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Doctor of Philosophy

Abstract

How much can randomness help computation? Motivated by this general question and
by volume computation, one of the few instances where randomness provably helps,
we analyze a notion of dispersion and connect it to asymptotic convex geometry.
We obtain a nearly quadratic lower bound on the complexity of randomized volume
algorithms for convex bodies in Rn (the current best algorithm has complexity roughly
n4, conjectured to be n3). Our main tools, dispersion of random determinants and
dispersion of the length of a random point from a convex body, are of independent
interest and applicable more generally; in particular, the latter is closely related to
the variance hypothesis from convex geometry. This geometric dispersion also leads
to lower bounds for matrix problems and property testing.

We also consider the problem of computing the centroid of a convex body in Rn.
We prove that if the body is a polytope given as an intersection of half-spaces, then
computing the centroid exactly is #P -hard, even for order polytopes, a special case
of 0–1 polytopes. We also prove that if the body is given by a membership oracle,
then for any deterministic algorithm that makes a polynomial number of queries
there exists a body satisfying a roundedness condition such that the output of the
algorithm is outside a ball of radius σ/100 around the centroid, where σ2 is the
minimum eigenvalue of the inertia matrix of the body.

Finally, we consider the problem of determining whether a given set S in Rn is
approximately convex, i.e., if there is a convex set K ⊆ Rn such that the volume
of their symmetric difference is at most ε vol(S) for some given ε. When the set
is presented only by a membership oracle and a random oracle, we show that the
problem can be solved with high probability using poly(n)(c/ε)n oracle calls and
computation time. We complement this result with an exponential lower bound for
the natural algorithm that tests convexity along “random” lines. We conjecture that
a simple 2-dimensional version of this algorithm has polynomial complexity.

Thesis Supervisor: Santosh S. Vempala
Title: Associate Professor of Applied Mathematics
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Notation

This is a list of symbols used frequently with their descriptions and, in parentheses,
the numbers of the pages in which they are introduced.

Ri ith row (15)
R−i all rows but ith (15)

R̂ normalized rows (15)
conv convex hull (15)
vol volume (15)
D, D′ distributions (17)
Q membership oracle (16)
Q′ modified oracle (17)
dispµ(p) dispersion of a distribution µ (30)
K convex bodies and ∅ (60)
ε-convex (61)
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Introduction

Among the most intriguing questions raised by complexity theory is the following:
how much can the use of randomness affect the computational complexity of algorith-
mic problems? At the present time, there are many problems for which randomized
algorithms are simpler or faster than known deterministic algorithms but only a few
known instances where randomness provably helps. As we will see, one of these known
instances is the geometric problem of computing the volume of a convex body in Rn

given by a membership oracle. One of the results of this work is another example
where randomness provably helps: the problem of computing the centroid of a convex
body.

The best known algorithm for approximating the volume of a convex body in Rn

has query complexity O(n4) [29]. The second and main contribution of this work is
a lower bound of Ω(n2/ log n) for the complexity of approximating the volume. This
lower bound actually holds for parallelotopes of the form {x : ‖Ax‖∞ ≤ 1}, for an
n × n matrix A. As the volume of such a parallelotope is proportional to 1/|det A|,
what we actually give is a lower bound for the problem of approximating |det A| when
A is accessed through an oracle that given q ∈ Rn decides whether ‖Aq‖∞ ≤ 1. We
also give similar lower bounds for the problem of approximating the product of the
lengths of the rows of A, and approximating the length of a vector.

To prove this lower bounds we introduce a measure of dispersion of a distribu-
tion that models the probability of failure of an algorithm against a distribution on
inputs. The computational lower bounds are then a consequence of two dispersion
lower bounds that we prove: dispersion of the determinant of certain distributions on
matrices, and dispersion of the length of a random vector from a polytope. This last
results has interesting connections with an important open problem in asymptotic
convex geometry, the variance hypothesis.

Finally, we study the problem of testing whether a set given by a membership
oracle and a random oracle is approximately convex. We give an exponential time
algorithm and we prove that a very natural algorithm that checks the convexity of
the input set along random lines has exponential complexity.

The thesis is organized as follows:

Chapter 2 introduces some notation and basic results that will be used in the rest
of this work.

Chapter 3 gives known deterministic lower bounds for the complexity of the vol-
ume and gives our deterministic lower bounds for the complexity of the centroid.

Chapter 4 defines our notion of dispersion of a distribution, proves a few basic

13



properties of it and then proceeds to prove our two main dispersion results: dispersion
of the length of a random vector from a polytope and dispersion of the determinant
of a random matrix.

Chapter 5 uses the dispersion of the determinant to prove our lower bound for the
complexity of approximating the volume.

Chapter 6 uses the dispersion of a random vector from a polytope to prove our
other two randomized lower bounds, for the length of a vector and the product of the
rows of a matrix.

Chapter 7 presents our results about the complexity of testing a set for convexity.
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Chapter 1

Preliminaries

1.1 Notation and definitions

Let S ⊆ Rn. If S is measurable, vol(S) denotes the volume of S. The convex hull of
S is denoted conv(S).

Let x · y =
∑n

i=1 xiyi, the usual inner product in Rn.

A parallelotope is any set that results from an affine transformation of a hypercube.
Generally we will consider parallelotopes of the form {x ∈ Rn : ‖Ax‖∞ ≤ 1} specified
by an n× n matrix A. N(0, 1) denotes the standard normal distribution, with mean
0 and variance 1.

The n-dimensional ball of radius 1 centered at the origin is denoted Bn. We define
πV (u) to be the projection of a vector u to a subspace V . Given a matrix R, let Ri

denote the i’th row of R, and let R̂ be the matrix having the rows of R normalized
to be unit vectors. Let R̃i be the projection of Ri to the subspace orthogonal to
R1, . . . , Ri−1. For any row Ri of matrix R, let R−i denote (the span of) all rows
except Ri. So πR⊥−i

(Ri) is the projection of Ri orthogonal to the subspace spanned

by all the other rows of R.

1.2 Yao’s lemma

We will need the following version of Yao’s lemma. Informally, the probability of
failure of a randomized algorithm ν on the worst input is at least the probability of
failure of the best deterministic algorithm against some distribution µ.

Lemma 1.1. Let µ be a probability measure on a set I (a “distribution on inputs”)
and let ν be a probability measure on a set of deterministic algorithms A (a “random-
ized algorithm”). Then

inf
a∈A

Pr(alg. a fails on measure µ) ≤ sup
i∈I

Pr(randomized alg. ν fails on input i).

The proof will use the following lemma and notation.

15



Let I be a set (a subset of the inputs of a computational problem, for example the
set of all well-rounded convex bodies in Rn for some n). Let O be another set (the
set of possible outputs of a computational problem, for example, real numbers that
are an approximation to the volume of a convex body). Let A be a set of functions
from I to O (these functions represent deterministic algorithms that take elements in
I as inputs and have outputs in O). Let C : I ×A → R (for a ∈ A and i ∈ I, C(i, a)
is a measure of the badness of the algorithm a on input i, such as the indicator of a
giving a wrong answer on i).

Lemma 1.2. Let µ and ν be probability measures over I and A, respectively. Let
C : I × A → R be integrable with respect to µ× ν. Then

inf
a∈A
Eµ(i) C(i, a) ≤ sup

i∈I
Eν(a) C(i, a)

Proof. By means of Fubini’s theorem and the integrability assumption we have

Eν(a) Eµ(i) C(i, a) = Eµ(i) Eν(a) C(i, a).

Also
Eν(a) Eµ(i) C(i, a) ≥ inf

a∈A
Eµ(i) C(i, a)

and
Eµ(i) Eν(a) C(i, a) ≤ sup

i∈I
Eν(a) C(i, a).

Proof (of Lemma 1.1). Let C : I × A → R, where for i ∈ I, a ∈ A we have

C(i, a) =

{
1 if a fails on i

0 otherwise.

Then the consequence of Lemma 1.2 for this C is precisely what we want to prove.

1.3 The query model and decision trees

We will denote by Q our standard query model: A membership oracle for a set
K ∈ Rn takes any q ∈ Rn and outputs YES if q ∈ K and NO otherwise. When K is
a parallelotope of the form {x ∈ Rn : ‖Ax‖∞ ≤ 1} specified by an n × n matrix A,
the oracle outputs YES if ‖Aq‖∞ ≤ 1 and NO otherwise.

It is useful to view the computation of a deterministic algorithm with an oracle
as a decision tree representing the sequence of queries: the nodes (except the leaves)
represent queries, the root is the first query made by the algorithm and there is
one query subtree per answer. The leaves do not represent queries but instead the
answers to the last query along every path. Any leaf l has a set Pl of inputs that are
consistent with the corresponding path of queries and answers on the tree. Thus the
set of inputs is partitioned by the leaves.
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To prove our main lower bounds for the complexity of approximating the volume
of parallelotopes, it will be convenient to consider a modified query model Q′ that
can output more information: Given q ∈ Rn, the modified oracle outputs YES as
before if ‖Aq‖∞ ≤ 1; otherwise it outputs a pair (i, s) where i is the “least index
among violated constraints”, i = min{j : |Ajq| > 1}, and s ∈ {−1, 1} is the “side”,
s = sign(Aiq). An answer from Q′ gives at least as much information as the respective
answer from Q, and this implies that a lower bound for algorithms with access to Q′

is also a lower bound for algorithms with access to Q. The following definition and
lemma explain the advantage of Q′ over Q.

Definition 1.3. Let M be a set of n× n matrices. We say that M is a product set
along rows if there exist sets Mi ⊆ Rn, 1 ≤ i ≤ n,

M = {M : ∀1 ≤ i ≤ n,Mi ∈Mi}.

Lemma 1.4. If the set of inputs is a product set along rows, then the leaves of a
decision tree in the modified query model Q′ induce a partition of the input set where
each part is itself a product set along rows.

Proof. We start with M, a product set along rows with components Mi. Let us
observe how this set is partitioned as we go down a decision tree. A YES answer
imposes two additional constraints of the form −1 ≤ q · x ≤ 1 on every set Mi. For
a NO answer with response (i, s), we get two constraints for all Mj, 1 ≤ j < i, one
constraint for the i’th set and no new constraints for the remaining sets. Given this
information, a particular setting of any row (or subset of rows) gives no additional
information about the other rows. Thus, the set of possible matrices at each child of
the current query is a product set along rows. The lemma follows by applying this
argument recursively.

1.4 Distributions and concentration properties

We use two distributions on n×n matrices called D and D′ for our randomized lower
bounds. A random matrix from D is obtained by selecting each row independently
and uniformly from the ball of radius

√
n. A random matrix from D′ is obtained

by selecting each entry of the matrix independently and uniformly from the interval
[−1, 1]. In the analysis, we will also encounter random matrices where each entry is
selected independently from N(0, 1). We use the following properties.

Lemma 1.5. Let σ be the minimum singular value of an n× n matrix G with inde-
pendent entries from N(0, 1). For any t > 0,

Pr
(
σ
√

n ≤ t
) ≤ t.

Proof. To bound σ, we will consider the formula for the density of λ = σ2 given in
[14]:

f(λ) =
n

2n−1/2

Γ(n)

Γ(n/2)
λ−1/2e−λn/2U

(
n− 1

2
,−1

2
,
λ

2

)

17



where U is the Tricomi function, which satisfies for all λ ≥ 0:

• U(n−1
2

,−1
2
, 0) = Γ(3/2)/Γ((n + 2)/2),

• U(n−1
2

,−1
2
, λ) ≥ 0

• d
dλ

U(n−1
2

,−1
2
, λ) ≤ 0

We will now prove that for any n the density function of t =
√

nλ is at most 1. To
see this, the density of t is given by

g(t) = f

(
t2

n

)
2t

n
= 2f(λ)

√
λ

n
=

√
n

2n−3/2

Γ(n)

Γ(n/2)
e−λn/2U

(
n− 1

2
,−1

2
,
λ

2

)
.

