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Abstract

We consider the computation of equilibrium prices in market settings where purchases
of goods are subject to taxation. While this scenario is the standard one in applied com-
putational work, so far it has not been an object of study in theoretical computer science.
Taxes introduce significant distortions: equilibria are no longer Pareto optimal, sufficient
conditions for uniqueness do not continue to guarantee it, existence itself must be revisited.
We analyze the effects of these distortions on scenarios which, in the absence of taxes, admit
polynomial time algorithms, and prove a number of results:

• For Fisher’s model with homothetic preferences: if consumers are subject to a uniform
tax regime, the model loses the representative consumer and becomes prone to multiple
disconnected equilibria; however we show that the distortion has a structure which
leads to two (as opposed to one) representative consumers. We take advantage of this
property to develop polynomial time algorithms, in spite of the presence of multiple
disconnected equilibria.

• To obtain the result above, we develop a technique to estimate the sensitivity of Fisher’s
equilibrium prices with respect to the consumers’ income, which might find wider
applications in the field.

• For the exchange model with Cobb-Douglas utility functions: if consumers are subject
to a differentiated tax regime, we show that the model is equivalent to a Cobb-Douglas
exchange economy with an extra good. This implies that the polynomial time com-
putability is preserved.

• For the exchange model with utility functions satisfying weak gross substitutability: if
consumers are subject to a differentiated tax regime, the techniques based on convex
programming seem to break down. However we are able to modify certain combinato-
rial algorithms and price adjustment methods to obtain polynomial time approximation
schemes in two special cases: an economy with linear utilities and an economy where
the demands do not change too rapidly as a function of the prices.
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1 Introduction

The equilibrium problem for a pure exchange economy amounts to finding a set of prices and
allocations of goods to economic agents such that each agent maximizes her utility, subject to
her budget constraints, and the market clears. The equilibrium depends only on the agents’
utility functions and initial endowments of goods.

If one aims at analyzing equilibrium problems arising from real world applications, the sce-
nario outlined above has often to be extended. Indeed one needs to take into account the presence
of suitable distortions, which might be, depending on the specific application, transaction costs,
transportation costs, tariffs, and/or taxes.

In these frameworks, which are the standard ones for applied computational work, one has
to deal with equilibrium conditions influenced by additional parameters which often change the
mathematical properties of the problem. For instance, in models with taxes, (i) the equilibrium
allocations might lose their Pareto optimality; (ii) restrictions which imply, in the absence of
taxes, the uniqueness of equilibrium prices might become compatible with multiple disconnected
equilibria.

In this paper, we consider exchange economies with either uniform or differentiated ad
valorem taxes (see Section 2 for the appropriate definitions). We explore the effects of such tax
distortions on models which admit - in the absence of taxes - polynomial time algorithms. In
spite of the loss of certain structural properties (including uniqueness), we are able to obtain
polynomial time algorithms or approximation schemes in several instances where the model
without taxes admitted them.
Background. We now describe the model of an exchange economy, and provide some basic

definitions. Let us consider m economic agents which represent traders of n goods. Let Rn
+

denote the subset of Rn with all nonnegative coordinates. The j-th coordinate in Rn will stand
for good j. Each trader i has a concave utility function ui : Rn

+ → R+, which represents
her preferences for the different bundles of goods, and an initial endowment of goods wi =
(wi1, . . . , win) ∈ Rn

+. At given prices π ∈ Rn
+, trader i will demand a bundle of goods xi =

(xi1, . . . , xin) ∈ Rn
+ which maximizes ui(x) subject to the budget constraint π · x ≤ π · wi. Let

Wj =
∑

i wij denote the total amount of good j in the market.
An equilibrium is a vector of prices π = (π1, . . . , πn) ∈ Rn

+ at which, for each trader i, there
is a bundle x̄i = (x̄i1, . . . , x̄in) ∈ Rn

+ of goods such that the following two conditions hold: (i)
for each trader i, the vector x̄i maximizes ui(x) subject to the constraints π · x ≤ π · wi and
x ∈ Rn

+; (ii) for each good j,
∑

i x̄ij ≤Wj.
The celebrated result of Arrow and Debreu [2] states that, under quite mild assumptions,

such an equilibrium exists.
We now give the definition of approximate equilibrium. We assume that all the utility

functions u() discussed in this paper satisfy u(0) = 0.
A bundle xi ∈ Rn

+ is an ε-approximate demand, for 0 < ε < 1, of trader i at prices π if
ui(xi) ≥ (1− ε)u∗ and π · xi ≤ (1 + ε)π · wi, where u∗ = max{ui(x)|x ∈ Rn

+, π · x ≤ π · wi}.
A price vector π ∈ Rn

+ is an ε-approximate equilibrium if there is a bundle xi for each i
such that (1) for each trader i, xi is an ε-approximate demand of trader i at prices π, and (2)
∑

i xij ≤ (1 + ε)
∑

i wij for each good j.
An important special case of an exchange economy is the distributional economy, where the

initial endowments are all collinear, i.e., wi = δiw, δi > 0, so that the relative incomes of the
traders are independent of the prices. This special case is equivalent to Fisher model, which is

1



a market of n goods desired by m utility maximizing buyers with fixed incomes.
For any price vector π, the vector xi(π) that maximizes ui(x) subject to the constraints

π · x ≤ π · wi and x ∈ Rn
+ is called the demand of the i-th trader. By adding up the traders’

demands, one gets the market demand.
The utility function of an individual trader is said to satisfy weak gross substitutability if

increasing the prices of some of the goods while keeping some others and her income fixed cannot
cause a decrease in demand for the goods whose price is fixed. It is well known and easy to
see that the market demand satisfies weak gross substitutability if the utility function of each
individual trader does.

A utility function u(·) is homogeneous of degree one if it satisfies u(αx) = αu(x), for all
α > 0, while it is log-homogeneous if it satisfies u(αx) = u(x) + log α, for all α > 0.

Both homogeneous and log-homogeneous utility functions represent consumers with homo-
thetic preferences, i.e., a bundle x is preferred to a bundle y if and only if the bundle αx is
preferred to the bundle αy, for all α > 0.

A linear utility function has the form ui(x) =
∑

j aijxij . A CES (constant elasticity of

substitution) utility function has the form u(xi) = (
∑

j(aijxij)
ρ)1/ρ, where −∞ < ρ < 1,

ρ 6= 0. The Cobb-Douglas utility function has the form ui(x) =
∏

j(xij)
aij , where aij ≥ 0 and

∑

j aij = 1.
Related Work. Substantial work has been done on extending equilibrium models to handle

scenarios where good purchases are subject to taxation [19, 20, 25, 26, 27]. Such efforts have
provided existential results [25, 26], evidence of tax-induced multiplicity [27] and of the loss
of Pareto-optimality of equilibria [19, 20]. Building upon this body of results, applied models
have been designed to explicitly take into account tax distortions (see for instance the popular
GAMS-MPSGE programming environment).

