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Abstract
Given a finite set of points S ⊂ R

d , a k-set of S is a subset A ⊂ S of size k which can
be strictly separated from S \ A by a hyperplane. Similarly, a k-facet of a point set S
in general position is a subset Δ ⊂ S of size d such that the hyperplane spanned by
Δ has k points from S on one side. For a probability distribution P on R

d , we study
EP (k, n), the expected number of k-facets of a sample of n random points from P .
When P is a distribution on R2 such that the measure of every line is 0, we show that
EP (k, n) = O(n(k + 1)1/4). Our argument is based on a technique by Bárány and
Steiger. We study how it may be possible to improve this bound using the continuous
version of the polynomial partitioning theorem. This motivates a question concerning
the points of intersection of an algebraic curve and the k-edge graph of a set of points.
We also study a variation on the k-set problem for the set system whose set of ranges
consists of all translations of some strictly convex body in the plane. The motivation
is to show that the technique by Bárány and Steiger is tight for a natural family of set
systems. For any such set system, we determine bounds for the expected number of
k-sets which are tight up to logarithmic factors.
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1 Introduction

Let S be a finite set of points in R
d . A subset A of S of size k is a k-set of S if there

exists an affine hyperplane which strictly separates A from S \ A. We use ad(k, n) to
denote the maximal number of k-sets over all configurations of n points in R

d . The
k-set problem asks one to determine the asymptotic behavior of ad(k, n).

The k-set problem in the plane was first raised byA. Simmons in unpublished work.
Straus, also in unpublished work, gave a construction showing an Ω(n log n) lower
bound. Lovász [17] published the first paper on k-sets, establishing an O(n3/2) upper
bound. See also the paper [8] of Erdős et al. Despite the efforts of many, the k-set
problem is still not well understood even in the plane. The best known bounds are
a2(k, n) = neΩ(

√
log k) [21, 26, 27] and a2(k, n) = O(n(k + 1)1/3) [5, 6]. See [29]

for an overview of results in higher dimensions.
When studying the k-set problem, one usually only considers point sets which are

in general position.

Definition 1.1 A set of at least d + 1 points in R
d is in general linear position if no

d + 1 (and thus, fewer) points are affinely dependent.

When we say general position, we always mean general linear position. This reduction
is justified by the observation that the maximum number of k-sets is attained by a set
of points in general position (see for example [29]). For point sets in general position,
one can study the closely related concept of k-facets.

Let S be a set of n points in general position in R
d . A subset Δ ⊂ S of size d is a

k-facet of S if the open halfspace on one side of aff Δ contains exactly k points from S.
We use ed(k, n) to denote the maximal number of k-facets over all configurations of
n points in general position in R

d . It can be shown that for fixed d, the functions
ed(k, n) and ad(k, n) have the same asymptotic behavior [29]. In this paper, it is more
convenient for us toworkwith k-facets. Furthermore, ourmain results are for the planar
version of the k-facet problem. In the plane, k-facets are also known as k-edges.

It is widely believed that the true value of e2(k, n) is closer to the best known lower
bound than to the best known upper bound. Indeed, Erdős et al. conjectured in [8] that
e2(k, n) = O(n1+ε) for any ε > 0. Some support for this conjecture is provided by
the results one can obtain for the probabilistic version of the k-facet problem which
was originally studied by Bárány and Steiger in [2]. Given a probability distribution
P on R

d , what is the expected number EP (k, n) of k-facets of X , a sample of n
independent random points from P? Recall that the k-facet problem is only defined
for point sets in general position. For this reason, in all of our results concerning
EP (k, n), our attention is restricted to distributions P such that the measure of every
hyperplane is 0. This is the minimal assumption on distributions P which guarantees
that a sample of points from P is in general position with probability 1. We refer to
the original k-facet problem as the deterministic version. By the probabilistic version
of the k-facet problem, we mean the question of the value of EP (k, n).

Bárány and Steiger showed in [2] that EP (k, n) = O(nd−1) if P is spherically
symmetric.Also, if P is the uniformdistribution on a convex body inR2, they show that
EP (k, n) = O(n). Similar sorts of bounds were obtained in [3, 4]: Clarkson showed
in [4] that EP (k, n) = O(nd−1) if P is a coordinate-wise independent distribution. A
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result of Chiu et al. [3, Thm. 3] improves the bound obtained by Bárány and Steiger
when P is a specific type of spherically symmetric distribution. These results give
some evidence that the conjecture of Erdős et al. that e2(k, n) = O(n1+ε) for any
ε > 0 (and the extension to higher dimensions, i.e., ed(k, n) = O(nd−1+ε) for any
ε > 0) may be true.

However,whenone considersmore general probability distributions, the asymptotic
behavior of the expected number of k-edges becomes more difficult to determine. In
fact, as noted in [29, Sect. 4.2], there is some reason to believe that the probabilistic
version of the k-facet problem may be more or less the same as the original: Circa
publication of Bárány and Steiger’s paper [2], the best known lower bound for the
deterministic k-facet problem in R

2 was ed((n − 2)/2, n) = Ω(n log n) [8]. Using
the construction in [8], Bárány and Steiger construct a probability distribution P with
EP ((n − 2)/2, n) = Ω(n log n). The Ω(n log n) lower bound for the deterministic
k-facet problem was improved to ed((n − 2)/2, n) = neΩ(

√
log n) in [27]. As noted in

[29], it is possible to use the construction in [27] to construct a distribution P ′ with
EP ′((n − 2)/2, n) = neΩ(

√
log n). See [29] for some more details.

Main Results

Our main results are summarized below, and described in more detail in the rest of the
introduction.

Expected number of kkk-edges. For any Borel probability P on R
2 such that the

measure of every line is 0, we show that the expected number of k-edges EP (k, n)

of a sample of n points is O(n(k + 1)1/4) (Theorem 1.3). This is an improvement
to the best known bound for the maximum number of k-edges of an n point set in
the plane which is the O(n(k + 1)1/3) by Dey [5, 6].

Translations of a fixed convex body in the plane. We study a natural variation on
the k-set problem where the separating curves are translations of the boundary
of some strictly convex body in the plane instead of lines as in the original k-set
problem. Let C ⊂ R

2 be some strictly convex body. For a set S ⊂ R
2 of n points,

a TC -k-set of S is a subset T ⊂ S of size k such that there exists a translation of
C which contains T in its interior and contains no point in S \ T (Definition 4.1).
For certain distributions on R

2, we show that the expected number of TC -k-sets
of a sample of n random points is Θ̃(n3/2) (where ˜ means that polylogarithmic
factors are ignored) (Theorems 4.10 and 4.19).

1.1 Expected Number of k-Edges

Bárány and Steiger studied the expected number of k-facets using an integral formula
for EP (k, n). We also use the formula in the proofs of our main results so we describe
it here. Let X1, . . . , Xd be d random points drawn from P . The assumption that the
measure of every hyperplane is zero implies that aff (X1, . . . , Xd) is a hyperplane with
probability 1. The same assumption implies that hyperplane aff (X1, . . . , Xd) does not
contain a line parallel to the dth standard basis vector ed with probability 1. Therefore,
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choosing the direction of ed as the “up” direction, we can use aff (X1, . . . , Xd)
+ to

denote the open half space above aff (X1, . . . , Xd), i.e., in the direction of ed . Similarly,
we use aff (X1, . . . , Xd)

− to denote the open half space below aff (X1, . . . , Xd), i.e.,
in the direction of −ed . Define

GP (t) = P
(
P (aff (X1, . . . , Xd)

+) ≤ t
)
.

Then given a sample X of n random points from P , the expected number of k-facets
of X is

EP (k, n) =
∑

F∈(Xd)
P

(
aff(F)+ or aff(F)− contains exactly k points of X

)

= 2

(
n

d

)(
n − d

k

) 1∫

0

tk(1 − t)n−d−k dGP (t). (1.1)

First, we observe that (1.1) can be used to immediately obtain the following upper
bound for the expected number of ((n−d)/2)-facets of a sample of n points from any1

probability distribution on R
d . The bound is much weaker than the bounds obtained

by Bárány and Steiger for special cases of the distribution, but it is still non-trivial and
also applies to all distributions (not only the spherically symmetric ones).

Theorem 1.2 If P is a Borel probability distribution on R
d such that the measure of

any hyperplane is zero, then EP ((n − d)/2, n) = O(nd−1/2) (where the constants in
big-O depend only on d).