Now,

d

dt
g(t) =

√
n

2n−3/2

Γ(n)

Γ(n/2)
×

×
[
−n

2
e−λn/2U

(
n− 1

2
,−1

2
,
λ

2

)
+ e−λn/2 d

dλ
U

(
n− 1

2
,−1

2
,
λ

2

)]
2t

n
≤ 0.

Thus, the maximum of g is at t = 0, and

g(0) =

√
n

2n−3/2

Γ(n)

Γ(n/2)

Γ(3/2)

Γ(n+2
2

)
≤ 1.

It follows that Pr(σ
√

n ≤ α) ≤ α.

Lemma 1.6. Let X be a random n-dimensional vector with independent entries from
N(0, 1). Then for ε > 0

Pr
(‖X‖2 ≥ (1 + ε)n

) ≤ (
(1 + ε)e−ε

)n/2

and for ε ∈ (0, 1)

Pr
(‖X‖2 ≤ (1− ε)n

) ≤ (
(1− ε)eε

)n/2
.

For a proof, see [37, Lemma 1.3].

Lemma 1.7. Let X be a uniform random vector in the n-dimensional ball of radius
r. Let Y be an independent random n-dimensional unit vector. Then,

E(‖X‖2) =
nr2

n + 2
and E

(
(X · Y )2

)
=

r2

n + 2
.

Proof. For the first part, we have

E(‖X‖2) =

∫ r

0
tn+1dt∫ r

0
tn−1dt

=
nr2

n + 2
.

18



For the second part, because of the independence and the symmetry we can assume
that Y is any fixed vector, say (1, 0, . . . , 0). Then E

(
(X · Y )2

)
= E(X2

1 ). But

E(X2
1 ) = E(X2

2 ) = · · · = 1

n

n∑
i=1

E(X2
i ) =

E(‖X‖2)

n
=

r2

n + 2
.

Lemma 1.8. There exists a constant c > 0 such that if P ⊆ Rn compact and X is a
random point in P then

E(‖X‖2) ≥ c(vol P )2/nn

Proof. For a given value of vol P , the value E(‖X‖2) is minimized when P is a ball
centered at the origin. It is known that the volume of the ball of radius r is at least
cn/2rn/nn/2 for some c > 0. This implies that, for a given value of vol P , the radius r
of the ball of that volume satisfies

cn/2rn

nn/2
≥ vol P. (1.1)

On the other hand, Lemma 1.7 claims that for Y a random point in the ball of radius
r, we have

E(‖Y ‖2) =
nr2

n + 2
. (1.2)

Combining (1.1), (1.2) and the minimality of the ball, we get

(
cE(‖X‖2)(n + 2)

n2

)n/2

≥ vol P

and this implies the desired inequality.

We conclude this section with two elementary properties of variance.

Lemma 1.9. Let X, Y be independent real-valued random variables. Then

var(XY )

(E(XY ))2
=

(
1 +

var X

(EX)2

)(
1 +

var Y

(EY )2

)
− 1 ≥ var X

(EX)2
+

var Y

(EY )2
.

Lemma 1.10. For real-valued random variables X,Y , var X = EY var(X | Y ) +
varY E(X | Y ).
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Chapter 2

Deterministic lower bounds

2.1 Volume

About the possibility of exact computation of the volume, there are at least two
negative answers. The first is that it is know to be #P -hard when the polytope is
given as a list of vertices or as an intersection of halfspaces [11]. Secondly, one can
construct a polytope given by rational inequalities having rational volume a/b such
that writing b needs a number of bits that is exponential in the bit-length of the input
[23].

About the possibility of a deterministic approximation algorithm with a member-
ship oracle, the answer is also negative. The complexity of an algorithm is measured
by the number of such queries. The work of Elekes [15] and Bárány and Füredi [4]
showed that any deterministic polynomial-time algorithm cannot estimate the volume
to within an exponential (in n) factor. We quote their theorem below.

Theorem 2.1 ([4]). For every deterministic algorithm that uses at most na member-
ship queries and given a convex body K with Bn ⊆ K ⊆ nBn outputs two numbers
A, B such that A ≤ vol(K) ≤ B, there exists a body K ′ for which the ratio B/A is at
least (

cn

a log n

)n

where c is an absolute constant.

We will see in Chapter 4 that there are randomized algorithms that approximate
the volume in polynomial time, which shows that randomization provably helps in
this problem.

2.2 Centroid

Given a convex body in Rn, the centroid is a basic property that one may want to
compute. It is a natural way of representing or summarizing the set with just a
single point. There are also diverse algorithms that use centroid computation as a
subroutine (for an example, see [5], convex optimization). The following non-trivial
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property illustrates the power of the centroid: Any hyperplane through the centroid
of a convex body cuts it into two parts such that each has a volume that is at least
a 1/e fraction of the volume of the body.

There are no known efficient deterministic algorithms for computing the centroid
of a convex body exactly. We will see that this is natural by proving the following
result:

Theorem 2.2. It is #P -hard to compute the centroid of an polytope given as an
intersection of halfspaces, even if the polytope is an order polytope.

(Order polytopes are defined in Subsection 2.2.1)
By centroid computation being #P -hard we mean here that for any problem in

#P , there is a polynomial time Turing machine with an oracle for centroids of order
polytopes that solves that problem.

On the other hand, there are efficient randomized algorithms for approximating
the centroid of a convex body given by a membership oracle (See [5]. Essentially, take
the average of O(n) random points in the body. Efficient sampling from a convex body
is achieved by a random walk, as explained in [28]). We will see that no deterministic
algorithm can match this, by proving the following:

Theorem 2.3. There is no polynomial time deterministic algorithm that when given
access to a membership oracle of a convex body K such that

1

17n2
Bn ⊆ K ⊆ 2nBn

outputs a point at distance σ/100 of the centroid, where σ2 is the minimum eigenvalue
of the inertia matrix of K.

(The inertia matrix of a convex body is defined in Subsection 2.2.1)
That the centroid is hard to compute is in some sense folklore, but we are not

aware of any rigorous analysis of its hardness. The hardness is mentioned in [5] and
[20] without proof, for example.

2.2.1 Preliminaries

Let K ⊆ Rn be a compact set with nonempty interior. Let X be a random point in
K. The centroid of K is the point c = E(X). The inertia matrix of K is the n by n
matrix E

(
(X − c)(X − c)T

)
.

For K ⊆ Rn bounded and a a unit vector, let wa(K), the width of K along a, be
defined as:

wa(K) = sup
x∈K

a · x− inf
x∈K

a · x.

By canonical directions in Rn we mean the set of vectors that form the columns
of the n by n identity matrix.

For a, b, c ∈ R, a, b > 0 and c ≥ 1 we say that a is within a factor of c of b iff

1

c
b ≤ a ≤ cb.
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For a partial order ≺ of [n] = {1, . . . , n}, the order polytope associated to it is

P (≺) = {x ∈ [0, 1]n : xi ≤ xj whenever i ≺ j}.

In [9], it is proved that computing the volume of order polytopes (given the partial
order or, equivalently, the facets of the polytope) is #P -hard. We will use this result
to prove Theorem 2.2.

We will also need the following result for isotropic convex bodies, which is in a
sense folklore (A convex body K ⊆ Rn is in isotropic position iff for random X ∈ K
we have E(X) = 0 and E(XXT ) = I). A proof can be found in [21].

Theorem 2.4. Let K ⊆ Rn be a convex body in isotropic position. Then

√
n + 2

n
Bn ⊆ K ⊆

√
n(n + 2)Bn.

2.2.2 Proofs

The idea of both proofs is to reduce volume computation to centroid computation,
given that it is know in several senses that volume computation is hard.

A basic step in the proofs is the following key idea: if a convex body is cut into
two pieces, then one can know the ratio between the volumes of the pieces if one
knows the centroids of the pieces and of the convex body. Namely, if the body has
centroid c and the pieces have centroids c−, c+, then the volumes of the pieces are in
proportion ‖c− c−‖/‖c− c+‖.

It is known that the volume of a polytope given as an intersection of halfspaces
can have a bit-length that is exponential in the length of the input [23]. It is not hard
to see that the centroid of a polytope given in that form may also need exponential
space. Thus, to achieve a polynomial time reduction from volume to centroid, we
need to consider a family of polytopes such that all the centroids that appear in the
reduction have a length that is polynomial in the length of the input. To this end we
consider the fact that it is #P -hard to compute the volume of order polytopes.

Lemma 2.5. Let P be an order polytope. Then the centroid of P and the volume of
P have a bit-length that is polynomial in the bit-length of P .

Proof. Call “total order polytope” an order polytope corresponding to a total order.
Such a polytope is actually a simplex with 0–1 vertices, its volume is 1/n! and its
centroid has polynomial bit-length. The set of total order polytopes forms a partition
of [0, 1]n into n! parts, and any order polytope is a disjoint union of at most n! total
order polytopes. The lemma follows.

Proof (of Theorem 2.2). Let P ⊆ [0, 1]n be an order polytope, given as a set of half-
spaces of the form Hk = {x : xik ≤ xjk

}, k = 1, . . . , K. Suppose that we have access
to an oracle that can compute the centroid of an order polytope. Then we can com-
pute vol P in the following way: Consider the sequence of bodies that starts with
[0, 1]n, and then adds one constraint at a time until we reach P . That is, P0 = [0, 1]n,
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Pk = Pk−1∩Hk. In order to use the key idea, for every k, let Qk = Pk−1 \Pk, compute
the centroid ck of Pk and the centroid dk of Qk. We have Pk−1 = Pk ]Qk and

vol Qk

vol Pk

=
‖ck−1 − dk‖
‖ck−1 − ck‖ .

Thus,
vol Pk−1

vol Pk

=
‖ck−1 − dk‖
‖ck−1 − ck‖ + 1.

This implies, multiplying over all k,

vol P =
K∏

k=1

(‖ck−1 − dk‖
‖ck−1 − ck‖ + 1

)−1

.

The reduction costs 2K centroid oracle calls. Even though some expressions involve
norms, all the intermediate quantities are rational (as the volumes of order polytopes
are rational). Moreover, the bit-length of the intermediate quantities is polynomial
in n (Lemma 2.5).

Proof (of Theorem 2.3). Suppose for a contradiction that there exists an algorithm
that finds a point at distance Cσ of the centroid. Then the following algorithm would
approximate the volume in a way that contradicts Theorem 2.1, for a value of C to be
determined. Theorem 2.1 is actually proved for a family of convex bodies restricted
in the following way: We can assume that the body contains the axis-aligned cross-
polytope of diameter 2n and is contained in the axis-aligned hypercube of side 2n.
Let P be a convex body satisfying that constraint, given as a membership oracle.

Algorithm

1. Let M = 1, i = 0, P0 = P .

2. For every canonical direction a:

(a) While wa(P ) ≥ 1:

i. i ← i + 1.

ii. Compute an approximate centroid ci−1 of Pi−1. Let H be the hyper-
plane through c orthogonal to a.

iii. Let Pi be (as an oracle) the intersection of Pi−1 and the halfspace
determined by H containing the origin (if H contains the origin, pick
any halfspace).

iv. Let Qi be (as an oracle) Pi−1 \ Pi.

v. Compute an approximate centroid di of Qi.

vi. M ← M ‖ci−1−ci‖
‖di−ci‖

3. Let V be the volume of Pi. Output V/M .
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To see that the algorithm terminates, we will show that the “while” loop ends after
O(n log n) iterations. Assuming that C ≤ 1/2, at every iteration wa(Pi) decreases at
most by a factor of 1/(4n) (Lemma 2.9). Thus, Pi always contains a hypercube of side
1/(4n), and vol Pi ≥ 1/(4n)n. Initially, vol P0 ≤ (2n)n, and every iteration multiplies
the volume by a factor of at most 1− 1

e
+ C (Lemma 2.8). Thus, the algorithm runs

for at most
2n log(n

√
8)

log
(
1− 1

e
+ C

)−1

iterations.