Previous work within theoretical computer science, which was initiated by [9], has been
focussed on restrictions under which the market equilibrium problem, in its version without
taxes, can be solved in polynomial time. These restrictions include (i) distributional economies
(the Fisher setting) where the traders have homogeneous utility functions [10, 18, 8, 13], (ii)
exchange economies which satisfy weak gross substitutability [16, 15, 7, 4], and (iii) exchange
economies with some families of CES and nested CES utility functions [3, 17]. For a more
comprehensive list of results, see [6].
Our Results. In this paper we analyze the effects of tax distortions on scenarios which, in

the absence of taxes, admit polynomial time algorithms. First of all, an exchange economy with
uniform ad valorem taxes can be efficiently transformed into an equivalent exchange economy
without taxes, with the same utility functions and different initial endowments, obtained by
redistributing the original ones (Section 2.1). Therefore algorithms for the exchange model that
do not depend on the distribution of endowments carry through the model with uniform taxes.

We prove that a distributional economy (which is equivalent to Fisher’s model) with uniform
ad valorem taxes and homothetic consumers can be efficiently transformed into an equivalent
two-trader exchange economy without taxes (Section 3.1). We then develop a polynomial-time
algorithm for approximating the equilibrium (Section 3.2). To analyze some parameters related
to the accuracy of the algorithm, we use the tool of implicit differentiation, which we believe
will find more general applications (Section 3.4). Note that a two-trader exchange economy
with homothetic consumers admits multiple disconnected equilibria [14]. The example in [14]
can be modified to model an exchange economy that is equivalent to a distributional economy
with uniform ad valorem taxes. Therefore our algorithm provides the first significant example
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of polynomial time computation of equilibria in a setting with multiple disconnected equilibria.
We then show that an n-good exchange economy with differentiated ad valorem taxes and m

Cobb-Douglas consumers can be efficiently transformed into an equivalent (n+1)-good exchange
economy without taxes, with m Cobb-Douglas consumers (Section 2.2). Since the equilibrium
for a Cobb-Douglas exchange economy can be computed in polynomial time [11], our reduction
shows that the same is possible for the model with non-uniform taxation.

We believe that this reduction is not possible for more general utility functions, including
some of the commonly studied ones. Consequently, we do not at present have polynomial
time algorithms or approximation schemes for the model with non-uniform taxes when the
traders have CES functions with −1 ≤ ρ < 0, even though there are explicit convex programs
and polynomial time algorithms for the corresponding pure exchange model [3]. The same
happens for certain nested CES functions [17]. The situation is notably better when the utility
functions satisfy weak gross substitutability. Here too, methods based on explicit or implicit
convex programs seem to be unavailable, in contrast with the pure exchange model. This is
true even for the case of linear utility functions, where explicit convex programs are known
for the pure exchange model [23, 15]. Interestingly, in spite of this, we are able to show that
the combinatorial algorithm of Garg and Kapoor [13] for linear utilities can be adapted to
handle the differentiated tax scenario (Section 4). We also consider the case of economies
with weak gross substitutability and demand functions that do not change too rapidly with
prices. In this case, it is possible to obtain a poly-time approximation scheme via a simple
price adjustment (tâtonnement) scheme. The main tool is Lemma 7 from [1], which guarantees
convergence of a normalized version of tâtonnement, where the price of one good (called the
numéraire) is kept fixed. By expressing the role of taxation in terms of a fictitious good (the
“tax good” of Section 2.2) which acts as the numéraire, we can then analyze the convergence
of the normalized process. The lemma above becomes thus relevant because it does not require
gross substitutability with respect to the good whose price is not part of the dynamics. For lack
of space, this last result is omitted from the extended abstract.

2 Exchange Economies with Taxes on Consumption

We describe the model of an exchange economy with ad valorem taxes as presented by Kehoe
([19], pp. 2127-2128), and distinguish between the uniform case, where the tax rate is uni-
form across consumers, and the non-uniform case, where the tax rate is differentiated among
consumers.

2.1 Uniform Ad Valorem Taxes

Consider a trader i with utility function ui(xi) and initial endowment wi.
Let τj ≥ 0 be the uniform ad valorem tax associated with the consumption of good j. This

means that if consumer i purchases xij units of good j at price πj, she will spend on this good
the amount πjxij + τjπjxij .

We postulate the presence of a special actor, the government, which will rebate the tax
revenues to consumers. Let θi ≥ 0, with

∑

i θi = 1, be the share of total tax revenues rebated
to consumer i as a lump sum.

Then the classical consumer’s maximization problem gets modified as follows:
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max ui(xi) (1)

s.t.
∑

j

πj(1 + τj)xij ≤
∑

j

πjwij + θiR, (2)

where xi ∈ Rn
+, and R is the total amount of revenues distributed by the government.

In this context, the market equilibrium problem consists of finding (π̄, x̄i, R̄) such that

• at prices π̄, x̄i solves (1) (2), ∀i (optimality and budget constraint are satisfied for all
consumers);

•
∑

i x̄ij =
∑

i wij , ∀j (the market clears all the goods);

• R̄ =
∑

j π̄jτj
∑

i x̄ij (the amount of taxes distributed is equal to the amount of taxes
collected).

We now show that the equilibria for such an economy are in a one-to-one correspondence
with the equilibria of an exchange economy without taxes, where the traders have a different
set of initial endowments, obtained by a suitable redistribution of the original ones. This
correspondence has been established in [5], where models of taxation were one of the targets of
some experimental work.

Whenever the equilibria of two economies are in a one-to-one correspondence, and can be
immediately computed one from the other, we say that the two economies are equivalent.

Proposition 1 [5] Let E = E(ui(·), wi, τ, θ) be an exchange economy with uniform ad valorem
taxes τ = (τ1, . . . , τn), and tax shares θ = (θ1, . . . , θm). E is equivalent to an exchange economy
without taxes E

′

= E
′

(ui(·), w
′

i) where w′

ij =
wij

1+τj
+ θi

τj

1+τj

∑

i wij .

Proof : The proof is in Appendix A. 2

2.2 Differentiated Taxes

We now consider a more general model in which the taxes on purchases are different for each
trader. We call this scheme specific taxation or differentiated ad valorem taxation.

In an exchange economy with specific taxes, τij ≥ 0 is the tax rate imputed to trader i on
purchase of good j. The setting for an exchange economy with specific taxes differs from that
with uniform taxes in the budget constraint, which is now given by

∑

j

πj(1 + τij)xij ≤ π · wi + θiR . (3)

At equilibrium, we must have R =
∑

ij πjτijxij .
The lack of uniformity of this model, which differentiates between consumers, prevents the

possibility of a direct reduction to a pure exchange economy, obtained by redistributing the
individual endowments, as in Proposition 1. Nevertheless, this model can be made similar to
a pure exchange economy with an extra good. Indeed, note that the budget constraint can be
rewritten as

π · xi + Rxi,n+1 ≤ π · wi + Rθi (4)
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where xi,n+1 =
P

j πjτijxij

R .
If we interpret R as the price of an additional (fictitious) good, that we call the “tax good”,

and θi and xi,n+1 as the i-th trader’s initial endowment and demand of such good, then inequal-
ity (4) corresponds to the budget constraint of a consumer in a pure exchange economy with an
extra good.