Proof From (1.1) and Stirling’s approximation,

EP

(
n − d

2
, n

)
= 2

(
n

d

)(
n − d

(n − d)/2

) 1∫

0

t (n−d)/2(1 − t)(n−d)/2 dGP (t)

≤ 2

(
n

d

)(
n − d

(n − d)/2

)
1

2n−d
= O(nd−1/2).

(1.2)

(The above inequality holds because ta(1 − t)b is maximized when t = a/(a + b) if
a, b �= 0.) �	
In Sect. 2we use theweak bound in the proof of Theorem 1.2 combinedwith a partition
of the plane to show an improved bound for the expected number of k-edges:

Theorem 1.3 Let P be a Borel probability distribution on R
2 such that the measure

of every line is zero. Then EP (k, n) ≤ 10n(k + 1)1/4.

1 Recall we assume that hyperplanes have measure 0. In all our results we also restrict to Borel measures.
The Borel assumption guarantees that every open halfspace is measurable which is necessary for (1.1) (and,
in particular, the definition of GP (t)) to make sense. In fact the assumption that P is Borel is the minimal
assumption that guarantees that all halfspaces are measurable because the collection of open halfspaces
generates the Borel sigma algebra on Rd .
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The proof of Theorem 1.3 is in Sect. 2.2. In Sect. 2.1, we review the definition of the k-
edge graph (Definition 2.1) and state some results needed for the proof of Theorem 1.3.
In particular, we explain how the k-edge graph can be decomposed into convex chains.
The proof of Theorem 1.3 also uses a divide and conquer approach where the plane is
partitioned into cells by vertical lines.

Section 3 outlines how it may be possible to improve the bound in Theorem 1.3 by
partitioning the plane with algebraic curves rather than vertical lines. The existence
of algebraic curves which partition the plane in a useful way is a consequence of
the continuous version of the polynomial partitioning theorem of [11] (Theorem 3.5).
Whether or not using algebraic curves rather than lines leads to an improvement in the
bound depends on a question we leave open (Question 3.1) which asks for a bound on
the maximum number of times that an algebraic curve of degree r can intersect the
k-edge graph of a set of n points. We show that this quantity is O(nr2) but, as far as
the authors know, it may be possible to improve this bound, see Sect. 5.

1.2 Tightness of the Argument in Theorem 1.2: Translations of a Fixed Shape

In Sect. 4, we show that the two-step argument in the proof of Theorem 1.2 ((1.1) and
the general upper bound of the integrand in (1.2)) is not as loose as it seems, if one
applies it to the k-set problem on a set system other than half-planes (generalized in a
natural way). More precisely, let C ⊆ R

2 be the interior of a fixed convex body. We
consider the set system of translations of C and study the expected number of ways
in which one can enclose k points out of a given finite set of points using translations
of C . Our variations of k-sets and k-edges for this problem are called TC -k-sets and
TC -k-edges (Definition 4.1). In addition, we show some deterministic bounds to put
our probabilistic bounds in context.

For the case where C is strictly convex, we show:

– A relation between TC -k-sets and TC -k-edges that allows one to derive upper
bounds on the number of TC -k-sets from upper bounds on the number of TC -k-
edges (Lemma 4.6).

– For certain natural distributions, the expected number of TC -k-sets and TC -k-edges
for a random set of n points and some k proportional to n is Θ̃(n3/2) (Theorems
4.10 and 4.19). The upper bound uses the Bárány and Steiger technique, while the
lower bound uses the uniform convergence theorem of Vapnik and Chervonenkis
[28].

– The growth function is O(n2) (Proposition 4.14).

For the case where C has C2 boundary (Definition 4.12), we show that the maximum
number of TC -k-sets of n points with k proportional to n is Ω(n2) (Theorem 4.13).
Some of the assumptions above are chosen for readability, the actual theorems have
weaker assumptions in some cases.
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2 Bounding the Expected Number of k-Edges

In this section we study the original probabilistic k-set/k-facet problem in the plane
and prove Theorem 1.3.

2.1 Convex/Concave Chains

Here we recall the “convex chains” technique of [1] which was used in [5] to establish
the O(n(k+1)1/3) bound for planar k-edges. First we need to define the k-edge graph.

Let S be a set of n points in general position in the plane and choose some (x, y)
coordinate system. With this choice, we assume without loss of generality that no line
spanned by two points in S is vertical. Let Ek be the set of line segments connecting
two points x, y ∈ S such that there are exactly k points from S in the (open) halfplane
below aff (x, y). Therefore, Ek is a subset of the set of all k-edges of S. The line
segments Ek define the k-edge graph:

Definition 2.1 Let S be a set of n points in general position in the plane and assume that
no line spanned by two points in S is vertical. For any 0 ≤ k ≤ n − 2, the (geometric)
graph Gk = (S, Ek) is called the k-edge graph of S.

The convex chains technique decomposes the k-edge graph Gk of a point set S into
the union of a bounded number of convex chains. Each convex chain is the graph of a
convex piece-wise linear function defined on some interval of the x-axis. Each chain
is formed by some subset of the k-edges in Gk = (S, Ek). A simpler version of the
proof of the O (n(k+1)1/3) boundwas established in [13] by observing that the k-edge
graph can simultaneously be decomposed into the union of concave chains.

Lemma 2.2 (convex/concave chains [1], [13, Lem. 9.10]2) Let Gk = (S, Ek) be the
k-edge graph of a set S of n points in the plane. The graph Gk can be decomposed
into the union of k + 1 (piece-wise linear) convex chains. Similarly, the graph can be
decomposed into the union of n − k − 1 (piece-wise linear) concave chains.

2.2 Proof of Theorem 1.3

We are now ready to prove our bound on the expected number of k-edges. The idea of
the proof is to use vertical lines to divide the plane into a number of regions of equal
probability. We then bound separately the expected number of k-edges that intersect
one of the vertical lines and the expected number of k-edges that do not intersect any
of the lines. We remark that a partition of the plane using vertical lines was also used
by Lovász in [17] to establish the O(n3/2) bound for the deterministic k-set problem.

2 [13, Lem. 9.10] states that the number of convex chains is k − 1 and the number of concave chains is
n − k + 1. The reason this doesn’t match the Lemma as we have stated it is that [13] defines a k-edge to be
line segment connecting two points x, y such that there are k points in the closed halfspace below aff (x, y)
whereas we require that there are k points in the open halfspace below aff (x, y). We choose open because
it matches the standard definition of a k-facet.

123



Discrete & Computational Geometry

Proof of Theorem 1.3 Because of the symmetry of the k-edge problem, we can assume
without loss of generality that k ≤ (n − 2)/2. The conclusion is clearly true when
k = 0 so assume also that k ≥ 1. We first bound the expected number of k-edges
that are in Gk . At the end of the proof we explain how this leads to a bound for the
expected number of k-edges.

For any fixed n, let m := m(n) be an integer whose value will be chosen later and
let L be the set consisting of m vertical lines which partition R2 \ ⋃

�∈L � into m + 1
open cells such that the measure according to P of each cell is equal to 1/(m + 1).
Such a set of lines exists because the measure (according to P) of every line is 0.

Let X = {X1, . . . , Xn} be a sample of n iid points from P . Observe that the prob-
ability that two points in X span a vertical line is 0 so we do not need to consider this
case. Also, since the measure of every line is 0, X is in general position with proba-
bility 1 so we can also ignore the case when X is not in general position. Therefore,
we can analyze the k-edges of X using the k-edge graph Gk of X .

We bound the expected number of k-edges inGk by considering two different types
of k-edges separately. First we bound the expected number of k-edges formed by two
points in different cells of the partition. Then we bound the expected number of k-
edges formed by two points in the same cell of the partition. That is, the expected
number of k-edges in Gk is equal to

E(number of k-edges inGk formed by two points in different cells)

+ E(number of k-edges inGk formed by two points in the same cell).
(2.1)

If conv(X1, X2) is a k-edge formed by two points X1, X2 in different cells, then
conv(X1, X2) intersects at least one line in L . So to bound the expected number of
k-edges in Gk formed by two points in different cells, it suffices to bound the expected
number of k-edges in Gk that intersect a line in L . By Lemma 2.2, each line in L
intersects at most min(k + 1, n − k − 1) = k + 1 k-edges in Gk . Therefore, the first
term in (2.1) is at most m(k + 1).