We will now argue that for all the centroids that the algorithm computes, it knows
a ball contained in the corresponding body. Let σ2

i be the minimum eigenvalue of
the inertia matrix of Pi. Initially, the algorithm knows that P0 contains a ball of
radius

√
n around the origin. Also, Theorem 2.4 implies that for every i, Pi contains

a ball of radius σi

√
(n + 2)/n around the centroid. Because Pi contains a hypercube

of side 1/(4n), Theorem 2.4 also implies that σi ≥ 1/(8n
√

n(n + 2)). Thus, after we
compute ci, the algorithm knows that Pi contains a ball of radius

(√
n + 2

n
− C

)
σi ≥

(√
n + 2

n
− C

)
1

8n
√

n(n + 2)
≥ 1− C

8n2

around ci, and this implies that the algorithm knows that Pi+1, Qi+1 contain balls of
radius (1− C)/(16n2) around known points.

At step 3, Pi contains the origin and has width at most 1 along all canonical
directions. This implies that it is completely contained in the input body, as the
input body contains the cross-polytope of diameter 2n. Thus, the volume of Pi is
easy to compute because it is a hypercube that we know explicitly at this point, the
intersection of all the halfspaces chosen by the algorithm.

At every cut, ‖ci−1 − ci‖ is within a constant factor of the true value, as the
following argument shows: Let δ2

i be the minimum eigenvalue of the inertia matrix
of Qi. Let c̄i, d̄i be the centroids of Pi, Qi, respectively. We have that ‖ci − c̄i‖ ≤
Cσi ≤ Cσi−1 and ‖di − d̄i‖ ≤ Cδi ≤ Cσi−1. That is,

‖c̄i−1 − c̄i‖ − 2Cσi−1 ≤ ‖ci−1 − ci‖ ≤ ‖c̄i−1 − c̄i‖+ 2Cσi−1

and we also have that the true distance satisfies ‖c̄i−1 − c̄i‖ ≥ σi−1/2 (Lemma 2.6).
Thus, the estimate satisfies:

(1− 4C)‖c̄i−1 − c̄i‖ ≤ ‖ci−1 − ci‖ ≤ (1 + 4C)‖c̄i−1 − c̄i‖.

A similar argument shows:

(1− 4C)‖d̄i − c̄i‖ ≤ ‖di − ci‖ ≤ (1 + 4C)‖d̄i − c̄i‖.
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Thus, M , as an estimate of V/ vol P , is within a factor of

(
1 + 4C

1− 4C

) 2n log(n
√

8)

log(1− 1
e +C)−1

of the true value, and so is the estimate of the volume, V/M , with respect to vol P .
The choice of C = 1/100 would give the contradiction.

Lemma 2.6 (centroid versus σ). Let K ⊆ Rn be a convex body with centroid at the
origin. Let a be a unit vector. Let K+ = K ∩ {x : a · x ≥ 0}. Let X be random in K.
Let c be the centroid of K+. Let σ2 = E

(
(X · a)2

)
. Then

c · a ≥ σ/2.

Proof. Let X+ be random in K+, let K− = K \K+, let X− be random in K−. Let
σ2

+ = E((X+ · a)2), σ2
− = E((X− · a)2). Lemma 2.7 implies c · a ≥ σ+/

√
2. To relate

σ and σ+, we observe that σ is between σ+ and σ−, and we use Lemma 2.7 again:

σ+ ≥ E(X+ · a) = −E(X− · a) ≥ σ−/
√

2.

This implies σ+ ≥ σ/
√

2 and the lemma follows.

The following is a particular case of Lemma 5.3 (c) in [30].

Lemma 2.7 (E(X) versus E(X2)). Let X be a non-negative random variable with
logconcave density function f : R+ → R. Then

2(EX)2 ≥ E(X2).

The next lemma follows from the proof of Theorem 1 in [5]:

Lemma 2.8 (volume lemma). Let K ⊆ Rn be a convex body with centroid at the
origin, let σ2 be the minimum eigenvalue of the inertia matrix of K, let c ∈ Rn. Let
a be a unit vector. Let K+ = K ∩ {x : a · x ≥ a · c}. Then

vol K+ ≥
(

1

e
− |c · a|

σ

)
vol K.

Lemma 2.9 (width lemma). Let K ⊆ Rn be a convex body with centroid at the origin,
let σ2 be the minimum eigenvalue of the inertia matrix of K, let c ∈ Rn. Let a be a
unit vector. Let K+ = K ∩ {x : a · x ≥ a · c}. Then

wa(K+) ≥
(

1− |c · a|
σ

)
wa(K)

2n
.

Proof. In view of Theorem 2.4, consider an ellipsoid E centered at the origin such
that E ⊆ K ⊆ nE. Theorem 2.4 implies that we can choose E so that 1

2
wa(E) ≥ σ.
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Then

wa(K
+) ≥ 1

2
wa(E)− |c · a|

≥
(

1− |c · a|
σ

)
1

2
wa(E)

≥
(

1− |c · a|
σ

)
1

2n
wa(K).

2.2.3 Discussion

We proved two hardness results for the computation of the centroid of a convex body.
Some open problems:

• Find a substantial improvement of Theorem 2.3, that is, is the centroid hard to
approximate even within a ball of radius superlinear in σ?

• Prove a lower bound on the query complexity of any randomized algorithm
that approximates the centroid. A possible approach may be given by the lower
bound for volume approximation in Chapter 4.
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Chapter 3

Dispersion of mass

For the lower bounds in Chapter 5 (length, product of lengths), the main tool in the
analysis is a geometric dispersion lemma that is of independent interest in asymptotic
convex geometry. Before stating the lemma, we give some background and motivation.
There is an elegant body of work that studies the distribution of a random point X
from a convex body K [2, 7, 8, 31]. A convex body K is said to be in isotropic
position if vol(K) = 1 and for a random point X we have

E(X) = 0, and E(XXT ) = αI for some α > 0.

We note that there is a slightly different definition of isotropy (more convenient for
algorithmic purposes) which does not restrict vol(K) and replaces the second con-
dition above by E(XXT ) = I. Any convex body can be put in isotropic position
by an affine transformation. A famous conjecture (isotropic constant) says that α is
bounded by a universal constant for every convex body and dimension. It follows that
E(‖X‖2) = O(n). Motivated by the analysis of random walks, Lovász and Vempala
made the following conjecture (under either definition). If true, then some natural
random walks are significantly faster for isotropic convex bodies.

Conjecture 3.1. For a random point X from an isotropic convex body,

var(‖X‖2) = O(n).

The upper bound of O(n) is achieved, for example, by the isotropic cube. The
isotropic ball, on the other hand, has the smallest possible value, var(‖X‖2) = O(1).
The variance lower bound we prove in this work (Theorem 3.5) directly implies the
following: for an isotropic convex polytope P in Rn with at most poly(n) facets,

var(‖X‖2) = Ω

(
n

log n

)
.

Thus, the conjecture is nearly tight for not just the cube, but any isotropic polytope
with a small number of facets. Intuitively, our lower bound shows that the length
of a random point from such a polytope is not concentrated as long as the volume is
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reasonably large. Roughly speaking, this says that in order to determine the length,
one would have to localize the entire vector in a small region.

Returning to the analysis of algorithms, one can view the output of a randomized
algorithm as a distribution. Proving a lower bound on the complexity is then equiva-
lent to showing that the output distribution after some number of steps is dispersed.
To this end, we define a simple parameter of a distribution:

Definition 3.2. Let µ be a probability measure on R. For any 0 < p < 1, the
p-dispersion of µ is

dispµ(p) = inf{|a− b| : a, b ∈ R, µ([a, b]) ≥ 1− p}.

Thus, for any possible output z, and a random point X, with probability at least
p, |X − z| ≥ dispµ(p)/2.

We begin with two simple cases in which large variance implies large dispersion.

Lemma 3.3. Let X be a real random variable with finite variance σ2.

a. If the support of X is contained in an interval of length M then dispX( 3σ2

4M2 ) ≥ σ.

b. If X has a logconcave density then dispX(p) ≥ (1− p)σ.

Proof. Let a, b ∈ R be such that b− a < σ. Let α = Pr(X /∈ [a, b]). Then

var X ≤ (1− α)

(
b− a

2

)2

+ αM2.

This implies

α >
3σ2

4M2
.

For the second part, Lemma 5.5(a) from [30] implies that a logconcave density with
variance σ2 is never greater than 1/σ. This implies that if a, b ∈ R are such that
Pr(X ∈ [a, b]) ≥ p then we must have b− a ≥ pσ.

Lemma 3.4. Let X, Y be real-valued random variables and Z be a random variable
that is generated by setting it equal to X with probability α and equal to Y with
probability 1− α. Then,

dispZ(αp) ≥ dispX(p).

3.1 Variance of polytopes

The next theorem states that the length of a random point from a polytope with
few facets has large variance. This is a key tool in our lower bounds. It also has a
close connection to the variance hypothesis (which conjectures an upper bound for
all isotropic convex bodies), suggesting that polytopes might be the limiting case of
that conjecture.

30



Theorem 3.5. Let P ⊆ Rn be a polytope with at most nk facets and contained in the
ball of radius nq. For a random point X in P ,

var ‖X‖2 ≥ vol(P )
4
n

+ 3c
n log n e−c(k+3q) n

log n

where c is a universal constant.

Thus, for a polytope of volume at least 1 contained in a ball of radius at most
poly(n), with at most poly(n) facets, we have var ‖X‖2 = Ω(n/ log n). In particular
this holds for any isotropic polytope with at most poly(n) facets. The proof of
Theorem 3.5 is given later in this section.

Let X ∈ K be a random point in a convex body K. Consider the parameter σK

of K defined as

σ2
K =

n var ‖X‖2

(
E ‖X‖2)2 .

It has been conjectured that if K is isotropic, then σ2
K ≤ c for some universal constant

c independent of K and n (the variance hypothesis). Together with the isotropic
constant conjecture, it implies Conjecture 3.1. Our lower bound (Theorem 3.5) shows
that the conjecture is nearly tight for isotropic polytopes with at most poly(n) facets
and they might be the limiting case.

We now give the main ideas of the proof of Theorem 3.5. It is well-known that
polytopes with few facets are quite different from the ball. Our theorem is another
manifestation of this phenomenon: the width of an annulus that captures most of a
polytope is much larger than one that captures most of a ball. The idea of the proof
is the following: if 0 ∈ P , then we bound the variance in terms of the variance of the
cone induced by each facet. This gives us a constant plus the variance of the facet,
which is a lower-dimensional version of the original problem. This is the recurrence
in our Lemma 3.6. If 0 /∈ P (which can happen either at the beginning or during
the recursion), we would like to translate the polytope so that it contains the origin
without increasing var ‖X‖2 too much. This is possible if certain technical conditions
hold (case 3 of Lemma 3.6). If not, the remaining situation can be handled directly
or reduced to the known cases by partitioning the polytope. It is worth noting that
the first case (0 ∈ P ) is not generic: translating a convex body that does not contain
the origin to a position where the body contains the origin may increase var ‖X‖2

substantially. The next lemma states the basic recurrence used in the proof.

Lemma 3.6 (recurrence). Let T (n, f, V ) be the infimum of var ‖X‖2 among all poly-
topes in Rn with volume at least V , with at most f facets and contained in the ball of
radius R > 0. Then there exist constants c1, c2, c3 > 0 such that

T (n, f, V ) ≥
(
1− c1

n

)
T

(
n− 1, f +2,

c2

nR2

( V

Rf

)1+ 2
n−1

)
+

c3

R8/(n−1)

(
V

Rf

) 4
n−1

+ 8
(n−1)2

.