To get a reduction to an exchange economy without taxes, one would now need to exhibit a
utility function, defined on n + 1 goods, which, combined with the budget constraint (4), gives

a demand of xij(π,R) for the first n goods, and xi,n+1(π,R) =
P

j πjτijxij

R for the “tax good”.
We do not know if such a reduction is possible in general. However we show below (Propo-

sition 2) that it can be done in the case of exchange economies where the traders have Cobb-
Douglas utility functions.

Proposition 2 Let n and m be the number of goods and the number of traders, respectively. Let
ui(·), i = 1, . . . ,m, be Cobb-Douglas utility functions. We denote by En,m = En,m(ui(·), wi, τi, θ)
a Cobb-Douglas exchange economy with differentiated ad valorem taxes τi = (τi1, . . . , τin), and
tax shares θ = (θ1, . . . , θm). En,m is equivalent to an exchange economy without taxes E

′

n+1,m =

E
′

n+1,m(vi(·), w
′

i) where the vi(·)’s are Cobb-Douglas utility functions, and w′

i = (wi1, . . . , win, θi).

Proof : The proof is in Appendix B. 2

3 Collinear endowments distorted by uniform taxation

The general reduction of Proposition 1 shows that uniform taxation does not affect algorithms
which compute equilibrium prices for exchange economies without exploiting any particular
property of the initial endowments. Therefore, several results for pure exchange economies
extend to the model with uniform taxation. One interesting case where the redistribution of
initial endowments potentially carries negative computational consequences is that of exchange
economies with collinear endowments and homothetic preferences. In this setting an equilibrium
(without taxes) can be computed in polynomial time by convex programming [8], based on
certain aggregation properties of the economy which imply the existence of a representative
consumer [12]. The redistribution of endowments associated with taxation clearly destroys the
collinearity of endowments, and thus the collapse to a single consumer’s problem. We show
that in an exchange economy with collinear endowments and homothetic consumers, the model
with uniform taxation is equivalent to an exchange economy with two representative consumers.
Building upon this property, we then show how to compute an approximate equilibrium in
polynomial time for a wide family of problems.

3.1 Reduction to two representative consumers

Recall that a distributional economy is an exchange economy where the initial endowments of the
traders are collinear. In other words, the k-th trader has endowments of the form wk = γkw, for
k = 1, . . . ,m, where w = (w1, . . . , wn) describes the overall amount of each good in the market,
and γk is a positive constant less then one. We have

∑

k γk = 1. In this scenario, the relative
incomes of the traders are constants, so that the model is equivalent to Fisher’s model.
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If we specialize the model of Section 2.1 to an economy with collinear initial endowments,
then the redistribution described by Proposition 1, gives w

′

ij = γi
wj

1+τj
+ θi

τj

1+τj
wj .

Notice that the matrix whose columns represent the new initial endowments of the traders
has rank at most two. Indeed all the columns are linear combinations of the vectors z and s,
whose j-th entries are zj =

wj

1+τj
, and sj =

τj

1+τj
wj , respectively. Note that w′

i = γiz + θis.

(Note also that w = z + s and verify that
∑

i w
′

i = w.) Thus the effect of uniform taxation on
economies with proportional endowments amounts to an increase of the rank of the endowment
matrix from one to two.

Whenever the consumers are homothetic, exchange economies with a rank two endowment
matrix can be reduced to a two-trader economy, according to the following scheme:

1. Let z be the n-vector whose j-th component is
wj

1+τj
, and s be the n-vector whose j-th component

is
wjτj

1+τj
.

2. For all k, split the k-th trader into two traders, which have the same utility function of the original
trader and initial endowments γkz, and θks, respectively. This procedure produces two groups of
m traders each, where the traders in each group have proportional endowments.

3. Based on the properties in [12], aggregate all the consumers from each group into one representative
consumer, with endowment given by the sum of their endowments and utility function obtained
by aggregating the utility functions as in [12]. This gives a two-trader economy.

These arguments lead to the following result.

Proposition 3 Let ui(·), i = 1, . . . ,m, be log-homogeneous utility functions. Let Em = E(ui(·), w, τ, θ, γ)
be an m-trader distributional economy with uniform ad valorem taxes τ = (τ1, . . . , τn), tax
shares θ = (θ1, . . . , θm), and income shares γ = (γ1, . . . , γm). Em is equivalent to a two-
traders exchange economy without taxes E

′

2 = E
′

2(v1(·), v2(·), z, s), where v1 and v2 are the
log-homogeneous utility functions of the two consumers, and z and s are their initial endow-
ment vectors. Here, v1(x) (resp. v2(x)) is defined to be the maximum of

∑

i γiui(xi) (resp.
∑

i θiui(xi)) over all x1, . . . , xm ∈ Rn
+ such that

∑

i xi = x.

3.2 The algorithm

The reduction summarized in Proposition 3, combined with some results of Mantel [21] on
two-trader economies, suggest the following algorithm, which we call RSR (Reduce-Solve-
Reconstruct), for the computation of an approximate equilibrium. For the analysis, we assume
that τj > 0 for each j. Let τmin = minj τj and τmax = maxj τj.

Algorithm RSR

1. The input is given in terms of m log-homogeneous utility functions ui, i = 1, . . . , m, and vectors
w, γ, θ, τ .

2. Apply the transformation of Proposition 3, which returns an economy with two homothetic con-
sumers (with utility functions v1 and v2, and initial endowments z and s) and n goods.

3. Consider the following constrained maximization problem:

max αv1(x1) + (1− α)v2(x2)

s.t. x1 + x2 = w

x1, x2 ≥ 0

6



For a given 0 ≤ α ≤ 1, let x1(α) and x2(α) be maximizing allocations, and let π(α) be the vector of
shadow prices (Lagrange multipliers). It can be shown that π(α) ·x1(α) = α, π(α) ·x2(α) = 1−α,
and thus π(α)·w = 1. Moreover, x1(α) and x2(α) have the “right shape” – they are proportional to
the optimal bundles demanded by the two traders at the price π(α). Let B1(α) = π(α) ·(z− x̄1(α))
and B2(α) = π(α) · (s − x̄2(α)) be the functions expressing the (positive or negative) savings of
consumer 1 and 2, respectively. Note that B1(α)+B2(α) = 0, since z+s = w. Thus, if B1(α) = 0,
then we have π(α) · x1(α) = π(α) · z, and π(α) · x2(α) = π(α) · s. Thus, x1(α) and x2(α) are not
merely proportional to the optimal bundles, but they are the optimal bundles of the two traders
at price π(α). Thus π(α) is an equilibrium for the two trader economy [22].

We therefore find an approximate equilibrium for the two-trader economy by finding a value of α
such that B1(α) and B2(α) are sufficiently close to zero. In such a case, π(α), x1(α) and x2(α)
form an approximate equilibrium, provided that the functions Bi(α) are smooth enough (see the
extensive discussion below). The search for an appropriate value of α can be done by the bisection
method, i.e., binary search, guided by the value of Bi(α), computed from the values xi(α) and π(α)
returned by the solution of the maximization problem above. The applicability of bisection method
builds upon some results by Mantel [21] on the global convergence of the welfare adjustment process
when applied to two-trader economies.

