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Outline.

■ The matrix approximation and projective clustering problems
and their motivations.

■ Our results. The additive error of matrix approximation drops
exponentially as a function of the number of passes.
Existence of a small sample of rows containing a relative
approximation. A PTAS for projective clustering.
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Matrix Approximation. Motivation.

■ Given points in R
m, find lower dimensional “representation”:

a subspace such that the points are close to it ...
■ ... to “highlight” relevant features of data, obtain

computational savings, and improve quality of retrieval.
■ One formalization, minimum squares: see the points as rows

of a matrix A and find Ã of rank k that minimizes

‖A − Ã‖2
F =

∑

ij

(Aij − Ãij)
2
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Singular Value Decomposition (SVD)

■ Such minimization is solved by the SVD.
■ SVD: any m × n real matrix A can be written as

A =
∑

i

σiuiv
T
i

where (ui)i orthonormal (left singular vectors), (vi)i

orthonormal (right singular vectors) and σ1 ≥ σ2 ≥ · · · ≥ 0

■ Then the optimum for the approximation problem is

Ã = AY Y T

where the columns of Y are the top k right singular vectors
of A.
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SVD. Running time.

■ SVD takes time O(mn2). Still too large for some
applications; ...

■ ... we could be satisfied with an approximation to the best,
given in an implicit representation, obtained after only a few
passes over the data.
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Projective Clustering Problem.

■ A related problem, projective clustering: given n points in R
d,

find j k-dimensional subspaces that minimize the sum of
squared distances of each point to its nearest subspace.

■ j = 1 is matrix approximation,
■ j ≥ 2 is NP-hard (even for k = 1).

O
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Related Work.

■ For matrix approximation:
◆ [Drineas, Frieze, Kannan, Vempala.] Introduced matrix

sampling for fast low-rank approximation.
◆ [Achlioptas and McSherry.] Sparsification, uses only one

pass.
■ For projective clustering.

◆ Multiple results for “j-means” (find j points), and k = 1
(find j lines)

◆ [Har-Peled and Varadarajan.] A 1 + ǫ approximation
algorithm for the “maximum distance” objective function in
time dnO(jk6 log(1/ǫ)/ǫ5).
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Related Work.

■ Two questions for matrix approximation:
◆ Is there a small subset of rows in whose span lies a good

low rank approximation?
◆ Can such a subset be found efficiently?

■ A result by Frieze, Kannan and Vempala gives an answer:
Theorem 1. Let S be a sample of k/ǫ rows where

P(row i is picked) =
‖A(i)‖2

‖A‖2
F

.

Then the span of S contains* a matrix Ã of rank k for which

E(‖A − Ã‖2
F ) ≤ ‖A − Ak‖

2
F + ǫ‖A‖2

F .

This can be turned into an efficient algorithm: 2 passes,
complexity O(nk2/ǫ4).
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Our Results.

■ The additive error of matrix approximation drops
exponentially in the number of passes and one can find a
sample with the corresponding guarantee efficiently.
The factor of the additive term is less that ǫ ...

FKV after 2 passes and k 1
ǫ samples

our result after 2 log(1/ǫ) passes and k log 1
ǫ samples.

■ There exists a set of rows of size O(k2/ǫ) in whose span lies
a matrix that is no worse that (1 + ǫ) times the best.

■ Projective Clustering: first PTAS for any fixed j and k.
Complexity: d(n

ǫ )O(jk3/ǫ)
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Outline.

■ The matrix approximation and projective clustering problems
and their motivations.

■ Our results. The additive error of matrix approximation drops
exponentially as a function of the number of passes.
Existence of a small sample of rows containing a relative
approximation. A PTAS for projective clustering.
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Adaptive Sampling.

■ Idea: Sample a few rows, then sample with weights
proportional to the error that remains from the previous
samples.

O
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Adaptive Sampling.

Theorem 2. Let S = S1 ∪ · · · ∪ St be a random sample of rows of an
m × n matrix A where for j = 1, . . . , t, each set Sj is a sample of s rows
of A chosen independently from the following distribution: row i is picked
with probability

P
(j)
i =

‖E
(i)
j ‖2

‖Ej‖2
F

where E1 = A, Ej = A − πS1∪···∪Sj−1
(A). Then for s ≥ k/ǫ, the span

of S contains a matrix Ãk of rank k such that

ES(‖A − Ãk‖
2
F ) ≤

1

1 − ǫ
‖A − Ak‖

2
F + ǫt‖A‖2

F .

Complexity: O
(

Mkt/ǫ + (m + n)k2t2/ǫ2
)

(M =number of
non-zeros).
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Proof Idea. Inductive Step.

Proof Idea: Induction and use the following theorem for the
inductive step:
Theorem 3. Let A ∈ R

m×n. Let V ⊆ R
n be a vector subspace. Let

E = A − πV (A). Let S be a random sample of s rows of A from a
distribution such that row i is chosen with probability

Pi =
‖E(i)‖2

‖E‖2
F

. (1)

Then, for any nonnegative integer k,

ES(‖A − πV +span(S),k(A)‖2
F ) ≤ ‖A − Ak‖

2
F +

k

s
‖E‖2

F .

The proof of the inductive step is very similar to the proof of
FKV.
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Volume Sampling, Arbitrary k.

■ “In any matrix there are k rows such that the projection of the
matrix to those rows is a k + 1 approximation to Ak, the best
of rank k”. More precisely (probabilistic method),
Theorem 4. Let S be a random subset of k rows of A so that

P(S is picked) =
vol(∆(S))2

∑

T :|T |=k vol(∆(T ))2
.

Then Ãk , the projection of A to the span of S, satisfies

E(||A − Ãk||
2
F ) ≤ (k + 1)||A − Ak||

2
F .

■ Tight: factor k + 1 is best possible.
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Multiplicative 1 + ǫ.

■ The previous result combined with the “inductive step” gives
Theorem 5. For any A, there exists a subset of O(k2/ǫ) rows in whose

span lies a rank-k matrix Ãk such that

||A − Ãk||
2
F ≤ (1 + ǫ) ||A − Ak||

2
F .
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Projective Clustering.

O

■ The k + 1 approximation theorem gives a simple k + 1
approximation for projective clustering:
If the best partition of the points into j subsets is P1, . . . , Pj ,
then each Pi contains a subset Si of k points whose span is
a k + 1 approximation.
We can find the Si’s by enumerating all subsets of k points,
considering j of these subsets at a time, and taking the best
of these.

■ Complexity: O(dnjk).
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Projective Clustering. PTAS.

■ The 1 + ǫ approximation theorem gives that there exists a
subset P̂i ⊆ Pi of size O(k2/ǫ) in whose span lies an
approximately optimal k-dimensional subspace.

■ We enumerate over all combinations of j subsets, each of
size O(k2/ǫ) to find the P̂i.

■ We cannot enumerate then all the k-dimensional subspaces
of the span of P̂i, but we can put an appropriate ǫ-net and
enumerate over subspaces induced by this net.

■ Complexity: d(n
ǫ )O(jk3/ǫ).
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Conclusion: Summary and Open Problems.

■ Summary:
◆ The additive error of matrix approximation drops

exponentially with the number of passes.
◆ Existence of O(k2/ǫ) rows containing a relative

approximation.
◆ A PTAS for projective clustering.

■ Open problems:
◆ Lower bound for multiplicative error, k2/ǫ?
◆ Is there an efficient implementation of volume sampling, or

another efficient algorithmic way of getting a multiplicative
approximation?

◆ Fix the mismatch of the exponents of the projective
clustering approximations for ǫ = k and for arbitrary ǫ.
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