Proof. Let P be a polytope as in the statement (not necessarily minimal). Let U be
the nearest point to the origin in P . We will use more than one argument, depending
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on the case:

Case 1: (origin) 0 ∈ P .

For every facet F of P , consider the cone CF obtained by taking the convex hull
of the facet and the origin. Consider the affine hyperplane HF determined by F . Let
U be the nearest point to the origin in HF . Let YF be a random point in CF , and
decompose it into a random point XF + U in F and a scaling factor t ∈ [0, 1] with a
density proportional to tn−1. That is, YF = t(XF + U). We will express var ‖YF‖2 as
a function of var ‖XF‖2.

We have that ‖YF‖2 = t2(‖U‖2 + ‖XF‖2). Then,

var ‖YF‖2 = (E t4) var ‖XF‖2 + (var t2)
(
‖U‖4 + (E ‖XF‖2)2 + 2‖U‖2 E ‖XF‖2

)

(3.1)
Now, for k ≥ 0

E tk =
n

n + k
.

and

var t2 =
4n

(n + 4)(n + 2)2
≥ c1

n2

for c1 = 1/2 and n ≥ 3. This in (3.1) gives

var ‖YF‖2 ≥ n

n + 4
var ‖XF‖2 +

c1

n2

(‖U‖4 + (E ‖XF‖2)2 + 2‖U‖2 E ‖XF‖2)

≥ n

n + 4
var ‖XF‖2 +

c1

n2

(
E ‖XF‖2)2

.
(3.2)

Now, by means of Lemma 1.8, we have that

E ‖XF‖2 ≥ c2Vn−1(F )2/(n−1)(n− 1)

and this in (3.2) implies for some constant c3 > 0 that

var ‖YF‖2 ≥ n

n + 4
var ‖XF‖2 + c3Vn−1(F )4/(n−1).

Using this for all cones induced by facets we get

var ‖X‖2 ≥ 1

vol P

∑

F facet

vol CF var ‖YF‖2

≥ 1

vol P

∑

F facet

vol CF

(
n

n + 4
var ‖XF‖2 + c3Vn−1(F )4/(n−1)

) (3.3)

Now we will argue that var ‖XF‖2 is at least T (n− 1, f, V
Rf

) for most facets. Because
the height of the cones is at most R, we have that the volume of the cones associated
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to facets having Vn−1(F ) ≤ vol P/α is at most

f
1

n
R

vol P

α

That is, the cones associated to facets having Vn−1(F ) > vol P/α are at least a

1− Rf

αn

fraction of P . For α = Rf we have that a 1− 1/n fraction of P is composed of cones
having facets with Vn−1(F ) > vol P/(Rf). Let F be the set of these facets. The
number of facets of any facet F of P is at most f , which implies that for F ∈ F we
have

var ‖XF‖2 ≥ T (n− 1, f,
V

Rf
).

Then (3.3) becomes

var ‖X‖2 ≥ 1

vol P

∑
F∈F

vol CF

(
n

n + 4
var ‖XF‖2 + c3Vn−1(F )4/(n−1)

)

≥ 1

vol P

∑
F∈F

vol CF

(
n

n + 4
T

(
n− 1, f,

V

Rf

)
+ c3

(
V

Rf

)4/(n−1)
)

≥
(

1− 1

n

) (
n

n + 4
T

(
n− 1, f,

V

Rf

)
+ c3

(
V

Rf

)4/(n−1)
)

≥
(
1− c5

n

)
T

(
n− 1, f,

V

Rf

)
+ c4

(
V

Rf

)4/(n−1)

for some constants c5, c4 > 0.

Case 2: (slicing)

varE
(‖X‖2 | X · U) ≥ β =

c4

16

(
V

Rf

)4/(n−1)

.

In this case, using Lemma 1.10,

var ‖X‖2 = E var
(‖X‖2 | X · U)

+ varE
(‖X‖2 | X · U)

≥ E var
(‖X‖2 | X · U)

+ β
(3.4)

Call the set of points X ∈ P with some prescribed value of X · U a slice. Now we
will argue that the variance of a slice is at least T

(
n − 1, f, V

2nR

)
for most slices.

Because the width of P is at most 2R, we have that the volume of the slices S having
Vn−1(S) ≤ V/α is at most 2RV/α. That is, the slices having Vn−1(S) > V/α are
at least a 1 − 2R/α fraction of P . For α = 2nR, we have that a 1 − 1/n fraction
of P are slices with Vn−1(S) > V/(2nR). Let S be the set of these slices. The
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number of facets of a slice is at most f , which implies that for S ∈ S we have
var

(‖X‖2 | X ∈ S
) ≥ T

(
n− 1, f, V

2nR

)
. Then (3.4) becomes

var ‖X‖2 ≥
(

1− 1

n

)
T

(
n− 1, f,

V

2nR

)
+

c4

16

(
V

Rf

)4/(n−1)

.

Case 3: (translation) var(X · U) ≤ β and varE
(‖X‖2 | X · U)

< β.

Let X0 = X − U . We have,

var ‖X‖2 = var ‖X0‖2 + 4 var X · U + 4 cov(X · U, ‖X0‖2). (3.5)

Now, Cauchy-Schwartz inequality and the fact that cov(A,B) = cov(A,E(B | A)) for
random variables A,B, give

cov(X · U, ‖X0‖2) = cov(X · U, ‖X‖2 − 2X · U + ‖U‖2)

= cov(X · U, ‖X‖2)− 2 var X · U
= cov(X · U,E(‖X‖2 | X · U))− 2 var X · U
≥ −

√
var X · U

√
varE(‖X‖2 | X · U)− 2 var X · U.

This in (3.5) gives

var ‖X‖2 ≥ var ‖X0‖2 − 4 var X · U − 4
√

var X · U
√

varE
(‖X‖2 | X · U)

≥ var ‖X0‖2 − 8β.

Now, X0 is a random point in a translation of P containing the origin, and thus case
1 applies, giving

var ‖X‖2 ≥
(
1− c5

n

)
T

(
n− 1, f,

V

Rf

)
+

c4

2

(
V

Rf

)4/(n−1)

.

Case 4: (partition) otherwise:

In order to control var X · U for the third case, we will subdivide P into parts so
that one of previous cases applies to each part. Let P1 = P , let Ui be the nearest
point to the origin in Pi (or, if Pi is empty, the sequence stops),

Qi = Pi ∩
{

x : ‖Ui‖ ≤ Ûi · x ≤ ‖Ui‖+
√

β/R
}

,

and Pi+1 = Pi \Qi. Observe that ‖Ui+1‖ ≥ ‖Ui‖+
√

β/R and ‖Ui‖ ≤ R, this implies
that i ≤ R2/

√
β and the sequence is always finite.

For any i and by definition of Qi we have var(X ·Ui | X ∈ Qi) = ‖Ui‖2 var(X · Ûi |
X ∈ Qi) ≤ β.

The volume of the parts Qi having vol Qi ≤ V/α is at most V R2

α
√

β
. That is, the
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parts having vol Qi > V/α are at least a 1− R2

α
√

β
fraction of P . For α = nR2/

√
β we

have that a 1−1/n fraction of P are parts with vol(Qi) > V
√

β/(nR2). Let Q be the
set of these parts. The number of facets of a part is at most f + 2. Thus, applying
one of the three previous cases to each part in Q, and using that f ≥ n,

var ‖X‖2

≥ 1

vol P

∑
Q∈Q

vol Q var(‖X‖2 | X ∈ Q)

≥
(

1− 1

n

) ((
1− c5

n

)
T

(
n− 1, f + 2,

V
√

β

nR3 max{f, 2n}
)

+
c4

16

(
V
√

β

nR3f

)4/(n−1)
)

≥
(

1− 1

n

) ((
1− c5

n

)
T

(
n− 1, f + 2,

V
√

β

2fnR3

)
+

c4

16

(
V
√

β

nR3f

)4/(n−1)
)

.

In any of these cases,

var ‖X‖2

≥
(
1− c6

n

)
T

(
n− 1, f + 2,

V

2Rf
min

(
1,

√
β

nR2

))
+ c7

(
V

Rf
min

(
1,

√
β

nR2

))4/(n−1)

.

(3.6)

Now, by assumption, V ≤ 2nRn, and this implies by definition that

√
β

nR2
≤ O

(
1

n

)
.

That is,

min

(
1,

√
β

nR2

)
= O

(√
β

nR2

)

and the lemma follows, after replacing the value of β in Equation (3.6).

Proof (of Theorem 3.5). Assume that vol P = 1; the inequality claimed in the theo-
rem can be obtained by a scaling, without loss of generality. For n ≥ 13, this implies
that R ≥ 1. We use the recurrence lemma in a nested way t = n/ log n times1. The
radius R stays fixed, and the number of facets involved is at most f + 2t ≤ 3f . Each
time, the volume is raised to the power of at most 1 + 2

n−t
and divided by at most

c′nR2
(
R(f + 2t)

)1+ 2
n−t > 1,

for c′ = max(c−1
2 , 1). That is, after t times the volume is at least (using the fact that

1To force t to be an integer would only add irrelevant complications that we omit.
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(1 + 2
n−t

)t = O(1))

(
c′nR2

(
R(f + 2t)

)1+ 2
n−t

)−t(1+ 2
n−t

)t

≥ 1/(3c′nR3f)O(t)

That means that from the recurrence inequality we get (we ignore the expression in
“?”, as we will discard that term):

T (n, f, 1) ≥
(
1− c1

n

)t

T (n− t, f + 2t, ?) +

+ c3t
(
1− c1

n

)t−1 1

R8/(n−t−1)

(
1

3Rf

1

(3c′nR3f)O(t)

) 4
n−1

+ 8
(n−1)2

.

We discard the first term and simplify to get,

T (n, f, 1) ≥ n

log n

(
1

R3f

)O(1/ log n)

Thus, for a polytope of arbitrary volume we get by means of a scaling that there
exists a universal constant c > 0 such that

var ‖X‖2 ≥ (vol P )4/n

(
(vol P )3/n

R3f

)c/ log n
n

log n
.

The theorem follows.

3.2 Dispersion of the determinant

In our proof of the volume lower bound, we begin with a distribution on matrices for
which the determinant is dispersed. The main goal of the proof is to show that even
after considerable conditioning, the determinant is still dispersed. The notion of a
product set along rows (Definition 1.3) will be useful in describing the structure of
the distribution and how it changes with conditioning.

Lemma 3.7. There exists a constant c > 0 such that for any partition {Aj}j∈N of
(
√

nBn)n into |N | ≤ 2n2−2 parts where each part is a product set along rows, there
exists a subset N ′ ⊆ N such that

a. vol(
⋃

j∈N ′ Aj) ≥ 1
2
vol

(
(
√

nBn)n
)

and

b. for any u > 0 and a random point X from Aj for any j ∈ N ′, we have

Pr
(|det X| /∈ [u, u(1 + c)]

) ≥ 1

27n6
.

The proof of this lemma will be postponed until Chapter 4, because it uses some
intuition from the volume problem.
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3.3 Discussion

It is an open problem as to whether the logarithmic factor in the variance of polytopes
with few facets can be removed. The lower bounds in Chapter 5 would improve if the
variance lower bound is improved.
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Chapter 4

Lower bound for randomized
computation of the volume

In striking contrast with the exponential lower bound for deterministic algorithms
given in Section 2.1, the celebrated paper of Dyer, Frieze and Kannan [13] gave a
polynomial-time randomized algorithm to estimate the volume to arbitrary accuracy
(the dependence on n was about n23). This result has been much improved and gener-
alized in subsequent work (n16, [25]; n10, [24, 1]; n8, [12]; n7, [26]; n5, [22]; n4, [29]); the
current fastest algorithm has complexity that grows as roughly O(n4/ε2) to estimate
the volume to within relative error 1+ ε with high probability (for recent surveys, see
[35, 36]). Each improvement in the complexity has come with fundamental insights
and lead to new isoperimetric inequalities, techniques for analyzing convergence of
Markov chains, algorithmic tools for rounding and sampling logconcave functions,
etc.