4. From the solution to the two-trader problem, reconstruct the solution to the 2m-trader problem,
i.e., the corresponding allocations, and then to the m-trader problem without taxes.

5. Compute approximate equilibrium prices π̃j , j = 1, . . ., for the original economy with taxes, by

scaling prices πj(α), i.e., π̃j =
πj(α)
1+τj

.

3.3 Analysis of algorithm RSR

For any price vector π, it is easy to see that π·z
π·w lies in the interval [αmin = 1

1+τmax
, αmax =

1
1+τmin

]. Thus if B1(ᾱ) = 0, then ᾱ = π(ᾱ)·x1(ᾱ)
π(ᾱ)·w = π(ᾱ)·z

π(ᾱ)·w lies in the range [αmin, αmax]. It is

also easy to verify that B1(αmin) ≥ 0 and B1(αmax) ≤ 0. So we perform our binary search in
the interval [αmin, αmax].

The binary search is described and analyzed in Appendix C, where we show that Algorithm
RSR computes an ε-approximate equilibrium in time of the order of T (n)(log M + log 1

ε +
log 1

αmin
+ log 1

(1−αmax)), where T (n) is the polynomial bound on the time required to solve the

convex program, and M is an upper bound on the absolute value of the derivative of B1(α) in
the interval [αmin, αmax]. The next section takes a close look at the parameter M that influences
the running time.

3.4 Sensitivity of the welfare maximization problem

The running time of algorithm RSR depends on the logarithm of M , where M is an upper
bound on |B′

1(α)| for α in [αmin, αmax]. We now show how to estimate M for a wide family of
utility functions.

The two-trader maximization problem occurring in step 3 of Algorithm RSR, when written
in its expanded form, becomes the 2m-trader maximization problem:

max α
∑

i

γiu1i(x
1
i ) + (1− α)

∑

i

θiu2i(x
2
i )

s.t. x1
1 + . . . + x1

m + x2
1 + . . . + x2

m = w

x1
i , x2

i ≥ 0
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where u1i() = u2i() = ui(). Let x`
i(α) denote the solution of this problem, and π(α) the

corresponding shadow prices. We will simply denote x`
i(α) by x`

i and π(α) by p. Since B1(α) =
p · z − α, we can upper bound |B′

1(α)| by bounding the elements of the vector ∂p
∂α .

Let us consider the first order optimality conditions for the problem above, which we will
denote by

H(

y
︷︸︸︷
x, p , α) = 0.

These equations can be explicitly written as:







αγi∇u1i(x
1
i )− p = 0 ;

(1− α)θi∇u2i(x
2
i )− p = 0 ;

x1
1 + . . . + x1

m + x2
1 + . . . + x2

m − w = 0.

By Implicit Differentiation, from the first order conditions we obtain the following equation:

∇yH(x, p, α)
∂

∂α
y(α) +

∂

∂α
H(x, p, α) = 0. (5)

Let Ai and Bi denote the Hessian αγi∇
2u1i(x

1
i ), and (1−α)θi∇

2u2i(x
2
i ), respectively. Equa-

tion 5 takes the form:

2

6

6

6

6

6

6

6

6

6

6

6

4

A1 −I

. . .
...

Am −I

B1 −I

. . .
...

Bm −I

I . . . I I . . . I 0

3

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

∂x1

1

∂α

...
∂x1

m

∂α
∂x2

1

∂α

...
∂x2

m

∂α
∂p

∂α

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

+

2

6

6

6

6

6

6

6

6

6

6

6

4

γ1∇u11(x
1

1)
...

γm∇u1m(x1

m)
−θ1∇u21(x

2

1)
...

−θm∇u2m(x2

m)
0

3

7

7

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

4

0
0
0
...
0
0
0

3

7

7

7

7

7

7

7

7

7

5

Assume that the Ai’s and Bi’s be nonsingular, i.e., that they are negative definite. In this
case the matrix of the linear system above has an inverse, which is

2

6

6

6

6

6

6

6

4

A−1

1
− A−1

1
KA−1

1
−A−1

1
KA−1

2
· · · −A−1

1
KB−1

m A−1

1
K

...
. . .

...
...

...
. . .

...
...

−B−1

m KA−1

1
. . . . . . B−1

m − B−1

m KB−1

m B−1

m K

−KA−1

1
. . . . . . −KB−1

m K

3

7

7

7

7

7

7

7

5

,

where K =
(
A−1

1 + . . . + A−1
m + B−1

1 + . . . + B−1
m

)
−1

.
Let now d1i = γi∇u1i(x

1
i ), and d2i = θi∇u2i(x

2
i ). We obtain the expression

∂p

∂α
= −K(

∑

i

A−1
i d1i −

∑

i

B−1
i d2i), (6)

from which we can upper bound the absolute value of any element of ∂p
∂α in terms of

∥
∥A−1

i

∥
∥,

∥
∥B−1

i

∥
∥, ‖K‖, and ∇u`i(x

`
i), where ‖·‖ denotes the spectral norm of a matrix, which, in the case

of semi-definite matrices, coincides with the spectral radius.
In order to bound the spectral norm of K in terms of those of Ai and Bi, we now use a

classical result from linear algebra. The theorem we need (see [24], p.192) states that if C1 and
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C2 are real symmetric matrices with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn and µ1 ≥ µ2 ≥ . . . ≥ µn,
respectively, then the eigenvalues s1 ≥ s2 ≥ . . . ≥ sn of C1 + C2 satisfy λk + µn ≤ sk ≤ λk + µ1.

For any matrix Q, let λn(Q) denote its smallest eigenvalue. Then, if Q is positive definite,
the spectral norm of its inverse is given by 1

λn(Q) . We apply the theorem to the positive definite

matrix −K, and obtain (the calculation is shown for m = 1, for the sake of clarity)

∥
∥(−A−1

1 −B−1
1 )−1

∥
∥ = λmax(−A−1

1 −B−1
1 )−1 =

1

λmin(−A−1
1 −B−1

1 )
≤

≤
1

λmin(−A−1
1 ) + λmin(−B−1

1 )
=

1
1

‖A1‖
+ 1

‖B1‖

≤ min{‖A1‖ , ‖B1‖}.

Let now ‖Am‖ = mini ‖Ai‖, ‖Bm‖ = mini ‖Bi‖,
∥
∥A−1

M

∥
∥ = maxi

∥
∥A−1

i

∥
∥, and

∥
∥B−1

M

∥
∥ =

maxi

∥
∥B−1

i

∥
∥. From Equation 6, we then get the crude upper bound

∣
∣
∣
∣

∂pj

∂α

∣
∣
∣
∣
≤ 2mdmin{‖Am‖ , ‖Bm‖}max{

∥
∥A−1

M

∥
∥ ,

∥
∥B−1

M

∥
∥}, j = 1, . . . ,m,

where d is the maximum of the d`i’s.
We have shown how to bound |B′

1(α)| in terms of the Hessians of the utility functions u`i

evaluated at x`
i . For utility functions with negative definite Hessians, this gives an approach for

bounding |B′

1(α)|. We show how we can proceed even further for an interesting class of such
functions. (Incidentally, recall that negative definiteness of the Hessian is a sufficient condition
for strict concavity of the utility function, but it is not necessary.)