Now we bound the second term. Recall that the measure according to P of each
cell is equal to 1/(m + 1). Therefore, for any fixed i �= j , the probability that Xi and
X j are in the same cell is 1/(m + 1) ≤ 1/m. We can bound the second term in (2.1)
by

E(number of k -edges inGk formed by two points in the same cell)

≤
∑

(Xi ,X j )∈(X2)
P((Xi , X j ) is a k-edge and Xi , X j are in the same cell)

=
∑

(Xi ,X j )∈(X2)
P((Xi , X j ) is a k-edge | Xi , X j are in the same cell)

·P(Xi , X j are in the same cell)

=
(
n

2

)
· P((X1, X2) is a k-edge | X1, X2 are in the same cell)

·P(X1, X2 are in the same cell)
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≤ n2

m
· P((X1, X2) is a k-edge | X1, X2 are in the same cell). (2.2)

Set T := P (aff (X1, X2)
+) and GP (t) = P(T ≤ t | X1, X2 are in the same cell). We

then have that3

P((X1, X2) is a k-edge | X1, X2 are in the same cell)

= E
(
P((X1, X2) is a k-edge | X1, X2, (X1, X2 are in the same cell))

| X1, X2 are in the same cell
)

= 2

(
n − 2

k

)
E(T k(1 − T )n−2−k | X1, X2 are in the same cell)

= 2

(
n − 2

k

) ∫ 1

0
tk(1 − t)n−2−k dGP (t)

≤ 2

(
n − 2

k

)
·
(

k

n − 2

)k
·
(
n − 2 − k

n − 2

)n−2−k

≤
√
n − 2√

k
√
n − 2 − k

.

(2.3)

The second to last inequality holds because ta(1−t)b ismaximizedwhen t = a/(a+b)
if a, b �= 0. And the last inequality follows from Stirling-type upper and lower bounds
for factorials, see for example [14]. Therefore, we have that (2.1) is at most

m(k + 1) + n2

m
·

√
n − 2√

k
√
n − 2 − k

,

and choosing m = �n/k3/4
 makes the above quantity < 2(
√
2 + 1)n(k + 1)1/4.

Observe that the number of k-edges of a point set S is at most equal to the number
of edges in the k-edge graph of S plus the number of edges in the k-edge graph of the
point set S′ where S′ is the point set obtained by rotating S 180 degrees.4 Therefore,
we can rotate the plane 180 degrees and apply the same analysis to again bound the
expected number of k-edges inGk . From this, we get that expected number of k-edges
is at most two times the bound we obtain for the expected number of k-edges in Gk ,
which is less than 10n(k + 1)1/4. �	

3 On the Number of k-Edges Via the Polynomial Method

In this section we give another proof of Theorem 1.3 in the case when k is proportional
to n. The new proof partitions the plane using algebraic curves instead of vertical lines.
Recall that an algebraic curve in R

2 is the set of zeroes of a polynomial equation in
two variables, i.e., for a polynomial f ∈ R[x1, x2], the algebraic curve defined by f

3 We use the following version of the law of total probability: P(A | Y ) = E(P(A | X , Y ) | Y ). This follows
from [7, Thm. 4.1.13 (ii)].
4 When k = (n − 2)/2 this counts each k-edge twice, so the constant in our bound can be improved in this
case.
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is the set

Z( f ) := {(x1, x2) ∈ R
2 : f (x1, x2) = 0}.

Given a distribution on R
2 which has a density, we use the continuous polynomial

partitioning theorem of [11] (Theorem 3.5) to obtain an algebraic curve which divides
the plane into a number of cells of equal probability. The rest of the proof is nearly
the same as the proof in Sect. 2.2. The reason this alternative proof is interesting is
because it motivates the following open question which, if resolved, may lead to an
improvement to the bound in Theorem 1.3.

Question 3.1 What is the maximum (finite) number of times that an irreducible non-
singular5 degree r algebraic curve can intersect the k-edge graph of a set of n points
in the plane?

It is clear that the quantity inQuestion 3.1 isΩ(nr), andwe have some reason to believe
that it may be Θ(nr). The best bound we are able to prove is O(nr2) (Lemma 3.11).
This bound is good enough to reprove Theorem 1.3 using polynomial partitioning in
the case where the distribution has a density (Theorem 3.2). Any improvement to our
O(nr2) bound would lead to an improvement in the bound in Theorem 3.2: When k
is proportional to n, the bound in Theorem 3.2 is O(n5/4). An O(nr) bound on the
quantity in Question 3.1 would allow one to improve the bound in Theorem 3.2 from
O(n5/4) to O(n7/6) when k is proportional to n. The proof of the O(n7/6) bound
would be exactly the same as the proof of Theorem 3.2 except that the choice of the
degree r of the partitioning polynomial would be different.

An O(nr) bound on the quantity in Question 3.1 would also have an interesting
application to the deterministic k-set problem: It would give another proof of Dey’s
O(n(k + 1)1/3) bound [5, 6] on the maximum number of k-edges of a set of n points
in the plane in the case where k is proportional to n. The idea of the proof is as follows.
Given any set S of n points in general position in the plane, for some r to be chosen
later, use the discrete polynomial partitioning theorem (Theorem 3.3) to find a degree
O(r) polynomial f such that R2 \ Z( f ) is the union of r2 pairwise disjoint open sets
(called cells) each of which contains at most n/r2 points of S. The O(nr) bound on the
quantity in Question 3.1 implies that the number of k-edges formed by two points of S
which are both in different cells of the partition is O(nr). Also, the number of k-edges

formed by two points which are both in the same cell is at most r2
(n/r2

2

) = O(n2/r2).
Observe that we can apply a sufficiently small perturbation to the points of S to obtain
a point set which is in general position with respect to degree O(r) algebraic curves
and which has the same number of k-edges as S. Therefore, we can assume without
loss of generality that S is in general position with respect to degree O(r) algebraic
curves. This means that the number of points contained in Z( f ) is O(r2) and so the
number of k-edges formed by two points both of which are in Z( f ) is O(r4). Finally,
it is not hard to show that the number of k-edges formed by two points where one point
is in Z( f ) and the other is not and the interior of the k-edge does not intersect Z( f )

5 One could consider the same question for possibly singular curves, but, for our purposes, it suffices to
consider non-singular curves.
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is O(n). Moreover, the number of k-edges formed by two points where one point is in
Z( f ) and the other is not and the interior of the k-edge does intersect Z( f ) is O(nr),
again by the O(nr) bound on Question 3.1. Choosing r = Θ(n1/3) shows that the
total number of k-edges is O(n4/3). See Sect. 5 for a discussion of why we believe
the quantity in Question 3.1 may be Θ(nr).

There are two technical issues introduced by our application of the polynomial
partitioning theorem (Theorem 3.5) to the probabilistic version of the k-edge problem.
First, Theorem 3.5 can only be applied to distributions which have a density. The
reason for this is that there is no known version of Theorem 3.5 which applies to
distributions which do not have a density.6 Secondly, because we partition the plane
with an arbitrary algebraic curve, in order to bound the number of times the k-edge
graph intersects the boundary of the partition, we must use the convex and concave
chain decompositions of the k-edge graph simultaneously. Because of this, the bound
we prove in this section only matches the bound in Theorem 1.3 in the case when
k = �cn
 for some c ∈ (0, 1).

Because of these technical issues, the theorem we prove in this section is weaker
than Theorem 1.3:

Theorem 3.2 Let P be a probability distribution on R
2 which has a density. Then

EP (k, n) ≤ 58n7/4/((k + 1)1/4(n − 2 − k)1/4).

Before proving Theorem 3.2, in Sect. 3.1 we review the continuous polynomial parti-
tioning theorem. Section 3.2 establishes some necessary lemmas concerning algebraic
curves.

We make one remark on the requirement that the probability distribution P in
Theorem 3.2 has a density. As mentioned earlier, in [2], Bárány and Steiger construct
a probability distribution P with EP ((n − 2)/2, n) = Ω(n log n). The distribution P
does not have a density. However, ifmi is any decreasing sequence whose limit is zero,
Bárány and Steiger also show how to construct a distribution P ′ which has a density
and with EP ′((n − 2)/2, n) = Ω(mnn log n). In particular, EP ′((n − 2)/2, n) can
still be super-linear even if P ′ has a density. This shows that the class of distributions
which have a density is an important class of distributions to investigate in the context
of the probabilistic k-facet problem.