These developments lead to the question: what is the best possible complexity of
any randomized volume algorithm? A lower bound of Ω(n) is straightforward. Here
we prove a nearly quadratic lower bound: there is a constant c > 0 such that any
randomized algorithm that approximates the volume to within a (1 + c) factor needs
Ω(n2/ log n) queries. The formal statement appears in Theorem 4.1.

For the more restricted class of randomized nonadaptive algorithms (also called
“oblivious”), an exponential lower bound is straightforward (Section 4.3). Thus, the
use of full-fledged adaptive randomization is crucial in efficient volume estimation,
but cannot improve the complexity below n2/ log n.

In fact, the quadratic lower bound holds for a restricted class of convex bodies,
namely parallelotopes. A parallelotope in Rn centered at the origin can be compactly
represented using a matrix as {x : ‖Ax‖∞ ≤ 1}, where A is an n × n nonsingular
matrix; the volume is simply 2n|det(A)|−1. One way to interpret the lower bound
theorem is that in order to estimate |det(A)| one needs almost as many bits of in-
formation as the number of entries of the matrix. The main ingredient of the proof
is a dispersion lemma (Theorem 3.7) which shows that the determinant of a random
matrix remains dispersed even after conditioning the distribution considerably. We
discuss other consequences of the lemma in Section 4.4.

We now state our lower bound for randomized algorithms. Its proof is given in
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Section 4.2. Besides the dimension n, the complexity also depends on the “roundness”
of the input body. This is the ratio R/r where rBn ⊆ K ⊆ RBn. To avoid another
parameter in our results, we ensure that R/r is bounded by a polynomial in n.

Theorem 4.1 (volume). Let K be a convex body given by a membership oracle such
that Bn ⊆ K ⊆ O(n8)Bn. Then there exists a constant c > 0 such that any random-
ized algorithm that outputs a number V such that (1− c) vol(K) ≤ V ≤ (1+ c) vol(K)
holds with probability at least 1− 1/n has complexity Ω(n2/ log n).

We note that the lower bound can be easily extended to any algorithm with success
probability p > 1/2 with a small overhead [19]. The theorem actually holds for
parallelotopes with the same roundness condition. We restate the theorem for this
case.

Theorem 4.2 (determinant). Let A be an matrix with entries in [−1, 1] and smallest
singular value at least 2−12n−7 that can be accessed by the following oracle: for any
x, the oracle determines whether ‖Ax‖∞ ≤ 1 is true or false. Then there exists a
constant c > 0 such that any randomized algorithm that outputs a number V such
that

(1− c)|det(A)| ≤ V ≤ (1 + c)|det(A)|
holds with probability at least 1− 1/n, has complexity Ω(n2/ log n).

4.1 Preliminaries

Throughout this chapter we assume that n > 12 to avoid trivial complications.

4.2 Proof of the volume lower bound

We will use the distribution D on parallelotopes (or matrices, equivalently). Recall
that a random n×n matrix R is generated by choosing its rows R1, . . . , Rn uniformly
and independently from the ball of radius

√
n. The convex body corresponding to R

is a parallelotope having the rows of R as facets’ normals:

{x ∈ Rn : (∀i)|Ri · x| ≤ 1}

Its volume is V : Rn×n → R given (a.s.) by V (R) = 2n|det R|−1.
At a very high level, the main idea of the lower bound is the following: after an

algorithm makes all its queries, the set of inputs consistent with those queries is a
product set along rows (in the oracle model Q′), while the level sets of the function
that the algorithm is trying to approximate, |det(·)|, are far from being product sets.
In the partition of the set of inputs induced by any decision tree of height O(n2/ log n),
all parts are product sets of matrices and most parts have large volume, and therefore
V is dispersed in most of them. To make this idea more precise, we first examine the
structure of a product set along rows, all matrices with exactly the same determinant.
This abstract “hyperbola” has a rather sparse structure.
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Theorem 4.3. Let R ⊆ Rn×n be such that R =
∏n

i=1 Ri, Ri ⊆ Rn convex and there
exists c > 0 such that |det M | = c for all M ∈ R. Then, for some ordering of the
Ri’s, Ri ⊆ Si, with Si an (i − 1)-dimensional affine subspace, 0 /∈ Si and satisfying:
Si is a translation of the linear hull of Si−1.

Proof. By induction on n. It is clearly true for n = 1. For arbitrary n, consider the
dimension of the affine hull of each Ri, and let R1 have minimum dimension. Let
a ∈ R1. There will be two cases:

If R1 = {a}, then let A be the hyperplane orthogonal to a. If we denote Ti the
projection of Ri onto A, then we have that T =

∏n−1
i=1 Ti satisfies the hypotheses

in A ∼= Rn−1 with constant c/‖a‖ and the inductive hypothesis implies that, for
some ordering, the T2, . . . , Tn are contained in affine subspaces not containing 0 of
dimensions 0, . . . , n−2 in A, that is, R2, . . . , Rn are contained in affine subspaces not
containing 0 of dimensions 1, . . . , n− 1.

If there are a, b ∈ R1, b 6= a, then there is no zero-dimensional Ri. Also, because
of the condition on the determinant, b is not parallel to a. Let xλ = λa + (1 − λ)b
and consider the argument of the previous paragraph applied to xλ and its orthogonal
hyperplane. That is, for every λ there is some region Ti in A that is zero-dimensional.
In other words, the corresponding Ri is contained in a line. Because there are only
n − 1 possible values of i but an infinite number of values of λ, we have that there
exists one region Ri that is picked as the zero-dimensional for at least two different
values of λ. That is, Ri is contained in the intersection of two non-parallel lines, and
it must be zero-dimensional, which is a contradiction.

Now we need to extend this to an approximate hyperbola, i.e., a product set along
rows with the property that for most of the matrices in the set, the determinant is
restricted in a given interval. This extension is the heart of the proof and is captured
in Lemma 3.7. We will need a bit of preparation for its proof.

We define two properties of a matrix R ∈ Rn×n:

• Property P1(R, t):
∏n

i=1 ‖πR⊥−i
(Ri)‖ ≤ t (“short 1-D projections”).

• Property P2(R, t): |det R̂| ≥ t (“angles not too small”).

Lemma 4.4. Let R be drawn from distribution D. Then for any α > 1,

a. Pr
(
P1(R,αn)

) ≥ 1− 1
α2 ,

b. there exists β > 1 (that depends on α) such that Pr(P2

(
R, 1/βn

)
) ≥ 1− 1

nα .

Proof. For part (a), by the AM-GM inequality and Lemma 1.7 we have

E

((∏
i

‖πR⊥−i
(Ri)‖2

)1/n
)
≤ 1

n

∑
i

E ‖πR⊥−i
(Ri)‖2 =

n

n + 2
.
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Thus, by Markov’s inequality,

Pr

(∏
i

‖πR⊥−i
(Ri)‖ ≥ cn

)
= Pr

((∏
i

‖πR⊥−i
(Ri)‖2

)1/n

≥ c2

)
≤ 1

c2
.

For part (b), we can equivalently pick each entry of R independently as N(0, 1).
In any case,

det R̂ =
det R∏
i ‖Ri‖ =

∏
i ‖R̃i‖∏
i ‖Ri‖ .

We will find an upper bound for the denominator and a lower bound for the numerator.

For the denominator, concentration of a Gaussian vector (Lemma 1.6) gives

Pr(‖Ri‖2 ≥ 4n) ≤ 2−n

which implies

Pr

(
n∏

i=1

‖Ri‖2 ≥ 4nnn

)
≤ Pr

(
(∃i)‖Ri‖2 ≥ 4nnn

) ≤ n2−n ≤ e−Ω(n). (4.1)

For the numerator, let µi = E ‖R̃i‖2
= n−i+1, let µ = E

∏n
i=1 ‖R̃i‖2

=
∏n

i=1 µi =
n!.

Now, concentration of a Gaussian vector (Lemma 1.6) also gives

Pr
(‖R̃i‖2 ≥ µi/2

) ≥ 1− 2(n−i+1)/8 (4.2)

Alternatively, for t ∈ (0, 1)

Pr
(‖R̃i‖2 ≥ tµi

) ≥ 1−√tµi(n− i + 1). (4.3)

Let c > 0 be such that 2(n−i+1)/8 ≤ 1/(2nα+1) for i ≤ n− c log n. Using inequality
4.2 for i ≤ n− c log n and 4.3 for the rest with

t =
1

2n2α(c log n)5/2

we get

Pr

(
n∏

i=1

‖R̃i‖2 ≥ µ

2n−c log ntc log n

)

≥
n−c log n∏

i=1

Pr
(
‖R̃i‖2 ≥ µi

2

) n∏

i=n−c log n

Pr
(‖R̃i‖2 ≥ tµi

)

≥ 1− 1

nα

(4.4)
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where, for some γ > 1 we have 2n−c log ntc log n ≤ γn. The result follows from equations
4.4 and 4.1.

Proof (of Lemma 3.7). The idea of the proof is the following: If we assume that
|det(·)| of most matrices in a part fits in an interval [u, u(1+ε)], then for most choices
R−n of the first n − 1 rows in that part we have that most choices Y of the last
row in that part have |det(R−n, Y )| in that interval. Thus, in view of the formula1

|det(R−n, Y )| = ‖Ỹ ‖∏n−1
i=1 ‖R̃i‖−1

we have that, for most values of Y ,

‖Ỹ ‖ ∈ [
u, u(1 + ε)

] n−1∏
i=1

‖R̃i‖−1

where Ỹ is the projection of Y to the line orthogonal to R1, . . . , Rn−1. In other
words, most choices of the last row are forced to be contained in a set of the form
{x : b ≤ |a · x| ≤ c}, that we call a double band, and the same argument works for
the other rows. In a similar way, we get a pair of double bands of “complementary”
widths for every pair of rows. These constraints on the part imply that it has small
volume, giving a contradiction. This argument only works for parts containing mostly
“matrices that are not too singular”—matrices that satisfy P1 and P2—, and we
choose the parameters of these properties so that at least half of (

√
nBn)n satisfies

them.

We will firstly choose N ′ as the family of large parts that satisfy properties P1

and P2 for suitable parameters so that (a) is satisfied. We will say “probability of a
subset of (

√
nBn)n” to mean its probability with respect to the uniform probability

measure on (
√

nBn)n. The total probability of the parts having probability at most
α is at most α|N |. Thus, setting α = 1/(4|L|), the parts having probability at least
1/4|L| ≥ 1/2n2

have total probability at least 3/4. Since vol∪j∈NAj ≥ 2n2
, each of

those parts has volume at least 1. Let these parts be indexed by N ′′ ⊆ N . Lemma 4.4
(with α = 8 for part (a), α = 2 for part (b)) implies that at most 1/4 of (

√
nBn)n does

not satisfy P1(·, 8n) or P2(·, 1/βn), and then at least 3/4 of the parts in probability
satisfy P1(·, 8n) and P2(·, 1/βn) for at least half of the part in probability. Let N ′′′ ⊆ N
be the set of indices of these parts. Let N ′ = N ′′ ∩ N ′′′. We have that ∪j∈N ′Aj has
probability at least 1/2.