Let f(x1, . . . , xn) be a concave log-homogeneous utility function. Its Hessian F (x1, . . . , xn)
is negative semi-definite. Consider the function g(x1, . . . , xn) = 1

n(log x1 + . . . + log xn). Its
Hessian G(x1, . . . , xn) is the diagonal matrix whose (i, i)-th entry is − 1

nx2

i

, so that the maximum

eigenvalue of −G is at most 1
nc2

, where c is the minimum consumption of any good in x, and
its minimum eigenvalue is at least 1

nC2 , where C is the maximum consumption.
Let now consider the function h(x1, . . . , xn) = (1 − σ)f(x1, . . . , xn) + σg(x1, . . . , xn), for

a small positive constant σ less than one. This function is log-homogeneous, and its Hessian
H(x1, . . . , xn) is negative definite (again by applying the result in [24]).

Let fmax = maxij

∣
∣
∣

∂2f
∂xi∂xj

∣
∣
∣. We obtain:

‖H‖ ≤ (1− σ)nfmax +
σ

nc2
,

∥
∥H−1

∥
∥ ≤

1

(1− σ)λmin(−F ) + σλmin(−G)
≤

nC2

σ
. (7)

Therefore the function h (which is intended as an approximation of the concave log-homogeneous
function f) is such that: (i) the Hessian H is a negative definite matrix (if there is positive con-
sumption of each of the goods);(ii) the spectral norm of H can be bounded in terms of the
minimum consumption, and the absolute value of the maximum entry of F , while the spectral
norm of its inverse can be bounded in terms of the maximum consumption.

In order to lower bound the minimum consumption c we can proceed as follows. Let us
consider the maximization problem of a consumer with a utility function of the form h(x) =
(1 − σ)f(x) + σg(x), where f and g are as above, and budget constraint π · x = I. The first
order conditions for this problem are of the form

(1− σ)
∂f(x)

∂xk
+ σ

1

nxk
= λπk.

9



If we multiply both sides of this equation by xk, and then sum over k, we obtain that λ = 1
I .

Since ∂f(x)
∂xk

≥ 0, we get xk ≥ I σ
nπk

. Since α ∈ [αmin, αmax], the minimum expenditure Imin over
all traders at α is bounded below by mini min{γiαmin, θi(1−αmax)}. Since the total expenditure
of the 2m traders in the welfare maximization problem above is one, then pkwk ≤ 1, from which
we must have xk ≥ I σwk

n . Therefore, the minimum consumption is lower bounded by σIminwmin

n ,
where wmin is the quantity of the most scarce good.

The maximum consumption C can be upper bounded by observing that πjxj ≤ 1. Now
notice that at least one of the 2m traders has an expenditure of at least 1/2m. This trader will
demand at least σ

2πjnm units of good j. If π is to be an equilibrium, we must have σ
2πjnm ≤ wj .

Therefore we obtain C ≤ 2nmwmax

σ , where wmax the quantity of the most abundant good.
Finally, for a wide family of utility functions, we can upper bound fmax in terms of minimum

and maximum consumptions. The reader is invited to check this when f is the log of a CES
function.

4 Linear Exchange Economies with Differentiated Taxes

We consider an economy with m traders and n goods where each trader has a linear utility
function. Let ui =

∑

j aijxj denote the utility function of the i-th trader. Each trader has
the initial endowment wi ∈ Rn

+. Let τij ≥ 0 denote the tax rate of the i-th trader for the
consumption of the j-th good. And let θi denote the share of the i-th trader in the overall
tax collected. We have

∑

i θi = 1. An equilibrium is a price vector π = (π1, . . . , πn) and a
number R ≥ 0 at which there are bundles xi ∈ Rn

+ for each trader i such that (1) xi maximizes
ui(x) over all x ∈ Rn

+ such that the cost
∑

j πj(1 + τij)xj of bundle x is at most the income
θiR +

∑

j πjwij ; (2)
∑

i xij ≤
∑

i wij for each good j; and (3)
∑

i Ti(xi, π) = R, where Ti(x, π)
is defined to be

∑

j τijπjxj, the tax that i has to pay to consume x at price π.
For ε > 0, we define an ε-approximate equilibrium to be a price vector π = (π1, . . . , πn)

and a number R ≥ 0 at which there are bundles xi ∈ Rn
+ for each trader i such that (1)

π · xi + T (xi, π) ≤ (1 + ε)(θiR +
∑

j πjwij), and ui(xi) ≥ (1 − ε)vi(π,R), where vi(π,R) is the
maximum value of ui(x) over all x ∈ Rn

+ such that
∑

j πj(1 + τij)xj ≤ θiR +
∑

j πjwij; (2)
∑

i xij ≤ (1 + ε)
∑

i wij for each good j; and (3) (1− ε)R ≤
∑

i Ti(xi, π) ≤ (1 + ε)R.
We now describe our algorithm, an adaptation of the auction based algorithm of Garg and

Kapoor [13], for computing an approximate equilibrium of the model. The analysis of the
algorithm assumes that aij > 0 for each i and j. Let τmax denote maxi,j τij. For simplifying
some expressions, we also assume, without loss of generality, that

∑

i wij = 1 for each j. Let
wmin = mini,j wij. Our analysis also assumes that wmin > 0. Let κ = 1/wmin.

Let δ = ε
90n(1+τmax)κ . The algorithm has variables πj for the prices, and a variable R that

stands for the tax money that is distributed to the buyers. The algorithm starts with all prices
set to 1. From time to time, it increases the price of some good by a multiplicative factor of
1 + δ. It has variables yij and hij corresponding to the amounts of good j allocated to i at
the current price πj and the previous price πj/(1 + δ), respectively. Let xij = yij + hij. Let
T ′

i (yi, hi, π) =
∑

j τij(πjyij +
πj

1+δhij), the tax that i pays in consuming yi and hi. Let

Di(π) = {j|
aij

(1 + τij)πj
≥

aik

(1 + τik)πk
for 1 ≤ k ≤ n}.

Initialize. Let πj = 1 for 1 ≤ j ≤ n, R = 1, yij = 0 and hij = 0 for each i and j.
Phase 1:

10



1. We make a call to the procedure Allocatemore(), described below.

2. If
∑

i T ′
i (yi, hi, π) = R, let R← R(1 + δ) and go to Step 1 of Phase 1.

3. If for each i, we have
∑

j(πjyij +
πj

1+δ
hij) + T ′

i (yi, hi, π) = θiR +
∑

j πjwij , the algorithm ends.

