying such an invariance.

(3) The left-hand side of (3) just halves if one replaces ¯̄K by its symmetrization
around x , and this symmetrization is a centrally symmetric convex body
given the previous two steps. Thus,

inf
(K ,x)∈S

EK (vol conv x, X1, X2)

vol K
≥ 2 inf

K ′

EK ′(vol conv 0, X1, X2)

vol K ′
, (4)

where K ′ ranges over all centrally symmetric convex bodies. Lemma 9
implies that ellipses are the only minimizers of the right-hand side of (4)
and, as half of an ellipse around the origin together with the origin form a
pair in S , we conclude that half of a disk centered at x is a minimizer.

To get the right-hand side in (3), we just need to evaluate the left-hand side for
x = 0 and K being one half of the unit disk. For the numerator, the symmetry of
the problem implies that the average for a half-disk and the origin is the same as
the average for the disk and the origin. Thus, Theorem 8 implies that

E(vol conv x, X1, X2)=
4

9π
,

while the denominator in (3) is the area of a half-disk, π/2. 2
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We believe that half of an ellipse centered at x is the only kind of minimizer
possible.

Proof of Theorem 1. For the first part (d ≤ 2), the assertion is clearly true
for d = 1. For d = 2, Theorem 5 (Blaschke’s maximality of the triangle for
Sylvester’s problem) and Lemmas 12 and 13 imply the desired conclusion.

The second part (d ≥ 4) is a special case of Theorem 2. 2

Numerical experiments suggest that a simplex and the center point of a facet
should work as a counterexample for the monotonicity as in Theorem 1 in R3,
and it should work in higher dimensions. Similar numerical experiments indicate
that half of the unit ball and the origin also constitute a counterexample in R3.

Proof of Theorem 2. Let K be the half-ball with xd ≥ 0.
For L being the ball of volume vol(K ), Theorem 6 implies that

E(V k
K )≥ E(V k

L ).

Theorem 7 implies that

E(V k
L )=

1
2k E(V k

Bd
)

=
1

2k(d!)k

(
κd+k

κd

)d+1
κd(d+k+1)

κ(d+1)(d+k)

ω1 · · · ωk

ωd+1 · · · ωd+k
.

On the other hand, symmetry and Theorem 8 imply that

EX i∈K ((vol conv 0, X1, . . . , Xd)
k)= EX i∈Bd ((vol conv 0, X1, . . . , Xd)

k)

=
1

(d!)k

(
κd+k

κd

)d
ω1 · · · ωk

ωd+1 · · · ωd+k
.

Upon combining the previous claims, we get

EX i∈K ((vol conv 0, X1, . . . , Xd)
k)

E(V k
K )

≤ 2k κd

κd+k

κ(d+1)(d+k)

κd(d+k+1)
. (5)

When d is 2 or 3, a tedious but straightforward use of Stirling’s formula shows
that (5) goes to 0 as k tends to infinity. Lemma 12 completes the argument in
this case.

If d ≥ 4, Lemma 10 and inequality (5) give

EX i∈K ((vol conv 0, X1, . . . , Xd)
k)

E(V k
K )

≤ 2k
(

(d + 2) · · · (d + k + 1)
(d(d + k + 1)+ 1) · · · (d(d + k + 1)+ k)

)1/2

≤ 2k
(

d + k + 1
d(d + k + 1)+ k

)k/2

(where we have used the inequality a/b ≤ (a + 1)/(b + 1)whenever 0≤ a ≤ b),
and this is less than 1 for any k ≥ 1. Lemma 12 completes the argument. 2
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LEMMA 14. Let K ⊆ R2 be a convex body, let x ∈ bdry K , and let L be a
supporting line of K at x. Assume, in addition, that K is symmetric about the
line through x orthogonal to L. Let K̄ be Blaschke’s shaking of K with respect
to L. Then

EX i∈K (vol conv x, X1, X2)≥ EX i∈K̄ (vol conv x, X1, X2). (6)

Proof. Without loss of generality, translate and rotate everything so that x is
at the origin and L is the “x” axis. Let t > 0 be half of the width of K along the
x axis. For any u ∈ [−t, t], define functions α(u) and l(u) so that the vertical
chords of K have the form {u} × [α(u), α(u)+ l(u)] (i.e. α is the “bottom” of
the chord and l is its length). We have

EX i∈K (vol conv 0, X1, X2)

=
1

2(vol K )2

∫ t

−t

∫ t

0

∫ l1(u1)

0

∫ l2(u2)

0

∣∣∣∣det
(

u1 α(u1)+ v1
u2 α(u2)+ v2

)∣∣∣∣
+

∣∣∣∣det
(
−u1 α(u1)+ v1

u2 α(u2)+ v2

)∣∣∣∣ dv2 dv1 du2 du1.