We will now prove (b). Let A =
∏n

i=1 Ai be one of the parts indexed by N ′. Let
X be random in A. Let ε be a constant and p1(n) be a function of n both to be fixed
later. Assume for a contradiction that there exists u such that

Pr
(|det X| /∈ [u, u(1 + ε)]

)
< p1(n). (4.5)

Let G ⊆ A be the set of M ∈ A such that |det M | ∈ [u, u(1 + ε)]. Let p2(n), p3(n) be
functions of n to be chosen later. Consider the subset of points R ∈ G satisfying:

I. P1(R, 8n/2) and P2(R, 1/βn),

1Recall that R̃i is the projection of Ri to the subspace orthogonal to R1, . . . , Ri−1.
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II. for any i ∈ {1, . . . , n}, for at most a p2(n) fraction of Y ∈ Ai we have (Y, R−i) /∈
G, and

III. for any i, j ∈ {1, . . . , n}, i 6= j, for at most a p3(n) fraction of (Y, Z) ∈ Ai ×Aj

we have (Y, Z, R−ij) /∈ G.

Because of the constraints, such a subset is a

1−Pr(X /∈ G)−Pr(X not as I, II and III) ≥ 1−p1(n)− 1

2
−n

p1(n)

p2(n)
−n2p1(n)

p3(n)
(4.6)

fraction of A. The function p1(n) will be chosen at the end so that the right hand
side is positive. Fix a matrix R = (R1, . . . , Rn) in that subset.

The constraints described in the first paragraph of the proof are formalized in
Lemma 4.5, which, for all i, j, gives sets Bij (double bands, of the form {x : b ≤
|a · x| ≤ c}), such that most of Ai is contained in ∩n

j=1Bij. Lemma 4.5 is invoked in
the following way: For each pair i, j with i < j, let E be the two-dimensional subspace
orthogonal to all the rows of R except i, j. We set X1 (respectively X2) distributed
as the marginal in E of the uniform probability measure on Ai (respectively Aj). We
also set a1 = πE(Ri), a2 = πE(Rj), α = p3(n), β = p2(n) and u and ε as here, while
γ will be chosen later.

Let lij be the width of (each component of) the double band Bij. Then, according
to Lemma 4.5, the following relations hold:

lii ≤ ε‖πR⊥−i
(Ri)‖ for any i,

lij ≤ 4ε‖πR⊥−i
(Ri)‖‖πR⊥−j

(Rj)‖/lji for i > j.

Since each double band has two components, the intersection of all the n bands
associated to a particular region Ai, namely ∩n

j=1Bij, is the union of 2n congruent
parallelotopes. Thus, using properties P1 and P2 of R and fixing ε as a sufficiently
small constant, the “feasible region” defined by the double bands, B =

∏n
i=1 ∩n

j=1Bij,
satisfies:

vol B ≤ 2n2

∏n
i,j=1 lij

|det R̂|n

≤ 2n2

∏n
i=1

(
ε‖πR⊥−i

(Ri)‖
∏i

j=2 4ε‖πR⊥−i
(Ri)‖‖πR⊥−j

(Rj)‖
)

|det R̂|n

= 2n2
ε(

n
2)4(n−1

2 ) ∏
i ‖πR⊥−i

(Ri)‖n

|det R̂|n
≤ 1/4n.

Each region Ai is not much bigger than the intersection of the corresponding double
bands Bi = ∩n

j=1Bij as follows: restricting to the double band Bii removes at most a
p2(n) fraction of Ai, each double band Bij for j < i removes at most a γ fraction of
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Ai, and each double band Bij for j > i removes a p2(n) + (p3(n)/γ) fraction of Ai.
We set γ = 1/4n2, p2(n) = 1/(4n2) and p3(n) = 1/(16n4) so that, as a fraction of
vol Ai, vol Bi is no less than

1− np2(n)−
(

n

2

)
γ −

(
n

2

)(
p2(n) +

p3(n)

γ

)
≥ 1/2.

Thus, vol A ≤ 2n vol B ≤ 1/2n, which is a contradiction. The condition on p1(n)
given by Equation (4.6) is satisfied for p1(n) = 1/(27n6).

Lemma 4.5 (2-D lemma). Let X1, X2 be two independent random vectors in R2 with
bounded support (not necessarily with the same distribution). Let X be a random
matrix with rows X1, X2. Assume that there exist u > 0, 0 < ε ≤ 1 such that

Pr
(|det X| /∈ [u, u(1 + ε)]

)
< α.

Let G = {M ∈ R2×2 : |det M | ∈ [u, u(1+ε)]}. Let a1, a2 ∈ R2 be such that (a1, a2) ∈ G
and

Pr(X1 : (X1, a2) /∈ G) ≤ β, Pr(X2 : (X2, a1) /∈ G) ≤ β.

Let γ > α/(1 − β). Then there exist double bands Bij ⊆ R2, bij ≥ 0, i, j ∈ {1, 2},
l ≥ 0,

B11 =
{

x : |a⊥2 · x| ∈
[
b11, b11 + ε‖πa⊥2

(a1)‖
]}

B22 =
{

x : |a⊥1 · x| ∈
[
b22, b22 + ε‖πa⊥1

(a2)‖
]}

B12 =
{

x : |a⊥1 · x| ∈
[
b12, b12 + l

]}

B21 =
{

x : |a⊥2 · x| ∈
[
b21, b21 + 4ε‖πa⊥2

(a1)‖‖πa⊥1
(a2)‖/l

]}

such that

Pr(X1 /∈ B11) ≤ β Pr(X1 /∈ B12) ≤ β + (α/γ)

Pr(X2 /∈ B21) ≤ γ Pr(X2 /∈ B22) ≤ β.

Proof. The proof refers to Figure 4-1 which depicts the bands under consideration.
A double band of the form {x : |a · x| ∈ [u, v]} has (additive or absolute) width

v − u and relative (or multiplicative) width v/u. Consider the expansion |det X| =
‖X2‖‖πX⊥

2
(X1)‖ and the definition of a2 to get

Pr
(‖πa⊥2

(X1)‖ /∈ ‖a2‖−1[u, u(1 + ε)]
) ≤ β.

That is, with probability at most β we have X1 outside of a double band of relative
width 1 + ε:

B11 =
{
x : ‖πa⊥2

(x)‖ ∈ ‖a2‖−1[u, u(1 + ε)]
}
.

Because a1 ∈ B11, the absolute width is at most ε‖πa⊥2
(a1)‖. If we exchange the roles
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Figure 4-1: The 2-D argument.

of a1 and a2 in the previous argument, we get a double band B22.
Let A be the set of a ∈ R2 satisfying: (a, a2) ∈ G and with probability at most γ

over X2 we have (X2, a) /∈ G. We have that

Pr(X1 ∈ A) ≥ 1− β − α

γ
.

Consider a point C ∈ A that maximizes the distance to the span of a1. Similarly to
the construction of B11, by definition of A and with probability at most γ we have X2

outside of a double band of relative width 1 + ε. We denote it B′
21. In order to have

better control of the angles between the bands, we want to consider a bigger double
band parallel to B11, the minimum such a band that contains the intersection of B22

and B′
21. Call this band B21. The width of this band is at most 2x, and the triangles

Oa1C and PMN are similar. Then,

x

z
=

y

l
,

where l = ‖πa⊥1
(C)‖ is the width of a band imposed on A by definition of C, y is the

width of B22, y ≤ ε‖πa⊥1
(a2)‖, and z is the distance between C and the span of a2,

that is,
z = ‖πa⊥2

(C)‖ ≤ (1 + ε)‖πa⊥2
(a1)‖ ≤ 2‖πa⊥2

(a1)‖.
Thus, x ≤ 2ε‖πa⊥2

(a1)‖‖πa⊥1
(a2)‖/l. Let B12 be the band imposed on A by definition

of C.

We are now ready to prove the complexity lower bounds.

Proof of Theorem 4.2. In view of Yao’s lemma, it is enough to prove a lower bound
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on the complexity of deterministic algorithms against a distribution and then a lower
bound on the minimum singular value of matrices according to that distribution. The
deterministic lower bound is a consequence of the dispersion of the determinant proved
in Theorem 3.7, the bound on the minimum singular value is an easy adaptation of
a bound on the minimum singular value of a Gaussian matrix given by Lemma 1.5.
These two claims are formalized below.

Claim 1: Let R be a random input according to distribution D. Then there exists
a constant c > 0 such that any deterministic algorithm that outputs a number V
such that

(1− c)|det R| ≤ V ≤ (1 + c)|det R|
with probability at least 1− 1/(28n6), makes more than

n2 − 2

log2(2n + 1)

queries in the oracle model Q′.
Claim 2: Let A be an n × n random matrix from distribution D. Let σ be the

minimum singular value of A. Then for any t ≥ 0

Pr(σ
√

n ≤ t) ≤ 4t +
n

2n−1

(the choice of t = 1/(212n6) proves Theorem 4.2).
Proof of Claim 1: For a deterministic algorithm and a value of n, consider the

corresponding decision tree. Let

h ≤ n2 − 2

log2(2n + 1)

be the height and L be the set of leaves of this tree. Let (Pl)l∈L be the partition on
the support of D induced by the tree.

Every query has at most 2n + 1 different answers, and every path has height at
most h. Thus,

|L| ≤ (2n + 1)h = 2n2−2.

The sets Pl are convex and Lemma 1.4 guarantees that they are also product sets of
matrices, and hence by Lemma 3.7 we have that there exists a constant c > 0 such
that with probability at least 1/(28n6) and for any a > 0 we have that |det R| is
outside of [a, (1 + c)a]. Claim 1 follows.

Proof of Claim 2: We will bound ‖A−1‖2 = 1/σ. To achieve this, we will reduce
the problem to the case where the entries of the matrix are N(0, 1) and independent.
We write A = GDE, where G has its entries independently as N(0, 1), D is the
diagonal matrix that normalizes the rows of G and E is another random diagonal
matrix independent of (G,D) that scales the rows of GD to give them the length
distribution of a random vector in

√
nBn. We have

‖A−1‖2 ≤ ‖D−1‖2‖E−1‖2‖G−1‖2. (4.7)
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Now, with probability at least 1− n/2n the diagonal entries of E are at least
√

n/2.
Thus, except for an event that happens with probability n/2n,

‖E−1‖2 ≤ 2/
√

n (4.8)

On the other hand, Lemma 1.6 (with ε = 3) implies that with probability at least
1−n/2n the diagonal entries of D−1 are at most 2

√
n. Thus, except for an event that

happens with probability n/2n,

‖D−1‖2 ≤ 2
√

n. (4.9)

From (4.7), (4.8) and (4.9), we get ‖A−1‖2 ≤ 4‖E−1‖. Using Lemma 1.5 which
bounds the singular values for a Gaussian matrix, Claim 2 follows.

Finally, Theorem 4.1 is a simple consequence.

Proof of Theorem 4.1. It remains to prove that a parallelotope given by a random
matrix A contains Bn/

√
n and is contained in

√
n

σ
Bn whenever σ > 0, where σ is the

minimum singular value of A. The first inclusion is evident since the entries must
be from [−1, 1]. It is sufficient to prove the second inclusion for the vertices of the
parallelotope, i.e., solutions to Ax = b for any b ∈ {−1, 1}n. That is, x = A−1b and
therefore

‖x‖ ≤ ‖A−1‖2‖b‖ ≤
√

n/σ.

4.3 Nonadaptive volume algorithms

An algorithm is nonadaptive if its queries are independent of the input.

Theorem 4.6 (nonadaptive lower bound). Let K be a convex body given by a member-
ship oracle such that Bn ⊆ K ⊆ 2nBn. Then any nonadaptive randomized algorithm
that outputs a number V such that .9 vol(K) ≤ V ≤ 1.1 vol(K) holds with probability
at least 3/4 has complexity at least 1

4
(4n)n/2.