4. If for some i, we have
∑

j(πjyij +
πj

1+δ
hij)+T ′

i (yi, hi, π) < θiR+
∑

j πjwij , consider any j ∈ Di(π).
An inspection of Allocatemore() tells us that we must have hi′j = 0 for every trader i′ and
∑

i′ yi′j = 1. We call Raiseprice(j). If πk > 0 for every good k, we jump to Step 1 of Phase 2.
Otherwise, return to Step 1 of Phase 1.

Phase 2:

1. If R ≤ δ
∑

j πjwij for each i, let R←
∑

i T ′(yi, hi, π); the algorithm ends.

2. Make a call to Allocatemore().

3. If
∑

i T ′
i (yi, hi, π) = R, the algorithm ends.

4. If for each i, we have
∑

j(πjyij +
πj

1+δ
hij) + T ′

i (yi, hi, π) = θiR +
∑

j πjwij , the algorithm ends.

5. If for some i, we have
∑

j(πjyij +
πj

1+δ
hij)+T ′

i (yi, hi, π) < θiR+
∑

j πjwij , consider any j ∈ Di(π).
We must have hi′j = 0 for every trader i′ and

∑

i′ yi′j = 1. We call Raiseprice(j) and return to
Step 1 of Phase 2.

To complete the description of the algorithm, we need to specify the two procedures Allocatemore
and Raiseprice.

The procedure Allocatemore. In this procedure, we first solve a linear program, which
uses as data the current values of the variables π, y, h, and R. The linear program has variables
y′ij and h′

ij for each trader i and good j. The linear program is:

Maximize
X

i,j

y
′

ij

Subject to
X

i

(y′

ij + h
′

ij) ≤ 1 for each j

X

i

X

j

(y′

ij + h
′

ij) = 1 for each j such that πj > 1

X

i

T
′

i (y
′

i, h
′

i, π) ≤ R

X

j

πjy
′

ij +
πj

1 + δ
h
′

ij + T
′

i (y
′

i, h
′

i, π) ≤ θiR +
X

j

πjwij for each i

y
′

ij = 0 for each i and j 6∈ Di(π).

h
′

ij = 0 for each i and j such that hij = 0.

y
′

ij ≥ 0 for each i, j

h
′

ij ≥ 0 for each i, j

As we argue below, this linear program will always be feasible. Thus the maximization is well
defined. After solving the linear program, we set yij = y′ij and hij = h′

ij for each i and j. This
completes the description of the procedure Allocatemore.

The procedure Raiseprice(j). In this procedure, we set πj ← πj(1 + δ), hij ← yij for
each i, and yij ← 0 for each i. This completes the description of Raiseprice.
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Phases 1 and 2 of our algorithm are similar to the basic algorithm of Garg and Kapoor [13]
- a call to Allocatemore() replaces the sequence of steps in their algorithm occurring between
two price raises. Our algorithm needs to track the relation of

∑

i T
′(yi, hi, π) – the tax paid as a

consequence of consumption – to R, the tax that is distributed as income. The reason we have
Phase 2 is that at the end of Phase 1,

∑

i T
′(yi, hi, π) can be significantly smaller than R.

Theorem 4 For any ε > 0, our algorithm computes an ε-approximate equilibrium for the model
in time that is polynomial in the input size, 1/ε, and κ.

For lack of space, the proof of this theorem is given in Appendix D. In the process, we state
some invariants that help in understanding the algorithm.
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Appendix A: Proof of Proposition 1

¿From the market clearance condition, it follows that the tax revenue at equilibrium must be

R =
∑

j

πjτj

∑

i

xij =
∑

j

πjτj

∑

i

wij .

We can therefore eliminate the equilibrium requirement R =
∑

j πjτj
∑

i xij by substituting
∑

j πjτj
∑

i wij for R in the right hand side of inequality (2), which thus becomes
∑

j πj(wij +
θiτj

∑

i wij).
After dividing and multiplying each term of this expression by 1 + τj , the budget constraint

can be rewritten as

∑

j

πj(1 + τj)xij ≤
∑

j

πj(1 + τj)w
′

ij , where w
′

ij =
wij

1 + τj
+ θi

τj

1 + τj

∑

i

wij .

We have therefore reduced the equilibrium in the original economy to an equilibrium in a
pure exchange economy, where the i-th trader now has an initial endowment w′

i. It is easy to
check that

∑

i w
′

ij =
∑

i wij for each j, so that the two economies have the same quantity of
each good. Finally we have that (π1, . . . , πn) is an equilibrium for the original economy E if and
only if ((1 + τ1)π1, . . . , (1 + τn)πn) is an equilibrium for the pure exchange economy E

′

.

Appendix B: Proof of Proposition 2

Suppose that consumer i has a Cobb-Douglas utility function of the form

ui(xi) =

n∏

j=1

x
αij

ij

where αij ≥ 0,
∑n

j=1 αij = 1. It is known (and easy to see) that the resulting demand is such
that consumer i will spend on good j an αij fraction of her income. In view of the budget
constraint (3), the i-th consumer income is π · wi + θiR, with “apparent” prices πj(1 + τij).
Thus,

xij(π,R) =
αij

πj(1 + τij)
(π · wi + θiR), j = 1, . . . , n.

We want to derive a consumer’s problem that looks like the consumer’s problem of an economy
without taxes, and that induces the same demand as the original one. The new problem will
have an additional good, the “tax good”, a utility function v(·) defined on n + 1 goods, and a
budget constraint as in (4). The demand for the tax good has to be

xir(π,R) =

∑

j πjτijxij(π,R)

R
=

∑

j
αijτij

1+τij

R
(π · wi + θiR).

Observe that this demand looks exactly like the demand generated by a Cobb-Douglas utility
function: a constant divided by the price and multiplied by the income. Thus, if we set α̃ir =
∑

j
αijτij

1+τij
, α̃ij = αij/(1 + τij), the utility function v that we want is the Cobb-Douglas function

v(xi1, . . . , xin, xir) = xα̃ir

ir

∏

j

x
α̃ij

ij .
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Appendix C: Analysis of algorithm RSR

The correctness of the aggregation and disaggregation processes executed in steps 2 and 4 of
Algorithm RSR readily follows from Eisenberg’s results [12].

Consider now the two-trader problem of step 3, where we approximately compute a zero of B1

by means of the bisection method, starting from the interval [αmin, αmax]. Each bisection step
depends on the sign of B1 and is thus guided by the solution to an instance of the constrained
maximization problem.

The next Lemma gives a stopping criterion which guarantees an ε-equilibrium:

Lemma 5 If for some α we have 0 ≤ B1(α) ≤ α(1−α)ε then the prices π(α) and the allocations
x1(α) and (1− ε)x2(α) are an ε-equilibrium.