3.1 Polynomial Partitioning

The polynomial partitioning theorem of [12] has recently been used to solve a number
of problems in discrete and combinatorial geometry [10]. It has also been used to give
alternative proofs of some known results, see [15]. Perhaps the most commonly used
version of the polynomial partitioning theorem is the following theorem, which we
refer to as the discrete version.

Theorem 3.3 (discrete polynomial partitioning [12]) Let S ⊂ R
d be a set of n points.

Then for each r ≤ n there is a non-zero polynomial f ∈ R[x1, . . . , xd ] of degree O(r)

6 The proof of Theorem 3.5 relies on the Stone–Tukey ham sandwich theorem [25] for L1 functions onRd .
There is a version of the ham sandwich theorem which applies to more general distributions but it has a
weaker conclusion and cannot be used to extend Theorem 3.5 to more general distributions as far as the
authors know.
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(where the constants in big-O depend only on d) such that Rd \ Z( f ) is the union of
a family O of rd pairwise disjoint open sets such that each O ∈ O contains at most
n/rd points of S.

We are focused on bounding the expected number of k-edges of a sample of points
from a distribution on the plane. Therefore, we need a partitioning theorem which
applies to probability distributions rather than finite point sets. This type of result,
which we refer to as the continuous version of the polynomial partitioning theorem,
has been used to establish improved bounds for the restriction problem in harmonic
analysis, see [11] as a starting point.

Theorem 3.4 (continuous polynomial partitioning [11]) Let W ∈ L1(Rd) with
W ≥ 0. Then for each r, there is a non-zero polynomial f ∈ R[x1, . . . , xd ] of degree
at most r such thatRd \ Z( f ) is the union of a familyO ofΘ(rd) (where the constants
in big-Θ depend only on d) pairwise disjoint open sets such that for all O ∈ O, the
integrals

∫
O W are equal.

The open sets O in Theorems 3.4 and 3.3 are called the cells of the partition.

Using the density of the non-singular polynomials in the space of all polynomials
of fixed degree in d variables, it is possible to obtain, as a corollary of the continuous
polynomial partitioning theorem, a version where all the irreducible components of
the dividing surface Z( f ) are non-singular varieties.

Theorem 3.5 (non-singular continuous polynomial partitioning [11]) Take a W ∈
L1(Rd) with W ≥ 0. Then for each r, there is a non-zero polynomial f ∈
R[x1, . . . , xd ] of degree at most r such that Rd \ Z( f ) is the union of a family O
of Θ(rd) (where the constants in big-Θ depend only on d) pairwise disjoint open sets
such that for all O ∈ O, the integrals

∫
O W are within a factor of 2 of each other.

Furthermore, all irreducible components of Z( f ) are non-singular.

3.2 Counting Intersection Points of an Algebraic Curve and the k-Edge Graph

Our use of the polynomial partitioning technique requires us to bound the number of
times the k-edge graph Gk of a set of n points can intersect a degree r algebraic curve
Z( f ), i.e., we must give some answer to Question 3.1. Note that the number of points
of intersection of Gk and Z( f ) could be infinite if Z( f ) contained one of the lines
spanned by a k-edge inGk . However, for our purposes, it suffices to bound the number
of intersection points in the case when it is finite.

In order to establish our O(nr2) bound on the quantity in Question 3.1, we first
show how to partition an irreducible algebraic curve into the union of O(r2) convex
and concave pieces (Proposition 3.9). Combining the convex/concave chains decom-
position of the k-edge graph Gk with the partition of a degree r algebraic curve into
O(r2) convex and concave pieces allows us to show that a degree r algebraic curve
intersects the k-edge graph of a set of n points at most O(nr2) times assuming the
number of intersections is finite (Lemma 3.11).

First, we show how to partition an irreducible curve Z( f ) into the union of a
finite number of points and a finite number of convex/concave x-monotone connect
ed curves.
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Definition 3.6 A connected curve C⊂R
2 is x-monotone if every vertical line inter-

sects it in at most one point.

Definition 3.7 An x-monotone curve C is convex (respectively, concave) if for every
three points (x1, y1), (x2, y2), (x3, y3) ∈ C with x1 < x2 < x3, the point (x2, y2) is
below (respectively, above) or on the line joining (x1, y1) and (x3, y3).

In order to break Z( f ) into convex/concave pieces, we need to use the inflection points
of Z( f ).

Definition 3.8 [16] A non-singular point (a, b) of an algebraic curve Z( f ) is an inflec-
tion point if the Hessian curve H f (x, y) := f 2y fxx − 2 fx fy fxy + f 2x fyy is equal to
zero at (a, b). (The notation fx denotes the partial derivative with respect to x .)

Proposition 3.9 A non-singular irreducible curve Z( f ) ⊂ R
2 of degree r that is not

a vertical line can be partitioned into the union of at most 4r2 points and at most 6r2

x-monotone curves where each x-monotone curve is either convex or concave.

Proof If Z( f ) is a non-vertical line, the conclusion is clearly true. So assume that
Z( f ) is not a line. Let F = Z( f ) ∩ Z( fy). We know that f depends on y and not
just x because otherwise Z( f ) would be a vertical line. This means that fy is not
identically zero. Now because f is irreducible and the degree of fy is less than the
degree of f , the polynomials f and fy cannot have a common factor. Therefore, by
Bézout’s theorem, |F | ≤ r (r − 1).

Let I be the set of inflection points of Z( f ). An irreducible curve of degree r ≥ 2
has at most 3r(r − 2) inflection points [16, Prop. 3.33] so |I | ≤ 3r (r − 2). Let C be
the set of connected components of Z( f ) \ (I ∪ F). Because of the removal of the
points in F , every curve in C is x-monotone.

Now we show that, because of the removal of the inflection points I , every curve in
C is either a convex x-monotone curve or a concave x-monotone curve. Each curve in
C is the graph of a function defined in an interval. We claim that, for each curve in C,
the second derivative of the associated function exists everywhere and is never zero.
Let C ∈ C. Since C does not contain a point where fy = 0, using the implicit function
theorem, for each (u, v) ∈ C , there exists a smooth function φ : (u − ε, u + ε) → R

that gives a local parameterization of the curve near (u, v) [23, Thm. 4.22]. Now
a simple calculation shows that if φ′′(x) is equal to 0 at x , then the Hessian curve
f 2y fxx − 2 fx fy fxy + f 2x fyy equals zero at (x, φ(x)). The inflection points of Z( f )
are precisely the points where the Hessian curve is zero. Therefore, since all inflection
points were removed, the second derivative of the function whose graph is C is never
zero. This means that the function is either strictly convex of strictly concave, and so
C is either a convex or concave x-monotone curve.

Now we determine how many distinct curves C can contain. The number of con-
nected components of Z( f ) is at most 2r2 by either [19, Thm. 2] or [24, Thm. 2.7].We
removed atmost r (r−1)+3r (r−2)points from Z( f ). Because Z( f ) is non-singular, it
has no points of self-intersection. Therefore, each point which is removed increases the
number of connected components of Z( f )\(I∪F) by atmost 1. Therefore, the number
of connected components of Z( f )\(I∪F) is at most 2r2+r (r−1)+3r (r−2) ≤ 6r2.

�	
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The decomposition into convex/concave pieces is useful because of the following
fact:

Lemma 3.10 Let C be an x-monotone convex curve and D an x-monotone concave
curve. If the number of points of intersection of C and D is finite, then it is at most 2.

Proof Assume that C and D intersect in three points (x1, y1), (x2, y2), (x3, y3).
Observe that the three points (x1, y1), (x2, y2), (x3, y3) must be contained in a line �

and we may assume that x1 < x2 < x3. We claim that C and D must both contain
the line segment connecting the three points. Indeed, assume that C does not con-
tain the line segment connecting (x1, y1) and (x2, y2). Then there must be a point
(x0, y0) ∈ C with x1 < x0 < x2 and (x0, y0) strictly below the line connecting
(x1, y1) and (x2, y2). But then the point (x2, y2) is above the line connecting (x0, y0)
and (x3, y3), a contradiction to convexity of C . The argument for the other cases is
similar. �	
Now we can establish the bound on the number of intersection points between Z( f )
and Gk .

Lemma 3.11 Let S ⊂ R
2 be a set of points in general position, Gk = (S, Ek) the

k-edge graph of S, and f ∈ R[x1, x2] a degree r polynomial such that all irreducible
components of Z( f ) are non-singular and S ∩ Z( f ) = ∅. If the number of points of
intersection of Z( f ) and Gk is finite, then it is at most 13nr2.