Let f (α1, α2) denote the integrand for fixed values of the integration variables:

f (α1, α2)=

∣∣∣∣det
(

u1 α1 + v1
u2 α2 + v2

)∣∣∣∣+ ∣∣∣∣det
(
−u1 α1 + v1

u2 α2 + v2

)∣∣∣∣.
The function f is clearly convex. Moreover,

f (α1, α2)= f (−α1 − 2v1, α2) = f (α1,−α2 − 2v2)

= f (−α1 − 2v1,−α2 − 2v2).

So, for λi = αi/2(αi + vi ) and by using convexity, we have

f (α1, α2)

= (1− λ1)(1− λ2) f (α1, α2)+ (1− λ1)λ2 f (α1,−α2 − 2v2)

+ λ1(1− λ2) f (−α1 − 2v1, α2)

+ λ1λ2 f (−α1 − 2v1,−α2 − 2v2)

≥ f (0, 0).

Plugging this into our integral gives

EX i∈K (vol conv 0, X1, X2)

≥
1

2(vol K )2

∫ t

−t

∫ t

0

∫ l1(u1)

0

∫ l2(u2)

0

∣∣∣∣det
(

u1 v1
u2 v2

)∣∣∣∣
+

∣∣∣∣det
(
−u1 v1

u2 v2

)∣∣∣∣ dv2 dv1 du2 du1

= EX i∈K̄ (vol conv 0, X1, X2). 2

3.3. Crofton’s formula and relatives.

PROPOSITION 15 (Derivative of det A(K )). Let K ⊆ Rd be an isotropic
convex body. Let v ∈ Rd be a unit vector. Let a = infx∈K v · x, b = supx∈K v · x
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and Ht = {x ∈ Rd
: v · x ≥ t}. Let Kt = K ∩ Ht and St = K ∩ bdry Ht . Then

d

dt
det A(Kt )

∣∣∣∣
t=a
= (d − EX∈Sa (‖X‖

2))
vold−1 Sa

vol K
.

Proof. We have

A(Kt )= EX∈Kt ((X − µ(Kt ))(X − µ(Kt ))
T )

= EX∈Kt (X X T )− µ(Kt )µ(Kt )
T .

By isotropy, µ(K )= 0, and this implies that
d

dt
A(Kt )

∣∣∣∣
t=a
=

d

dt
EX∈Kt (X X T )

∣∣∣∣
t=a
. (7)

We then use the identity
d

d M
det M = (M−1)T det M

to deduce that
d

dt
det A(Kt )=

d

d M
det M

∣∣∣∣
M=A(Kt )

·
d

dt
A(Kt )

= det(A(Kt ))(A(Kt )
−1)T ·

d

dt
A(Kt ),

where the dot “ · ” represents the Frobenius inner product of matrices, M · N =∑
i j Mi j Ni j . This, together with isotropy and (7), gives

d

dt
det A(Kt )

∣∣∣∣
t=a
= I ·

d

dt
EX∈Kt (X X T )

∣∣∣∣
t=a

=
d

dt
EX∈Kt (‖X‖

2)

∣∣∣∣
t=a
.

To conclude, evaluate the following at t = a, using isotropy in the second step:

d

dt
EX∈Kt (‖X‖

2)=
d

dt

1
vol Kt

∫ b

t
EX∈Sα (‖X‖

2) vold−1(Sα) dα

=
vold−1(St )

vol Kt
(EX∈Kt (‖X‖

2)− EX∈St (‖X‖
2)). 2

We say that f :U q
→ V is symmetric if and only if for any permutation π

of {1, . . . , q} and any x ∈U q we have f (x)= f (xπ(1), . . . , xπ(q)).