Proof : The hypothesis of the Lemma implies that B1(α) ≤ εmin{α, 1 − α}.
The ε-optimality of the first consumer is guaranteed when B1(α) ≤ εα: since α > 0, we

have that 0 ≤ B1(α) ≤ εα is equivalent to 0 ≤ π(α) · z − π(α) · x1(α) ≤ αε and, using that
α = π(α) · x1(α), it is equivalent to

1

1 + ε
π(α) · z ≤ π(α) · x1(α) ≤ π(α) · z. (8)

On the other hand, if we want a similar inequality for the other trader, we observe that

0 ≥ B2(α) ≥ −ε(1− α) (9)

is equivalent to

π(α) · s ≤ π(α) · x2(α) ≤
1

1− ε
π(α) · s. (10)

Thus the bundles x1(α) and x2(α) nearly exhaust but do not significantly exceed the re-
spective budgets π(α) · z and π(α) · s. Since they have the “right shape”, we are at an O(ε)-
equilibrium.

2

Corollary 6 Suppose that B1(·) is differentiable in (0, 1) and that there exists M > 0 such
that for all α ∈ [αmin, αmax] we have d

dαB1(α) ≥ −M . If the bisection method applied to

B1 in [αmin, αmax] stops when it determines an interval [α, β] such that β − α ≤ α(1−α)ε
M and

B1(α) ≥ 0, B1(β) ≤ 0, then the conclusion of Lemma 5 follows.

Proof : Under the hypotheses, B1(α)−B1(β) ≤ α(1−α)ε. In particular, B1(α) ≤ α(1−α)ε
and the conclusion of Lemma 5 follows. 2

Now we need to argue that from an ε-approximate equilibrium to the two trader economy we
can recover an ε-approximate equilibrium to the original economy with taxes. We will consider
the implications of undoing the aggregations and disaggregations into equivalent economies one
by one, in reverse order.
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Suppose that the algorithm reaches the conclusion of Lemma 5 at α = α1. Let π̃ = π(α1),
x̃1 = x1(α1), x̃2 = x2(α1), and α2 = 1− α1. Write the maximization problem in Step 5 of the
algorithm in its extensive form:

max α1(
∑

i

γiui(x
′

i)) + (1− α1)(
∑

i

θiui(x
′′

i ))

s.t.
∑

i

x′

i = x1

∑

i

x′′

i = x2

x1 + x2 = w

x′

i, x′′

i ≥ 0

Let x̃′

i = x′

i(α1) and x̃′′

i = x′′

i (α1). Obviously, we have
∑

i x̃
′

i = x̃1 and
∑

i x̃
′′

i = x̃2. It can be
shown, using the log-homogeneity of the utility functions, that π̃ · x̃′

i = γiα1 and π̃ · x̃′′

i = θiα2.
For the disaggregation into 2m traders, we further note that x̃′

i and x̃′′

i have the right
shape – they are proportional to the bundles demanded by the two instances of the i-th trader.
Since α1 = π̃ · x̃1 roughly equals π̃ · z (recall the proof of Lemma 5), it follows that π̃ · x̃′

i = γiα1

roughly equals γiπ̃ ·z. Similarly, π̃ · x̃′′

i = θiα2 roughly equals θiπ̃ ·s. So we are at an approximate
equilibrium of the 2m trader economy.

For the reaggregation of pairs of traders, it is immediate that π̃ is an approximate equilibrium
of the m trader pure exchange economy. The approximate utility maximizing bundles are
xi = x′

i + x′′

i .
The natural candidate equilibrium prices for the original economy with taxes are πj =

π̃j/(1 + τj). We set R =
∑

j πjτjwj. Since wj =
∑

i xij , R =
∑

ij πjτjxij. Obviously, we have
∑

i xi = w. We can easily verify that the xi are approximate utility maximizing bundles for
each trader at prices π and R.

The running time of Algorithm RSR is dominated by step (3), which can be executed in
time proportional to T (n)(log M +log 1

ε +log 1
αmin

+log 1
(1−αmax)), where T (n) is the polynomial

bound on the time required to solve the convex program.

Appendix D: Proof of Theorem 4

Invariants. We begin by stating some important invariants maintained by the algorithm.

Proposition 7 At any stage in the algorithm, we have (1) yij > 0 =⇒ j ∈ Di(π); (2)
hij > 0 =⇒ j ∈ Di((

πj

1+δ , π−j)), where (r, π−j) is defined to be the vector that differs from π
only in its j-th component, which is r; (3) πj > 1 =⇒

∑

i xij = 1; (4) The linear program in
Allocatemore() is always feasible.

Proof : The variables y, h, and π, are only changed by calls to Allocatemore() or Raiseprice().
Note that the linear program in Allocatemore() is feasible if (1) and (3) hold: y′i = yi and h′

i = hi

yields a feasible solution. On the other hand, it is evident that Allocatemore() preserves (1),
(2), and (3).
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It is also easy to check that a call to Raiseprice() preserves (1), (2), and (3). Arguments are
similar to those in [13]. 2

Proposition 8 At any stage of the algorithm, we have: (1)
∑

i xij ≤ 1 for each j; (2)
∑

i T ′

i (yi, hi, π) ≤ R.

Proof : Easily follows by inspecting Allocatemore() and Raiseprice(). 2

Proposition 9 At any stage of the algorithm, except possibly after the execution of the (termi-
nal) assignment statement in Step 1 of Phase 2, we have, for each i, that

∑

j πjyij +
πj

1+δhij +
T ′

i (yi, hi, π) ≤ θiR +
∑

j πjwij .

Proposition 10 Let πmax denote the largest component of π and πmin the smallest com-
ponent of π. At any stage of the algorithm, we have (1) πmax

πmin
≤ 2amax(1+τmax)

amin
; (2) R ≤

max{1, 2nτmaxπmax}.

Proof : To prove (1), it is sufficient to consider the case when πmax > 1. Suppose πmax =
πj > 1. Then by statement (3) of Proposition 7, we must have xij > 0 for some i. By
Proposition 7, we either have j ∈ Di(π) or j ∈ Di((

πj

1+δ , π−j)). In either case, it is true that j ∈

Di((
πj

1+δ , π−j)). Thus
aij(1+δ)
(1+τij )πj

≥ aik

(1+τik)πk
for every k. Rearranging, we have

πj

πk
≤

aij(1+τik)(1+δ)
aik(1+τij ) ,

which completes the proof of (1).
For (2), observe that if at some stage R > 1, then R = (1+δ)R′, where R′ =

∑

i T
′

i (ŷi, ĥi, π̂),

where ŷi,ĥi, and π̂ are the values at some previous stage of yi, hi, and π. Using statement (1)
of Proposition 8, we see that

∑

i

T ′

i (ŷi, ĥi, π̂)≤
∑

i

Ti(x̂i, π̂) =
∑

i

∑

j

τijx̂ijπ̂j

≤
∑

i

∑

j

τmaxx̂ijπ̂j = τmax

∑

j

π̂j

∑

i

x̂ij

≤ τmax

∑

j

π̂j.

Thus R ≤ (1 + δ)τmax
∑

j π̂j ≤ (1 + δ)nτmaxπmax, since πmax ≥ πj ≥ π̂j for every j (the
algorithm never decreases a price). This completes the proof. 2

Running Time. For each phase, we bound the number of times we call Raiseprice and the
number of times we raise the value of R. First observe that the moment πmin exceeds 1 in Phase
1, we jump to Phase 2 via Step 4 of phase 1.