Proof First assume that Z( f ) is irreducible. If Z( f ) is a line, then it follows from
Lemma2.2 that the number of intersection points is atmostmax(k+1, n−k−1) ≤ 13n
and we are done. So assume that Z( f ) is not a line. First, we need to decompose the
curve Z( f ) into the union of convex and concave pieces. By Proposition 3.9, Z( f )
can be partitioned into the union of 6r2 convex/concave x-monotone curves and at
most 4r2 points. Let A be the set of convex x-monotone curves, B the set of concave
x-monotone curves, and N the set of points in the partition.

By Lemma 2.2, Gk can be decomposed into the union of k + 1 convex chains
C1, . . . ,Ck−1, or n − k − 1 concave chains D1, . . . , Dn−k−1.

Recall that we are assuming that no line spanned by two points from S is vertical.
Therefore, the convex chains C1, . . . ,Ck+1, and the concave chains D1, . . . , Dn−k−1
never contain two points on a vertical line. Furthermore, we claim that any convex or
concave chain Ci or Dj intersects Z( f ) in only finitely many points. Indeed, if one
of these chains intersected Z( f ) in infinitely many points, one of the line segments
in the chain would have to intersect Z( f ) in infinitely many points. Recall the fact
that if a degree r algebraic curve intersects a line in more than r points, then the curve
must contain the line. Since we are assuming that Z( f ) does not contain any of the
points in S, this is not possible. Thus, we can apply Lemma 3.10 and the concave
chain decomposition of Gk to show that the number of k-edges in Gk that intersect
Z( f ) at a point contained in one of the convex x-monotone curves in A is at most
2(n − k − 1)6r2. Similarly, the number of k-edges in Gk that intersect Z( f ) at a
point contained in one of the concave x-monotone curves in B is at most 2(k +1)6r2.
Additionally, there are 4r2 points in the set N ⊂ Z( f ) which are not contained in any
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of the convex/concave x-monotone curves. Therefore, the total number of intersections
is at most 2(n − k − 1)6r2 + 2(k + 1)6r2 + 4r2 ≤ 13nr2.

If Z( f ) is not irreducible, then say Z( f ) is the union of m irreducible components
f1, f2, . . . , fm of degrees r1, r2, . . . , rm . By the above, the number of intersection
points of Z( fi ) and Gk is at most 13nr2i . So the total number of intersection points of
Z( f ) and Gk is at most

∑m
i=1 13nr

2
i ≤ 13nr2. �	

3.3 Proof of Theorem 3.2

Proof As in the proof of Theorem 1.3, the conclusion is clearly true when k = 0 so
we can assume that 1 ≤ k ≤ (n − 2)/2.

LetW be the density of P . For any fixed n, we use Theorem 3.5 applied toW to find
a degree r := r(n) (to be chosen later) polynomial f which divides R2 \ Z( f ) into a
family O of Θ(r2) pairwise disjoint open sets such that for all O ∈ O, the integrals∫
O W are within a factor of 2 of each other. Furthermore, all irreducible components

of Z( f ) are non-singular.
Let X = {X1, . . . , Xn} be a sample of n points from P . Observe that the probability

that two points in X span a vertical line is 0 so we do not need to consider this case.
Also, since P has a density, the measure of every line is 0. This means that X is in
general position with probability 1 so we may assume this as well. Therefore, we can
analyze the k-edges of X using the k-edge graph Gk of X . Also, since the Lebesgue
measure of Z( f ) is zero, X ∩ Z( f ) = ∅ with probability 1 so we assume this as well.

As in the proof of Theorem 1.3, we first bound the expected number of k-edges
that are in Gk . We compute the expected number of k-edges in Gk by considering two
different types of k-edges separately. First we bound the expected number of k-edges
formed by two points in different cells of the partition. Then we bound the expected
number of k-edges formed by two points in the same cell of the partition. That is, the
expected number of k-edges in Gk is equal to

E (number of k-edges inGk formed by two points in different cells)

+ E( number of k-edges inGk formed by two points in the same cell).
(3.1)

If conv(X1, X2) is a k-edge formed by two points X1, X2 in different cells, then
conv(X1, X2) intersects Z( f ). So to bound the expected number of k-edges in Gk

formed by two points in different cells, it suffices to bound the expected number of k-
edges that intersect Z( f ). We claim that the number of points of intersection between
Gk and Z( f ) is finite. This is true because otherwise some k-edge would have to
intersect Z( f ) infinitely many times. If a degree r algebraic curve intersects a line
more than r times it must contain that line. If this were true, then Z( f ) would have to
contain the two points of X forming the line, but we are assuming that X ∩ Z( f ) = ∅.
Therefore, the number of points of intersection between Gk and Z( f ) is finite and so
we can apply Lemma 3.11 to show that the first term in (3.1) is at most 13nr2.

Now we bound the second term. Recall that Z( f ) divides R2 \ Z( f ) into a family
O of Θ(r2) pairwise disjoint open sets (called cells) such that for all cells O ∈ O, the
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integrals
∫
O W are within a factor of 2 of each other. Therefore, for any fixed i �= j ,

the probability that Xi and X j are in the same cell is at most 4/r2.
Now, the second term in (3.1) can be bounded using nearly the same argument

which we used to bound the second term in (2.1) in the proof of Theorem 1.3. This
argument is given in (2.2) and (2.3) in the proof of Theorem 1.3. The only change is
that for any Xi , X j ∈ X , the probability P(X1, X2 are in the same cell) is now upper
bounded by 4/r2 instead of 1/m. Therefore, we have that (3.1) is at most

13nr2 + 4n2

r2
·

√
n − 2√

k
√
n − 2 − k

and choosing

r2 =
⌊

n3/4

(k + 1)1/4(n − 2 − k)1/4

⌋

makes the above quantity less than

29n7/4

(k + 1)1/4(n − 2 − k)1/4
.

Since we could repeat the argument after rotating the plane 180 degrees, the expected
number of k-edges is at most two times the bound we just obtained for the expected
number of k-edges in Gk . �	

4 Tightness of the Argument in Theorem 1.2: Translations of a Fixed
Shape

In this section we study a natural variation of the k-set problem for translations of a
fixed convex set on the plane, namely, the number of ways in which one can enclose
k points out of a given finite set of points by a translation of a convex set so that its
boundary strictly separates them from the rest. We will show nearly matching upper
and lower bounds on the expected number of ways.

For our lower bound, one of our tools will be the uniform convergence theorem of
Vapnik and Chervonenkis [28]. This introduces a minor technical complication: their
theorem is about abstract set systems without regard to whether sets have a boundary,
while the standard k-set problem for lines on the plane ask for strict separation by a
line and therefore the natural choice for our generalization is to ask for strict separation
by a curve.

Similarly, the other side of our argument, our upper bound, is a variation on the
two-step argument in the proof of Theorem 1.2 ((1.1) and the general upper bound of
the integrand in (1.2)), which uses k-edges and therefore also uses the boundary curve
in a fundamental way.

A convex body is a compact convex set with non-empty interior. A set C is strictly
convex if for all x, y ∈ C with x �= y and for all λ ∈ (0, 1) we have λx + (1− λ)y ∈
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intC . A set system is a pair (X ,R), where X is a set and R is a family of subsets
of X . The elements of R are called ranges. For a set C ⊆ R

2, let (R2, TC ) be the
set system of translations of C (that is, TC is the family of translation of C). We are
interested in translations of convex sets and it will be notationally convenient to set C
to be the interior of a fixed convex body. So, for this section, C will be restricted (at
least) to be the interior of a convex body. In this case, when we say that a point lies on
the boundary of a range, the point does not lie in the range.

Definition 4.1 For a finite subset S ⊆ R
2, a TC -k-set of S is a subset T ⊆ S of k

points such that for some Q ∈ TC , S ∩ bd Q = ∅ and T = S ∩ Q.

4.1 Upper Bound for TC-k-Sets, Probabilistic, k Proportional to n

This section establishes our upper bound on the expected number of TC -k-sets of a set
of n iid points when C is the interior a strictly convex body and k is proportional to n.
So for Sect. 4.1, let C ⊆ R

2 be the interior of a strictly convex body.

Definition 4.2 A set of points in R
2 is in general position relative to C if no three

points lie on the boundary of some range in TC (i.e., some translation of C).