PROPOSITION 16 (General derivative, Crofton). Let K ⊆ Rd be a convex
body. Let v ∈ Rd be a unit vector. Let a = infx∈K v · x and b = supx∈K v · x,
and let Ht = {x ∈ Rd

: v · x ≥ t}. Let Kt = K ∩ Ht and St = K ∩ bdry Ht .
Let f : (Rd)

q
→ R be a symmetric continuous function. Let X1, . . . , Xq be

independent random points in K . Then
d

dt
E f (X1, . . . , Xq)

∣∣∣∣
t=a

= q(E f (X1, . . . , Xq)− E( f (X1, . . . , Xq) | X1 ∈ Sa))
vold−1 Sa

vol K
.
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(A slightly different proof should work under the weaker assumption that f
is bounded and measurable but not necessarily continuous.)

Proof. Use repeatedly the identity

d

dt

∫ b

t
u(x, t) dx =−u(t, t)+

∫ b

t

d

dt
u(x, t) dx

and the symmetry of f to get

d

dt

∫
K q

t

f (x) dx

∣∣∣∣
t=a

=
d

dt

∫
[t,b]q

∫
Sα1×···×Sαq

f (x) dx dα

∣∣∣∣
t=a

=−q
∫
[a,b]q−1

∫
Sa

∫
Sα2×···×Sαq

f (x) dxq · · · dx2 dx1 dαq · · · dα2. (8)

Now,

d

dt
EX i∈Kt( f (X1, . . . , Xq))

∣∣∣∣
t=a

=
d

dt

1
(vol Kt )q

∫
K q

t

f (x) dx

∣∣∣∣
t=a

=
1

(vol Kt )2q

(
(vol Kt )

q
[

d

dt

∫
K q

t

f (x) dx

]
+ q(vol Kt )

q−1 vold−1(St )

∫
K q

t

f (x) dx

)∣∣∣∣
t=a

=
vold−1(Sa)

vol K

(
1

(vol K )q−1 vold−1(Sa)

[
d

dt

∫
K q

t

f (x) dx

]
t=a

+
q

(vol K )q

∫
K q

f (x) dx

)
.

To conclude, use (8) and interpret the integrals as expectations. 2

3.4. Proof of Lemma 4. If Y is a random d-dimensional vector with second
moments and Y1, . . . , Yd are identically distributed independent copies of Y ,
then the following identity is known and easy to verify by expanding the
determinant:

det EY Y T
=

1
d!

E((det Y1, . . . , Yd)
2). (9)

The first identity in the lemma follows immediately from this. To get the second
identity, i.e. equation (1), let X0 be random in K and consider

VK =
1
d!
|det(X1 − X0, . . . , Xd − X0)|

=
1
d!

∣∣∣∣det
(

X0 · · · Xd
1 · · · 1

)∣∣∣∣.
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Taking the expectation of the squares and using equation (9) gives

E(V 2
K )=

d + 1
d!

det
(

EX X T µ(K )
µ(K )T 1

)
.

The left-hand side is invariant under translation of K , so the right-hand side must
be as well, and without loss of generality we can assume µ(K )= 0. Equation (1)
follows.

§4. Discussion. Finally, we list a few open questions related to this work.

(1) Random polytopes. As mentioned in the introduction, Meckes and Reitzner
asked about monotonicity of the expected volume of a random polytope
with n vertices, not just a random simplex as in this paper. It is easy to see
that given d-dimensional convex bodies K and L with K ⊂ L there exists
n0 = n0(K , L) such that for n ≥ n0 we have

EX0,...,Xn∈K vol conv X0, . . . , Xn ≤ EX0,...,Xn∈L vol conv X0, . . . , Xn.

Can one choose n0 so that it may depend on d but is independent of K
and L?

(2) Three-dimensional case. For Meckes’s strong conjecture, find an easy
argument to disprove it for d = 3.

(3) Slicing conjecture. Understand Meckes’s weak conjecture.
(4) Sylvester’s problem. Show that among all d-dimensional convex bodies,

K 7→
EX i∈K (vol conv(X0, . . . , Xd))

vol(K )

is maximized if K is a simplex. (This is known to imply the slicing
conjecture [7].)

Acknowledgements. The author would like to thank Daniel Dadush, Navin
Goyal, Mark Meckes and Santosh Vempala for suggesting some of these
questions and for helpful discussions.

A. Appendix. For completeness, we prove here the equivalence between
the slicing conjecture, Meckes’s weak conjecture and Vempala’s question.
Slight variations of the following argument have been put forth by Meckes
(personal communication) and, later, independently by Vempala and Dadush
(personal communication). The main ingredients are Klartag’s [12] answer to
the isomorphic slicing problem and a Khinchine-type inequality (reverse Hölder
inequality) [16, Appendix III].