Thus πmin ≤ (1 + δ) ≤ 2 in Phase 1, and by statement (1) in Proposition 10, we have

πmax ≤
4amax(1+τmax)

amin
in Phase 1. Thus, by statement (2) in Proposition 10, we have R ≤

max{1, 8nτmax(1+τmax)amax

amin
} ≤ 8n(1+τmax)2amax

amin
in Phase 1.

Since R is never raised in Phase 2, we have that

R ≤ α =
8n(1 + τmax)2amax

amin
(11)
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throughout the algorithm.
We now use this bound to bound πmax in Phase 2. Phase 2 stops when R ≤ δ

∑

j πjwij

for each i, due to the stopping rule in Step 1 of Phase 2. To have R > δ
∑

j πjwij for some

i, we must have R > δπminwmin, which implies that πmin < R
δwmin

. Thus we must have

πmin < (1+δ)R
δwmin

≤ 2R
δwmin

throughout Phase 2. Using statement (1) in Proposition 10, and

Equation 11, we have πmax ≤
16n(1+τmax)2amax

aminδwmin
. Since this bound is larger than the bound we

established for πmax in Phase 1, we conclude that

πmax ≤ β =
16n(1 + τmax)2amax

aminδwmin
(12)

It follows that the number of calls to Raiseprice plus the number of times R is raised is
bounded by n log1+δ α+log1+δ β, which is a polynomial in the input size, 1/ε, and κ. It follows
that the running time of the algorithm is bounded by a polynomial in the input size, 1/ε, and
κ.
Correctness. We now argue that the algorithm terminates at an ε-approximate equilibrium.
Suppose that the algorithm terminates either via Step 3 of Phase 1 or Step 4 of Phase 2.

Then, we have for each i, T ′

i (yi, hi, π) +
∑

j πjxij ≥ T ′

i (yi, hi, π) +
∑

j(πjyij +
πj

1+δhij) =
θiR +

∑

j πjwij . Adding over all i, we get

∑

i

T ′

i (yi, hi, π) +
∑

j

πj

∑

i

xij ≥ R +
∑

j

πj

∑

i

wij . (13)

Multiplying the j-th inequality in statement (1) of Proposition 8 by πj, adding these in-
equalities and the inequality in statement (2) of Proposition 8, we get

∑

i

T ′

i (yi, hi, π) +
∑

j

πj

∑

i

xij ≤ R +
∑

j

πj

∑

i

wij . (14)

Thus for Equation 13 to hold, the inequalities in Proposition 8 must be equalities.
So we have for each j that

∑

i xij =
∑

i wij . Also, we have
∑

i Ti(xi, π) ≤
∑

i(1 +
δ)T ′

i (yi, hi, π) = (1 + δ)R, whereas
∑

i Ti(xi, π) ≥
∑

i T
′

i (yi, hi, π) = R, so we have R ≤
∑

i Ti(xi, π) ≤ (1 + δ)R.
For each trader i, we have Ti(xi, π) +

∑

j πjxij ≥ T ′

i (yi, hi, π) +
∑

j πjxij ≥ θiR +
∑

j πjwij .
Thus the bundle xi costs i at least her income. But by Proposition 7, we have that if xij > 0
then either j ∈ Di(π) or j ∈ Di((

πj

1+δ , π−j)). Thus i only spends money on goods that nearly

optimize her ‘bang for the buck’. It follows via standard arguments that ui(xi) ≥
vi(π,R)

1+δ .

On the other hand, Ti(xi, π) +
∑

j πjxij ≤ (1 + δ)(T ′

i (yi, hi, π) +
∑

j(πjyij +
πj

1+δhij)) =
(1 + δ)(θiR +

∑

j πjwij), so the bundle xi does not cost i more than 1 + δ times its income.
Thus we are at a δ-approximate equilibrium.
Now suppose that the algorithm terminates at either Step 1 of Phase 2 or Step 3 of Phase 2.

Note that we enter Phase 2 when πk > 1 for every good k, so by statement (3) of Proposition
7 we have

∑

i xik = 1 for every good k. Moreover, termination at either of these steps implies
that

∑

i T ′(yi, hi, πi) = R, which implies that R ≤
∑

i T (xi, π) ≤ (1 + δ)R.
We now reason about the budget constraints of the traders. By Proposition 9, we have, for

each i

Ti(xi, π) +
∑

j

πjxij ≤ (1 + δ)(T ′

i (yi, hi, π) +
∑

j

πjyij +
πj

1 + δ
hij) ≤ (1 + δ)(θiR +

∑

j

πjwij),
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if we terminate via Step 3 of Phase 2.
If we terminate after making the assignment to R in Step 1 of Phase 2, then we have

R ≤ δ
∑

j πjwij for each i just before the assignment, which implies that θiR +
∑

j πjwij ≤
(1 + δ)

∑

j πjwij just before the assignment. So the assignment decreases the income of each
trader i by at most a multiplicative factor of (1+ δ). Since the inequality in Proposition 9 holds
just prior to the assignment, we have that for each i,

T ′

i (yi, hi, π) +
∑

j

πjyij +
πj

1 + δ
hij ≤ (1 + δ)(θiR +

∑

j

πjwij)

after the assignment.
It follows that on termination, we have for each i

Ti(xi, π) +
∑

j

πjxij ≤ (1 + δ)2(θiR +
∑

j

πjwij) ≤ (1 + 3δ)(θiR +
∑

j

πjwij). (15)

Note that this inequality also holds if we terminate via Step 3 of Phase 2.
Having argued that no trader exceeds his budget by much, we now argue that each trader

almost exhausts his budget. We have

∑

i

(θiR+
∑

j

πjwij−
∑

j

πjxij−Ti(xi, π)) =
∑

j

πj(
∑

i

wij−
∑

i

xij)+R−
∑

i

Ti(xi, π) ≤ 0. (16)

It follows that for any trader i′, we have

θi′R +
∑

j

πjwi′j −
∑

j

πjxi′j − Ti′(xi′ , π) ≤
∑

i

max{0,
∑

j

πjxij + Ti(xi, π)− θiR−
∑

j

πjwij}.

Using Equation 15, and Proposition 10, we have

θi′R +
∑

j

πjwi′j −
∑

j

πjxi′j − Ti′(xi′ , π)≤
∑

i

3δ(θiR +
∑

j

πjwij) = 3δ(R +
∑

j

πj)

≤ 3δ(2nπmax + 2nπmaxτmax +
∑

j

πj)

≤ 3δ3nπmax(1 + τmax)

≤
ε

10
πkwi′k ≤

ε

10
(
∑

j

πjwi′j + θi′R).

Here k is the good for which πmax = πk.
We have argued that each trader i spends at least a fraction 1

1+ε of her budget on bundle

xi. But by Proposition 7, we have that if xij > 0 then either j ∈ Di(π) or j ∈ Di((
πj

1+δ , π−j)).
Thus i only spends money on goods that nearly optimize her bang for the buck. It follows
that ui(xi) ≥ (1− cε)vi(π,R), where c ≥ 1 is some constant. Thus we are at a cε-approximate
equilibrium.
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