Lemma 4.3 Let (p, q) be a pair of distinct points in R
2. Then there are at most two

ranges x + C satisfying p, q ∈ bd(x + C).

Proof Up to a rotation we can assume that r := q − p is vertical. Suppose for a
contradiction that there are three ranges x + C satisfying p, q ∈ bd(x + C). This
implies there are three points p1, p2, p3 such that p1, p2, p3, p1+r , p2 +r , p3+r ∈
bdC . Let f (x1) denote the length of segment “C intersected with the vertical line at
(x1, 0) ∈ R

2.” Function f is positive in a non-empty interval (a, b), is strictly concave
in [a, b] and takes value ‖r‖ at three points in [a, b]. But there is no such function so
this is a contradiction. �	
From the lemma we conclude:

Corollary 4.4 Let V ⊆ (R2)2 be the set of pairs of distinct points that can appear on
the boundary of some range. Then there exists a continuous onto function C : V → TC.

Proof Every pair in V can appear on the boundary of one or two ranges. When a
pair appears on the boundary of exactly one range, map both orderings of the pair
to that range. When a pair (p, q) appears on the boundary of two ranges, let C1
and C2 be the two translations of C containing p and q on their boundaries. Let
C(p, q) be the unique translation that solves maxi∈{1,2} area (Ci ∩ aff (p, q)+) (where
aff (p, q)+ = {r : −(q − p)x (r − p)y + (q − p)y(r − p)x > 0}). �	
From now on we let C( · , · ) denote the function given by Corollary 4.4 (with a slight
abuse of notation).

Definition 4.5 For a set of points S in general position relative to C , let a (oriented)
TC -k-edge be an ordered pair of points (p, q) ∈ V with p, q ∈ S (p �= q) such that
C(p, q) contains k points of S.
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We now show a bound relating TC -k-sets and TC -k-edges, which follows from a
variation of known continuous deformation arguments [13, Lem. 5.15], [18, Chap.
11]. For a finite set of points S in general position relative to C , let ek(S) be the
number of TC -k-edges of S and let ak(S) be the number of TC -k-sets of S.

Lemma 4.6 For a finite set of points S in general position relative to C and k ≥ 2 we
have ak(S) ≤ 4(ek−2(S) + ek−1(S) + ek(S)).

Proof To prove the claim we will construct an injective function f from TC -k-sets of
S to a labelled extension of the set of TC -k-edges. The function is defined as follows:
Let Q ⊆ S be a TC -k-set induced by some range C0. Translate C0 in the x direction
until some point p ∈ S lies on its boundary to obtain range C ′, then translate C ′ while
keeping p on its boundary (letting p slide along the boundary) until another pointq ∈ S
lies on the boundary to obtain a range C ′′ (there may be more than one choice here,
pick arbitrarily). We have that clC ′′ contains Q and at most two other points from S.
From the general position assumption, bdC ′′ contains exactly two points from S.
Swap points p, q if needed so that C ′′ = C(p, q). Pick labels l p, lq ∈ {IN,OUT} for
p and q according to whether they are in Q. This completes the definition of an f
from TC -k-sets of S to S2 × {IN,OUT}2, namely f (Q) = (p, q, l p, lq).

We now show that f is injective. Let Q, Q′ be two TC -k-sets of S induced by ranges
C0, C ′

0, respectively, and such that f (Q) = f (Q′) = (p, q, l p, lq). By definition of
f we have that Q is equal to S ∩ C(p, q) with p and q added according to the labels.
But then by definition of f we have that Q′ is also equal to that set and therefore equal
to Q. This establishes that f is injective. To conclude, the image of f contains only
pairs (p, q) that are TC -r -edges of S for r ∈ {k − 2, k − 1, k}. The claim follows. �	
Assumption 4.7 Given C , probability distribution P on R

2 is such that that for all
x ∈ R

2, P(bd(x+C)) = 0.

(In particular the assumption on P holds if P has a density.)

Proposition 4.8 Let P be a Borel probability distribution satisfying Assumption 4.7.
Let Y , Z be a pair of iid points, each according to P. Then Y �= Z a.s.

Proof Fix a point b on the boundary of C (so that the origin is on the boundary of
−b + C). Note that

P(Y = Z) = E(P(Y = Z | Z)) ≤ E(P(Y ∈ bd(Z − b + C) | Z)) = 0. �	

Proposition 4.9 Let P be a Borel probability distribution satisfying Assumption 4.7.
Let X be a random set of n iid points, each according to P. Then X is in general
position relative to C a.s.

Proof It is enough to prove the claim for n = 3. Let Y , Z ,W be three iid random
points according to P . By Proposition 4.8, Y �= Z a.s. Then

P((∃a) Y , Z ,W ∈ bd(a + C))

= P(Y �= Z , (∃a) Y , Z ,W ∈ bd(a + C))
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= E
(
P((∃a) Y , Z ,W ∈ bd(a + C) | Y , Z)

∣∣ Y �= Z
)

= E
(
P(W ∈ bd C(Y , Z) or W ∈ bd C(Z ,Y ) | Y , Z)

∣
∣ Y �= Z

) = 0. �	

Theorem 4.10 (TC -k-set/edge upper bound, probabilistic, k proportional to n) Let
c ∈ (0, 1). Let P be a Borel probability distribution satisfying Assumption 4.7. Let X
be a random set of n iid points, each according to P. Let An (resp. En) be the number
of TC-k-sets (resp. TC-k-edges) of X for k = �cn
. Then

E(En) ≤ O(n3/2) and E(An) ≤ O(n3/2)

(where the constants in big-O depend only on c).

Proof Let C(p, q) and V be as in Corollary 4.4. From Proposition 4.9, X is in general
position relative to C a.s.

Let X = {X1, . . . , Xn}. Let T = P
(C(X1, X2)

)
with the additional convention

that C(p, q) = ∅ if (p, q) /∈ V . In this way T is defined whenever X1 �= X2, that is,
a.s. by Proposition 4.8. Let GP (t) = P(T ≤ t) for t ∈ R. Using a variation of (1.1)
and the argument in the proof of Theorem 1.3 we get:

P((X1, X2) is a TC -k-edge of X)

= P(|C(X1, X2) ∩ (X \ {X1, X2})| = k)

= E
(
P(|C(X1, X2) ∩ (X \ {X1, X2})| = k | X1, X2)

)

=
(
n − 2

k

)
E(T k(1 − T )n−2−k) =

(
n − 2

k

) 1∫

0

tk(1 − t)n−2−k dGP (t)

and

E(En) = n(n − 1)

(
n − 2

k

) 1∫

0

tk(1 − t)n−2−k dGP (t)

≤ n2
(
n − 2

k

)(
k

n − 2

)k(n − 2 − k

n − 2

)n−2−k

≤ n2
√
n − 2√

k
√
n − 2 − k

≤ O(n3/2).

This proves the first inequality. From this, the second inequality is immediate using
Lemma 4.6. �	

4.2 Lower Bound for TC-k-Sets, Deterministic, k Proportional to n

In this section we show an Ω(n2) lower bound on the maximum number of TC -k-sets
of a broad family of set systems of the form (R2, TC ) for k proportional to n. We
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illustrate the main idea of the argument in Proposition 4.11 for the case where C is a
unit square. In Theorem 4.13, we then use the argument for the case where C is the
interior of a convex body withC2 boundary (actually, slightly more general than that).

While the sets of points in the following results may not be in general position,
this is not a true weakness of the results. The reason is that, like in the case of the
standard k-set problem for lines, the number of TC -k-sets of a given set of points
cannot decrease by applying any sufficiently small perturbation to the points, because
any range inducing a TC -k-set must by definition contain no point on its boundary.
Thus, the maximum number of TC -k-sets among set in general position is no smaller
than the number of TC -k-sets among unrestricted sets of points.

To build intuition on an Ω(n2) lower bound, we first consider in Proposition 4.11
the case of translations of a square and a set of n equally spaced points arranged in
the shape of a cross (or plus sign, +).

Proposition 4.11 Let C be the open unit square. Let 0 < c < c′ < 1. Then for
cn ≤ k ≤ c′n we have max|S|=n ak(S) = Ω(n2) (where the constants in Ω depend
only on c and c′).