It is known (see [2] or [7, §1.5]) that the slicing conjecture as stated in the
introduction (in terms of hyperplane sections) is equivalent to the existence of
a universal upper bound on the isotropic constant of a convex body, which is
defined as follows: given a convex body K ⊆ Rd , the isotropic constant L K of
K is given by

L2d
K =

det A(K )

(vol K )2
. (A1)
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CONJECTURE A.1 (Slicing conjecture). There exists a universal constant
c3 > 0 such that for any d and any convex body K ⊆ Rd we have L K ≤ c3.

We now state Klartag’s result from [12]. For a pair of convex bodies
K , M ⊆ Rd , define the Banach–Mazur distance to be

dBM(K , M) := inf
{
a ≥ 1 : K ⊆ T (M)⊆ aK ,

T : Rd
→ Rd is a non-singular affine transformation

}
.

THEOREM A.2 (Isomorphic slicing problem [12]). There exists c > 0 such
that if K ⊆ Rd is a convex body and ε > 0, then there is a convex body M ⊆ Rd

such that:
• dBM(K , M) < 1+ ε;
• L M < c/

√
ε.

Here is the Khinchine-type inequality that we need.

LEMMA A.3 ([16, Appendix III], [7, §2.1] or [8, p. 717]). There exists a
constant c > 0 such that if f : Rd

→ R+ is a semi-norm, K ⊆ Rd is a convex
body and 1≤ p <∞, then

1
vol K

∫
K

f (x) dx ≤

(
1

vol K

∫
K

f (x)p dx

)1/p

≤
cp

vol K

∫
K

f (x) dx .

The following proposition states the desired equivalences between the slicing
conjecture and the monotonicity questions.

PROPOSITION A.4. For any 1≤ p <∞, the following statements are
equivalent.

(1) (Vempala’s question.) There exists c1 > 0 such that for any pair of convex
bodies K , M ⊆ Rd we have

K ⊆ M H⇒ det A(K )≤ cd
1 det A(M).

(2) (Meckes’s weak conjecture for the pth moment.) There exists c2 > 0 such
that for any pair of convex bodies K , M ⊆ Rd we have

K ⊆ M H⇒ E(V p
K )≤ cd

2 E(V p
M ).

(3) (The slicing conjecture.) Conjecture A.1.

Proof. (3)H⇒ (1): Let K , M ⊆ Rd be convex bodies such that K ⊆ M .
Then, by using equations (1) and (A1), we have

EV 2
K

(vol K )2
=

d + 1
d!

det A(K )

(vol K )2
=

d + 1
d!

L2d
K , (A2)

and a similar equality can be obtained for M .
It is known that the isotropic constant has a universal lower bound c > 0

over all dimensions and all convex bodies [2, 4, 15]. This, together with our
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assumption, implies that c ≤ L M , L K ≤ c3; that is (using equation (A2)),

EV 2
K

(vol K )2
≤

d + 1
d!

c2d
3

and
d + 1

d!
c2d
≤

EV 2
M

(vol M)2
.

In conjunction with the fact that vol K ≤ vol M , this gives

E(V 2
K )≤

(
c3

c

)2d

E(V 2
M ).

(1)H⇒ (3): The positive solution to the isomorphic slicing problem
(Theorem A.2) with ε = 1 implies that there exists a constant c > 0 such that for
any convex body K ⊆ Rd there exists another convex body M ⊆ Rd satisfying
dBM(K , M)≤ 2 and L M ≤ c. Consider an arbitrary convex body K ⊆ Rd and
let M be the convex body given by Theorem A.2. As the isotropic constants
L K , L M and det A(·) are invariant under affine transformations, we can assume
without loss of generality that K ⊆ M ⊆ 2K . This and (A1) imply that

L2d
K =

det A(K )

(vol K )2
≤ 22d cd

1 det A(M)

(vol M)2
≤ (2c

√
c1)

2d .

(1)⇐⇒ (2): This is an easy consequence of our Khinchine-type inequality
(Lemma A.3) and equation (A2): iterated use of Lemma A.3 implies that

EVK ≤ (E(V
p

K ))
1/p
≤ cd+1 pd+1 EVK ,

and the claimed equivalence follows. 2
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