Proof. Consider the distribution on parallelotopes induced by the following procedure:
first, with equal probability choose one of the following bodies:

• (“brick”)
{
x ∈ Rn : (∀i ∈ {2, . . . , n}) |xi| ≤ 1

} ∩ nBn

• (“double brick”)
{
x ∈ Rn : (∀i ∈ {2, . . . , n}) |xi| ≤ 1

} ∩ 2nBn

and then, independently of the first choice, apply a random rotation.
We will prove the following claim, from which the desired conclusion can be ob-

tained by means of Yao’s lemma.
Claim: Let K be a parallelotope according to the previous distribution. Then any

nonadaptive deterministic algorithm that outputs a number V such that

.9 vol(K) ≤ V ≤ 1.1 vol(K) (4.10)
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holds with probability more than 1
2

+ Q( 2
eπn

)n/2 has complexity at least Q.

Proof of Claim: To satisfy Equation (4.10), the algorithm has to actually dis-
tinguish between the brick and the double brick. Let the bad surface be the in-
tersection between the input and the sphere of radius n. In order to distinguish
between the two bodies, the algorithm has to make at least one query whose ray hits
the bad surface. We will prove that the probability of this event is no more than
2Q(2/eπn)n/2. To see this, observe that the probability of a query hitting the bad
surface is at most the volume of the bad surface divided by the volume of the sphere
of radius n. The former can be bounded in the following way: Let x = (x2, . . . , xn)
be the coordinates along the normals to the n − 1 facets of the body. Parameterize
one of the hemispheres determined by the hyperplane containing those normals as
F (x2, . . . , xn) =

√
n2 − x2

2 − · · · − x2
n.

We have that
d

dxi

F (x) =
xi

F (x)
.

In the domain of integration [−1, 1]n−1 we have ‖x‖2 ≤ n and this implies that in
that domain

‖∇F (x)‖2 =
‖x‖2

n2 − ‖x‖2 ≤
1

n− 1
.

The volume of the bad surface is given by

2

∫

[−1,1]n−1

√
1 + ‖∇F (x)‖2 dx ≤ 2n

√
1 +

1

n− 1
≤ 2n+1

The volume of the sphere of radius n is

nnπn/2

Γ(1 + n
2
)
≤ nnπn/2

(n/2
e

)n/2
= (2eπn)n/2.

Thus, the probability that a particular query hits the bad surface is at most

2n+1

(2eπn)n/2
= 2

(
2

eπn

)n/2

.

Therefore the algorithm gives the wrong answer with probability at least

1

2

(
1− 2Q

(
2

eπn

)n/2
)

.
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4.4 Discussion

Related earlier work includes [6, 10], showing lower bounds for linear decision trees
(i.e., every node of the tree tests whether an affine function of the input is nonneg-
ative). [6] considers the problem of deciding whether given n real numbers, some k
of them are equal, and they prove that it has complexity Θ(n log(n/k)). [10] proves
that the n-dimensional knapsack problem has complexity at least n2/2.

The results for determinant/volume hold with the following stronger oracle: we
can specify any k × k submatrix A′ of A and a vector x ∈ Rk and ask whether
‖A′x‖∞ ≤ 1. In particular, this allows us to query individual entries of the matrix.
More specifically, consider the oracle that takes indices i, j and a ∈ R and returns
whether Aij ≤ a. Using this oracle, our proof (Lemma 3.7) yields the following result:
there is a constant c > 0 such that any randomized algorithm that approximates the
determinant to within a (1 + c) factor has complexity Ω(n2). In the property testing
framework, this rules out sublinear (in the input size) methods for estimating the
determinant, even with randomized (adaptive) access to arbitrary entries of the input
matrix.

For the volume problem itself, the best known algorithm has complexity roughly
O(n4) but the complexity of that algorithm is conjectured to be n3. It is conceivable
that our lower bound for membership oracle queries can be improved to n3, although
one would have to use bodies other than parallelotopes. Also, it is an open problem
to give a faster algorithm using a separation oracle.
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Chapter 5

Other lower bounds

Our lower bound for randomized volume approximation is nearly the best possible
for our restricted class of parallelotopes. Using O(n2 log n) queries, we can find a
close approximation to the entire matrix A and therefore any reasonable function
of its entries. This naturally raises the question of what other parameters require a
quadratic number of queries. We prove that estimating the product of the lengths of
the rows of an unknown matrix A to within a factor of about (1+1/ log n) also requires
Ω(n2/ log n) queries. The simplest version of this problem is the following: given a
membership oracle for any unknown halfspace a · x ≤ 1, estimate ‖a‖, the Euclidean
length of the normal vector a (alternatively, estimate the distance of the hyperplane
from the origin). This problem can be solved deterministically using O(n log n) oracle
queries. We prove that any randomized algorithm that estimates ‖a‖ to within an
additive error of about 1/

√
log n requires Ω(n) oracle queries.

Also, in the previous chapter we saw a lower bound for the complexity of approx-
imating the absolute value of the determinant of a matrix. A slightly weaker lower
bound holds for estimating the product of the lengths of the rows. The proof is in
Section 5.2.

We now state this lower bounds in a precise way.

Theorem 5.1 (product). Let A be an unknown matrix that can be accessed by the
following oracle: for any x, the oracle determines whether ‖Ax‖∞ ≤ 1 is true or false.
Then there exists a constant c > 0 such that any randomized algorithm that outputs
a number L such that

(
1− c

log n

) n∏
i=1

‖Ai‖ ≤ L ≤
(

1 +
c

log n

) n∏
i=1

‖Ai‖

with probability at least 1− 1/n has complexity Ω(n2/ log n).

When A has only a single row, we get a stronger bound. In this case, the oracle
is simply a membership oracle for a halfspace.

Theorem 5.2 (length). Let a be a vector in [−1, 1]n with ‖a‖ ≥ √
n − 4

√
log n and

a · x ≤ 1 be the corresponding halfspace in Rn given by a membership oracle. Then
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there exists a constant c > 0 such that any randomized algorithm that outputs a
number l such that

‖a‖ − c√
log n

≤ l ≤ ‖a‖+
c√

log n

with probability at least 1− 1/n has complexity at least n− 1.

The restrictions on the input in all the above theorems (“roundness”) only make
them stronger. For example, the bound on the length of a above implies that it
only varies in an interval of length 4

√
log n. To pin it down in an interval of length

c/
√

log n (which is O(log log n) bits of information) takes Ω(n) queries. This result is
in the spirit of hardcore predicates [17].

It is worth noting that a very simple algorithm can approximate the length as
in the theorem with probability at least 3/4 and O(n log2 n) queries: the projection
of a onto a given vector b can be computed up to an additive error of 1/ poly(n)
in O(log n) queries (binary search along the line spanned by b). If b is random in
Sn−1, then E((a · b)2) = ‖a‖2/n. A Chernoff-type bound gives that the average of
O(n log n) random projections allows the algorithm to localize ‖a‖ in an interval of
length O(1/

√
log n) with probability at least 3/4.

5.1 Proof of the lower bound for length estimation

In this section, we prove Theorem 5.2. Let a be uniform random vector from [−1, 1]n.
By Lemma 1.6, ‖a‖ ≥ √

n − 4
√

log n as required by the theorem with probability
at least 1 − 1/n2. We will prove that there exists a constant c > 0 such that any
deterministic algorithm that outputs a number l such that

‖a‖ − c√
log n

≤ l ≤ ‖a‖+
c√

log n

with probability at least 1−O(1/n log n) makes at least n−1 halfspace queries. Along
with Yao’s lemma this proves the theorem.

Our access to a is via a membership oracle for the halfspace a · x ≤ 1. Consider
the decision tree of height h for some deterministic algorithm. This will be a binary
tree. The distribution at a leaf l is uniform over the intersection of [−1, 1]n with the
halfspaces given by the path (queries, responses) to the leaf l from the root r, i.e.,
uniform over a polytope Pl with at most 2n + h facets.

The volume of the initial set is 2n. The volume of leaves with vol(Pl) < 1 is less
than |L| = 2h and so the total volume of leaves with vol(Pl) ≥ 1 is at least 2n − 2h.
Setting h = n−1, this is 2n−1 and so with probability at least 1/2, vol(Pl) ≥ 1. For a
random point X from any such Pl, Theorem 3.5 implies that var ‖X‖2 ≥ cn/ log n for
some absolute constant c > 0. Now by Lemma 3.3(a), and the fact that the support
of ‖X‖2 is an interval of length n, we get that for any b,

Pr

(∣∣‖X‖2 − b
∣∣ ≥ 1

2

√
cn

log n

)
≥ 3c

4n log n
.
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It follows that ‖X‖ is dispersed after n−1 queries. We note that the lower bound can
be extended to any algorithm that succeeds with probability 1− 1/nε by a standard
trick to boost the success probability: we repeat the algorithm O(1/ε) times and use
the median of the results.

5.2 Proof of the lower bound for the product

Lemma 5.3. Let f : [0,M ] → R+ be a density function with mean µ and variance
σ2. Suppose the distribution function of f is logconcave. Then f can be decomposed
into a convex combination of densities g and h, i.e., f(x) = αg(x) + (1 − α)h(x),
where g is uniform over an interval [a, b], with a ≥ µ, α(a− b)2 = Ω

(
σ2/ log(M/σ)

)
and α = Ω

(
σ2/M2 log(M/σ)

)
.

Proof. Let the distribution function be F (t) = Pr(X ≤ t) = eg(t) for some concave
function g and the density is f(t) = g′(t)eg(t) where g′(t) is nonincreasing. First, we
observe that logconcavity implies that F (µ) ≥ 1/4. To see this, let µ− l be the point
where F (µ− l) = F (µ)/2. Then, F (µ− il) ≤ F (µ)/2i and

∫ µ

0

(µ− x)f(x) dx ≤
∑
i≥1

(
F (µ− (i− 1)l)− F (µ− il)

)
(il)

≤ F (µ)l +
∑
i>1

F (µ− il)
(
(i + 1)− i

)
l

≤ F (µ)l
∑
i≥0

1

2i
= 2lF (µ).

On the other hand (assuming F (µ) ≤ 1/4, otherwise, there is nothing to prove),

∫ ∞

µ

(x− µ)f(x) dx ≥
blog(1/F (µ))c∑

i=1

(2i − 2i−1)F (µ)(i− 1)l ≥ log
(
1/F (µ)

)

2
.

Therefore, we must have 2F (µ) ≥ log(1/F (µ))/2 which implies F (µ) ≥ 1/4.

Next,

∫ µ

0

(µ− x)f(x) dx ≥
∫ µ−l

0

(µ− x)f(x) dx ≥ F (µ− l)l ≥ l

8
.

Therefore, since µ is the mean,

∫ ∞

µ

(x− µ)f(x) dx ≥ l

8
.

It follows that ∫ ∞

µ

(x− µ)2f(x) dx ≥ l2

64
. (5.1)
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Suppose l < σ/4. Then,

∫ µ

0

(x− µ)2f(x) dx ≤
∑
i≥1

(
F (µ− (i− 1)l)− F (µ− il)

)
(il)2

≤ F (µ)l2 +
∑
i>1

F (µ− il)
(
(i + 1)2 − i2

)
l2

≤ F (µ)l2
∑
i≥1

2i + 1

2i
= 5l2F (µ) ≤ σ2/2.

Since

σ2 =

∫ ∞

0

(x− µ)2f(x) dx =

∫ µ

0

(x− µ)2f(x) dx +

∫ ∞

µ

(x− µ)2f(x) dx,

we must have ∫ ∞

µ

(x− µ)2f(x) dx ≥ σ2

2
.