Proof We show the case where n is a multiple of 4 and k = n/2−2, the rest is similar.
Consider a set of points equally spaced on the x and y axes forming a cross. Say, for
λ = 4/n, let S = λ(Z2 ∩ (x − axis ∪ y-axis) ∩ [−n/4, n/4]2 \ (0, 0)). Then |S| = n
and the claim follows. �	
For our next Ω(n2) lower bound, Theorem 4.13, we assume that the boundary of C is
well approximated by its unique tangent line at certain points (locally of classC2). See
[9, Sect. 5.1, subsection “Second-Order Differentiability”] for definitions and basic
facts about differentiability of the boundary of a convex body. The sets of points are
adaptations of the “cross” construction from Proposition 4.11.

Definition 4.12 Let C ⊆ R
2 be the interior of a convex body. We say that bdC is C2

at a point x ∈ bdC if the following conditions hold:

– There is a unique support line L of C at x .
– Apply an invertible affine transformation so that x is at the origin, L is horizontal
andC is above L . Then the lower side of bdC is represented in the form (t, g(t)) in
a neighborhood of 0 for a convex function g such that there is a function r(t) = at2

with a > 0 and g(t) = r(t) + o(t2) as t → 0.

Theorem 4.13 Assume that C ⊆ R
2 is the interior of a convex body such that there

exist linearly independent unit vectors u, v ∈ R
2 and points a, b, c, d ∈ bdC such

that bdC is C2 in a neighborhood of a, b, c, d with outer normals u, v,−u,−v, resp.
Let 0 < c < c′ < 1. Then for cn ≤ k ≤ c′n we havemax|S|=n ak(S) = Ω(n2) (where
the constants in Ω depend only on c, c′, and C).

Proof We show the case where n is a multiple of 8 and k = n/2, the rest follows
easily. Up to an invertible linear transformation, we can assume u = e1 and v = e2,
without loss of generality. Let U = {e1, e2,−e1,−e2} and for p ∈ U let v(p) be a
locally C2 point on the boundary of C and having outer normal p.
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For p ∈ U and some t > 0, consider the segment of length 2t perpen-
dicular to the boundary of C at v(p) and centered at v(p), namely s(p) :=
conv {v(p) − tp, v(p) + tp}. Finally, consider a (one-dimensional) grid g(p) of n/4
equally spaced points on segment s(p). Let our set of points be S = ⋃

p∈U g(p). By
construction |S ∩ C | = n/2. Let ε := 2t/(n/4 − 1) be the gap between consecutive
points in each segment.

We will now show that we can choose t > 0 small enough so that there are Ω(n2)
small translation of C that induce different subsets of S, each containing n/2 points.
The idea of the argument is to translate C independently in the vertical and horizontal
direction, to pick Ω(n) different subsets of n/4 points among the pair of vertical
segments and similarly for the horizontal segments. The translations, notated p + C
and parameterized by p, form the following grid around the origin: G := {(kε, lε) ∈
R
2 : k, l ∈ Z ∩ [−n/8, n/8]}. By Taylor’s theorem and compactness there exist

constants α, tM > 0 (which depend only on C) such that the boundary of C has a C2

parametrization y = φ(x) in a neighborhood of (x0, y0) := v(−e2) with |φ(x) − y0|
≤ α(x − x0)2 for x ∈ [x0 − tM , x0 + tM ] (and similarly for v(e1), v(−e1), v(e2)). In
particular, |φ(x) − y0| ≤ αt2M . We choose t > 0 small enough so that C contains the
same subset of g(−e2)when translated distance less than or equal to t in the horizontal
direction. Note that this also ensures that the boundaries of those translations contain
no point of g(−e2). The nearest point from g(−e2) to the line y = y0 is at distance
ε/2 = t/(n/4 − 1) > 4t/n so it is enough to have αt2 ≤ 4t/n, that is, we set
t = min {tM , 4/(αn)}. With these choices, every p ∈ G induces a different TC -k-set
of S with k = n/2 and therefore an/2(S) ≥ |G| ≥ n2/16. �	
To understand the scope of Theorem 4.13, note that the condition on C is satisfied
when C is the interior of a convex body with C2 boundary. Also, no triangle satisfies
the assumptions of Theorem 4.13.

4.3 Bounds on the Growth Function

To put our results on the number of TC -k-sets and TC -k-edges in context, we state some
basic bounds on the growth function of set system (R2, TC ), namely the maximum
number of subsets of a set of n point inR2 induced by translations ofC . For simplicity
some of our bounds have extra assumptions on C that may not be necessary.

The growth function [28] of set system (R2, TC ) is given by

n �→ max
S⊆R2,|S|=n

|{S ∩ (x + C) : x ∈ R
2}|.

Proposition 4.14 Let C ⊆ R
2 be the interior of a strictly convex body. The growth

function of (R2, TC ) is at most n2 − n + 2.

Proof For the proof we use the notions of a dual set system and dual growth function.
Given set system (X ,R), its dual set system is (R, X∗), where X∗ is the family of
sets of the form {R ∈ R : x ∈ R} for x ∈ X . The dual growth function of (X ,R) is
the growth function of its dual set system.
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The first step is to notice that (R2, TC ) corresponds to the dual set system of
(R2, T−C ): a range x − C ∈ T−C is corresponds to point x ∈ R

2 and a point y ∈ R
2

corresponds to range y+C , together with the equivalence “y ∈ x −C is equivalent to
x ∈ y + C”. In this way, the growth function of (R2, TC ) is the dual growth function
of (R2, T−C ).

The second step is to bound the dual growth function of (R2, T−C ). Its value at
n is equal to the maximum number of nonempty cells in the Venn diagram of n
translations of −C . It is bounded by the maximum number of connected components
of the complement of n translations of bd(−C), or, equivalently, bdC . Adding n
translations of bdC one by one, this number of connected components is 2 for n = 1
and, using the fact that two translations of bdC intersect in at most two points, it
increases by at most 2(k−1) when the kth translation is added. Therefore the number
of connected components is at most n2 − n + 2. �	
For clarity we state the following summarizing result:

Theorem 4.15 Let C ⊆ R
2 be the interior of a strictly convex body with C2 boundary.

The growth function of (R2, TC ) is Θ(n2) (where the constants in Θ depend only
on C).

Proof Immediate from Proposition 4.14 and Theorem 4.13. �	
In order to prove our results in Sect. 4.4 in more generality, we state here a weaker
bound on the growth function with weaker assumptions on C .

Theorem 4.16 Let C ⊆ R
2 be the interior of a convex body. The VC-dimension of

(R2, TC ) is at most 3. The growth function of (R2, TC ) is at most
(n
0

)+(n
1

)+(n
2

)+(n
3

) ≤
(en/3)3.

Proof A special case of a result in [20] establishes that the VC-dimension of (R2, TC )

is at most 3 when C ⊆ R
2 is a convex body. The bound extends to our case (interior

of a convex body) using the observation that if translations of the interior a convex
body C shatter a given finite set of points then translations of a scaled down clC also
shatter the same set. The rest follows from the Sauer–Shelah lemma. �	
The VC-dimension bound is tight: C equal to any fixed triangle is a tight example.

4.4 Lower Bound for TC-k-Sets, Probabilistic, Some k Proportional to n

In this section we show, for some k proportional to n, an Ω̃(n3/2) lower bound for
the expected number of TC -k-sets for a random sample of n points from the uniform
distribution in a set A ⊆ R

2 sufficiently large to contain translations of C . The restric-
tion to a subset A is necessary as there is no uniform distribution inR2. Our argument
uses crucially the fact that translations of C that are contained in A have the same
probability under the uniform distribution in A. The minor technical complications
introduced by the fact that A is bounded could be avoided by considering a similar set
system of translations of a disk (say) on the surface of the two-dimensional sphere (or
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translations of a shape on the flat torus) with the uniform distribution (a version not
studied in this paper).

The idea of the proof is the following: First show that for a random sample X of n
points in A, with high probability the number of induced subsets by translations of C
contained in A is Ω̃(n2) (Lemma 4.18). Then, by VC’s uniform convergence theorem,
with high probability each translation ofC contained in A contains cn± Õ(

√
n) points

from X for some c. Therefore, by the pigeonhole principle there are Ω̃(n3/2) induced
subsets of X that contain exactly the same number of points, that is, X has Ω̃(n3/2)
TC -k-sets for some k.

We start by showing that if two translations ofC are far apart then they have a small
intersection.

Lemma 4.17 Let C ⊆ R
2 be the interior of a convex body that contains a unit ball. If

‖x‖ ≤ 1, then

area (C ∩ (x + C)) ≤
(
1 − ‖x‖

2

)
area(C).

Proof Consider the function f (x) = area (C ∩ (x + C)). It is logconcave (by the
Prékopa–Leindler inequality and the fact that f (x) = 1C (x) ∗ 1−C (x)) (where 1C (x)
is the indicator function of C , namely one if x ∈ C and zero otherwise). Also, f (0) =
area(C) ≥ π . In other words, log f (x) is concave and, while it is not differentiable at
x = 0, we can use directional derivatives and tangent rays at x = 0 to upper bound it
by a function of the form x �→ log f (0) + c‖x‖, where c < 0 is an upper bound on
the one-sided directional derivative.

We calculate a suitable c now. The one-sided directional derivative at 0 along unit
vector v ∈ R

2 is

Df (0)(v) = −2 length (projection ofC onto line perpendicular to v) ≤ −4

(from the analysis of the movement of chords of C parallel to v). Thus, log f (0) =
log(area(C)) and D(log f )(0)(v) = Df (0)(v)/ f (0) ≤ −4/π ≤ −1 (i.e., we can
take c = −1) and these estimates with concavity of log f (x) give log f (x) ≤
log(area(C)) − ‖x‖. That is, f (x) ≤ area(C)e−‖x‖. We use the inequality e−t ≤
1 − t (1 − 1/e) for t ∈ [0, 1] to conclude that if ‖x‖ ≤ 1, then f (x) ≤ area(C)(1 −
‖x‖(1 − 1/e)). The claim follows. �	

Weshownow that the number of ranges induced by translations ofC on certain random
sets of n points is Ω̃(n2). Because this is meant to be used in the context of TC -k-sets,
we show a slightly stronger bound for ranges (induced by translations) that do not
contain points on their boundaries.

Lemma 4.18 (lower bound on number of ranges, probabilistic) Let C ⊆ R
2 be the

interior of a convex body. Let A ⊆ R
2 be a compact set such that 2C ⊆ A. Let X be

a set of n iid uniformly random points in A. Let t > 0. Then there exists a constant
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c4.18 > 0 that depends only on A, C, and t such that with probability at least 1−1/nt ,

∣
∣{X ∩ (x + C) : x + C ⊆ A, X ∩ bd(x + C) = ∅}∣∣ ≥ c4.18

(
n

log n

)2
.

Proof Let X = {X1, . . . , Xn}. Let B be the ball with center 0 and radius 1. Without
loss of generality (up to scaling and translation), B ⊆ C .

We will first construct a packing of n2/(c log n)2 translations of C with centers in
B with area of pairwise symmetric difference at least about (log n)/n, for some c > 0
to be determined later. Let G be an n/(c log n)-by-n/(c log n) grid of points with gap
(c log n)/n between adjacent rows and columns of points and contained in B. Every
pair of points inG is then at distance at least (c log n)/n, and therefore for all x, y ∈ G
with 0 < ‖x − y‖ ≤ 1 we have

area ((x + C)�(y + C)) = 2
(
area(C) − area (C ∩ ((y − x) + C))

)

≥ area(C)‖y − x‖ ≥ area(C)
c log n

n

(using Lemma 4.17). The bound extends to all x, y ∈ G with x �= y by monotonicity.
We will now show that with probability at least 1 − o(1) each x + C with x ∈ G

induces a different range on X . It is enough to show that for all x, y ∈ G with x �= y
we have ((x + C)�(y + C)) ∩ X �= ∅. Setting c = (t + 2) area(A)/area(C), the
probability of this event for some x, y is

P
(
(∀i ∈ [n]) Xi /∈ (x + C)�(y + C)

) ≤
(
1 − area ((x + C)�(y + C))

area(A)

)n

≤
(
1 − area(C)

area(A)
· (c log n)

n

)n
≤ e−(t+2) log n = 1

nt+2 .

Thus, with probability at least 1 − n2/nt+2 = 1 − 1/nt our event holds for all pairs
x, y. Finally, X ∩ ⋃

x∈G bd(x + C) = ∅ a.s. The claim follows. �	

We now state and prove our probabilistic lower bound for TC -k-sets for some k
proportional to n:

Theorem 4.19 Let C ⊆ R
2 be the interior of a convex body. Let A ⊆ R

2 be a compact
set such that 2C ⊆ A. Let X be a set of n iid uniformly random points in A. Let

a′
k(X) := ∣∣{X ∩ (x + C) : x + C ⊆ A, |X ∩ (x + C)| = k, X ∩ bd(x + C) = ∅}∣∣

(that is, a′
k(X) is the number of TC-k-sets of X induced by translations of C con-

tained in A). Let p = area(C)/area(A). Then there exists a function k(n) such that
E(ak(n)(X)) ≥ E(a′

k(n)(X)) ≥ Ω(n3/2/(log n)5/2) and |k(n) − pn| ≤ O(
√
n log n)

(where function k(n) and the constants in O,Ω depend only on A and C).
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Proof Let (A,R) be the set systemwhereR is the family of translations ofC contained
in A. From Theorem 4.16 we have that the growth function s(n) of (A,R) satisfies
s(n) ≤ n3.

Fix n. For R ∈ R, let P̂(R) = |X ∩ R|/n. From [28, Thm. 2] (VC’s uniform
convergence theorem)7 we have, for n ≥ 2/ε2,

P

(
sup
R∈R

|P̂(R) − p| > ε

)
≤ 4s(2n)e−ε2n/8. (4.1)

Set ε = 4
√

(3 log 2n)/n so that the rhs is at most 1/n3. If we denote by G the
complement of the event in (4.1), we have P(G) = 1 − o(1).

Let RX = {X ∩ R : R ∈ R, X ∩ bd R = ∅}. From Lemma 4.18 with t = 1 and
notation f (n) = c4.18(n/log n)2, we get

P(|RX | ≥ f (n)) ≥ 1 − o(1). (4.2)

Let H denote the event in (4.2). To conclude,wewill show that there is a value k(n) that
is independent of X and makes E(a′

k(X)) large. We have P(X ∈ G ∩ H) = 1− o(1).
Also for X ∈ G ∩ H we have

∑

k∈[pn−nε,pn+nε]
a′
k(X) = |RX | ≥ f (n).

Therefore

E

⎛

⎝
∑

k∈[pn−nε,pn+nε]
a′
k(X)

⎞

⎠ ≥ f (n)P(X ∈ G ∩ H).

Reordering,

∑

k∈[pn−nε,pn+nε]
E(a′

k(X)) ≥ f (n)P(X ∈ G ∩ H).

Thus, there is k(n) ∈ [pn−nε, pn+nε] with E(a′
k(X)) ≥ f (n)P(X∈G ∩ H)/

(2nε + 1). That is (using nε = O(
√
n log n)), E(a′

k(X)) ≥ Ω(n3/2/(log n)5/2). For
the bound on E(ak(X)), from the definitions we have ak(X) ≥ a′

k(X). �	

5 Conclusion and Open Questions

We conclude with some open questions and possible directions for future work.

7 In order to apply VC’s uniform convergence theorem, we need to verify that the function supR∈R( · ) as
defined in (4.1) is measurable, i.e., that it is a random variable. This can be verified by observing thatR is a
permissible class of subsets of A. See [22, Appendix C] for the definition of permissible classes and a proof
of the measurability of suprema in this context. One can see that the class R is permissible by indexing it
by translation and verifying that the requirements for permissibility are met.
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Bound on the number of points of intersection of Z( f ) and Gk . Can the answer
to Question 3.1 given in Lemma 3.11 be improved? We believe it may be possible
to improve the bound to O(nr) for the following reason: The k-edge graph Gk of a
set of n points behaves somewhat like a degree n algebraic curve when it comes to
intersecting it with a line. In particular, a degree n algebraic curve and the k-edge
graph of a set of n points both have the property that a line can intersect them
at most n times unless the line intersects them infinitely many times. One might
expect this phenomenon to also hold for arbitrary algebraic curves, not just lines.
If this is the case, the bound on the number of intersection points between a degree
r algebraic curve and the k-edge graph of a set of n points should be O(nr) as in
the case of the intersection of a degree r algebraic curve and a degree n algebraic
curve.

Higher dimensions. The polynomial partitioning theorem becomes more power-
ful in higher dimensions. It may be possible to apply it to the k-set problem in
dimensions higher than 2. The issue is that there is no analogue of the convex
chains decomposition in dimension higher than 2, so this would likely require the
discovery of a new property of k-sets or k-facets.
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