Using this and (5.1), we have (regardless of the magnitude of l),

∫ ∞

µ

(x− µ)2f(x) ≥ σ2

210
. (5.2)

Now we consider intervals to the right of µ. Let J0 = (µ, x0] where x0 is the
smallest point to the right of µ for which f(x0) ≤ 1 (J0 could be empty). Let Ji,
for i = 1, 2, . . . , m = 2 log(M/σ) + 12 be [xi−1, xi] where xi is the smallest point
for which f(xi) ≤ 1/2i. For any t ≥ t′ ≥ µ, f(t′) ≥ f(t)F (t′)/F (t) ≥ f(t)F (µ) ≥
f(t)/4. Therefore, the function f is approximately constant in any interval Ji for
i ≥ 1. If x0 > µ + σ/64, then we can use the interval [µ, µ + σ/64]. Otherwise,∫

J0
(x − µ)2f(x) dx ≤ σ2/212. Also,

∫∞
xm

(x − µ)2f(x) dx ≤ σ2/212. Finally, consider
intervals whose individual mass is less than

σ2

212M2
(
2 log(M/σ) + 12

) .

Their contribution to
∫∞

µ
(x − µ)2f(x) dx is at most σ2/212. Therefore, from (5.2),

one of the remaining intervals Ji, i ≥ 1, must have

∫

Ji

(x− µ)2f(x) dx ≥ σ2

212 log(M/σ)
and

∫

Ji

f(x) dx ≥ σ2

212M2
(
2 log(M/σ) + 12

) .

Proof of Theorem 5.1. For this lower bound, we use the distribution D′ on matrices.
Let R be an n× n random matrix having each entry uniformly and independently in
[−1, 1]. On input R from distribution D′ having rows (R1, . . . , Rn) and with probabil-
ity at least 1/2 over the inputs, we consider algorithms that output an approximation
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to f(R) =
∏

i ‖Ri‖. The next claim for deterministic algorithms, along with Yao’s
lemma, proves Theorem 5.1.

Claim: Suppose that a deterministic algorithm makes at most

h :=
n2

2
− 1

log2(2n + 1)

queries on any input R and outputs V . Then there exists a constant c > 0 such that
the probability of the event

(
1− c

log n

)
f(R) ≤ V ≤

(
1 +

c

log n

)

is at most 1−O(1/n).
To prove the claim, we consider a decision tree corresponding to a deterministic

algorithm. Let Pl be the set of matrices associated with a leaf l. By Lemma 1.4,
we have that the set Pl is a product set along rows, that is Pl =

∏
iRi, where

Ri ⊆ Rn is the set of possible choices of the row Ri consistent with l. The conditional
distribution of R at a leaf l consists of independent, uniform choices of the rows
from their corresponding sets. Moreover, the sets Ri are polytopes with at most
f = 2n+2h facets. Every query has at most 2n+1 different answers, and every path

has height at most h. Thus, |L| ≤ (2n + 1)h = 2
n2

2
−1. The total probability of the

leaves having probability at most α is at most α|L|. Thus, setting α = 1/(2|L|), the
leaves having probability at least

1

2|L| ≥
1

2n2/2

have total probability at least 1/2. Because vol∪l∈LPl = 2n2
, we have that those

leaves have volume at least 2n2/2. Further, since Pl =
∏

iRi, we have that for such
Pl at least n/2 of the Ri’s have volume at least 1. Theorem 3.5 implies that for those
var ‖Ri‖2 ≥ Ω(n/ log n). Along with the fact that ‖Ri‖ ≤

√
n and Lemma 1.9, for a

random matrix R from such a Pl, we get

var
(
f(R)2

)
(
E(f(R)2)

)2 ≥
∑

i

var(‖Ri‖2)(
E(‖Ri‖2)

)2 = Ω

(
1

log n

)
.

Thus, the variance of f(R) is large. However, this does not directly imply that f(R) is
dispersed since the support of f(R) could be of exponential length and its distribution
is not logconcave.

Let X =
∏n

i=1 Xi where Xi = ‖Ri‖2. To prove the lower bound, we need to show
that dispX(p) is large for p at least inverse polynomial in n. For i such that vol(Ri) ≥
1, we have var Xi = Ω(n/ log n) by Theorem 3.5. As remarked earlier at least n/2 sets
satisfy the volume condition and we will henceforth focus our attention on them. We
also get E(Xi) ≥ n/16 from this. The distribution function of each Xi is logconcave
(although not its density) and its support is contained in [0, n]. So by Lemma 5.3,
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we can decompose the density fi of each Xi as fi(x) = pigi(x) + (1− pi)g
′
i(x). where

gi is the uniform distribution over an interval [ai, bi] of length Li and

piL
2
i = Ω

(
n

log2 n

)
and pi = Ω

(
1

n log n

)
.

We will assume that piL
2
i = cn/ log2 n and pi = Ω(1/n2). This can be achieved by

noting that Li is originally at most n and truncating the interval suitably. Let X ′
i be

a random variable drawn uniformly from the interval [ai, bi]. Let Yi = log X ′
i, I be a

subset of {1, 2, . . . , n} and YI =
∑

i∈I log X ′
i. The density of Yi is hi(t) = et/Li for

log ai ≤ t ≤ log bi and zero outside this range. Thus Yi has a logconcave density and
so does YI (the sum of random variables with logconcave density also has a logconcave
density). Also, var(YI) =

∑
i∈I var(Yi). To bound the variance of Yi, we note that

since ai ≥ E(Xi) by Lemma 5.3, we have bi ≤ 16ai and so hi(t) varies by a factor of
at most 16. Thus, we can decompose hi further into h′i and h′′i where h′i is uniform
over [log ai, log bi] and

hi(x) =
1

16
h′i(x) +

15

16
h′′i (x).

Let Y ′
i have density h′i. Then

var(Yi) ≥ 1

16
var(Y ′

i ) =
(log bi − log ai)

2

192
.

Therefore

var(YI) ≥ 1

192

∑
i∈I

(log bi − log ai)
2

From this we get a bound on the dispersion of YI using the logconcavity of YI and
Lemma 3.3(b). The bound depends on the set I of indices that are chosen. This set
is itself a random variable defined by the decompositions of the Xi’s. We have

EI

(
var(YI)

) ≥ 1

192

n∑
i=1

pi(log bi − log ai)
2 ≥ 1

192

n∑
i=1

pi
L2

i

(8ai)2
≥ c1

log2 n

On the other hand,

varI

(
var(YI)

) ≤ 1

144

n∑
i=1

pi(log bi − log ai)
4

≤ 1

144

n∑
i=1

pi
L4

i

a4
i

≤ 164

144n4

n∑
i=1

p2
i L

4
i

pi

=
164

144n4

c2n2

log4 n

n∑
i=1

1

pi

.
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Suppose pi ≥ c2/n for all i. Then we get,

varI

(
var(YI)

) ≤ c′2
log4 n

and for c2 large enough, varI

(
var(YI)

) ≤ (
EI var(YI)

)2
/4. Hence, using Chebychev’s

inequality, with probability at least 1/4, var(YI) ≥ c1/4 log2 n. By Lemma 3.3(b),

with probability at least 1/4, we have dispYI
(1/2) ≥

√
c1

4 log n
. This implies that for any

u,

Pr

(
X ∈

[
u, u

(
1 +

√
c1

4 log n

)])
≤ 7

8
.

Finally, if for some i, pi < c2/n, then for that Yi, L2
i = Ω(n2/ log2 n) and using just

that i, we get dispYi
(pi/2) ≥

√
L2

i /a
2
i = Ω(1/ log2 n) and once again X is dispersed

as well (recall that pi = Ω(1/n2)).
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Chapter 6

Testing convexity

Geometric convexity has played an important role in algorithmic complexity theory.
Fundamental problems (sampling, optimization, etc.) that are intractable in general
can be solved efficiently with the assumption of convexity. The algorithms developed
for these problems assume that the input is a convex set and are often not well-defined
for arbitrary sets. Nevertheless, sampling-based approaches for optimization might
be extendable to approximately convex sets, since there is hope that approximately
convex sets can be sampled efficiently. This raises a basic question: How can we test
if a given compact set in Rn is convex? Similarly, do short proofs of convexity or
non-convexity of a set exist? Can one find these proofs efficiently?

To address these questions, we first need to decide how the set (called S hence-
forth) is specified. At the least, we need a membership oracle, i.e., a blackbox that
takes as input a point x ∈ Rn and answers YES or NO to the question “Does x belong
to S?” This is enough to prove that a set is not convex. We find 3 points x, y, z ∈ Rn

such that x, z ∈ S, y ∈ [x, z] and y /∈ S. Since a set is convex iff it is convex along
every line, such a triple constitutes a proof of non-convexity.

On the other hand, how can we prove that a set is convex? Imagine the perverse
situation where a single point is deleted from a convex set. We would have to test an
uncountable number of points to detect the non-convexity. So we relax the goal to
determining if a set is approximately convex. More precisely, given 0 < ε ≤ 1, either
determine that S is not convex or that there is a convex set K such that

vol(S \K) + vol(K \ S) ≤ ε vol(S) .

In words, the condition above says that at most an ε fraction of S has to be changed
to make it convex. We will call this the problem of testing approximate convexity.

This formulation of the problem fits the property testing framework developed in
the literature [16]. In fact, there has been some work on testing convexity of discrete
1-dimensional functions [33], but the general problem is open.

Testing approximate convexity continues to be intractable if S is specified just by
a membership oracle. Consider the situation where a small part of S is very far from
the rest. How do we find it? To counter this, we assume that we also have access to
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uniform random points in S, i.e., a random oracle1. (There are other alternatives, but
we find this to be the cleanest). In this chapter, we address the question of testing
approximate convexity of a set given by a membership oracle and a random oracle.
The complexity of an algorithm is measured by the number of calls to these oracles
and the additional computation time.

We begin with a proof that the problem is well-defined, i.e., there exists a closest
convex set. Then we give a simple algorithm with complexity poly(n)(c/ε)n for any
set S in Rn. The algorithm uses random sampling from a convex polytope as a
subroutine. Next, we consider what is perhaps the most natural algorithm for testing
approximate convexity: get a pair of random points from the set and test if the
intersection of the line through them with S is convex. This is motivated by the
following conjecture: If the intersection of S with “most” lines is convex, then S itself
is approximately convex. Many property testing algorithms in the literature have
this flavor, i.e., get a random subset and test if the subset has the required property.
Surprisingly, it turns out that the number of tests needed can be exponential in the
dimension. We construct an explicit family of sets for which the lines through most
(all but an exponentially small fraction) pairs of points have convex intersections with
the set (i.e., they intersect S in intervals), yet the set is far from convex. Finally,
we conjecture that if “most” 2-dimensional sections of a set S are convex, then S is
approximately convex.

6.1 Preliminaries

The following notation will be used.

Let A,B ⊆ Rn be measurable sets. The symmetric difference measure distance
(or simply, distance) between A and B is

d(A,B) = vol(A∆B) .

Let K denote the set of all compact convex sets in Rn with nonempty interior,
and the empty set.

Proposition 6.1. Let S ⊆ Rn compact. Then infC∈K d(S,C) is attained.

Proof. The set K with distance d is a metric space. The selection theorem of Blaschke
(see the appendix at the end of this chapter) implies that {C ∈ K, C ⊆ conv S} is

1A non-trivial example where testing approximate convexity makes sense and the oracles are
naturally available is testing approximate convexity of the union of m convex bodies given by mem-
bership oracles. In this case, the individual membership oracles give a membership oracle for the
union. Also, the membership oracles can simulate random oracles for every convex set (approxi-
mately, see [27]), and allow us to approximate the volumes of the convex bodies. Finally, by using
a technique similar to the one used to approximate the number of satisfying assignments of a DNF
formula (see [32], for example), one can simulate a random oracle for the union (approximately)
by means of the individual membership and random oracles and the individual volumes, in time
polynomial in m and the other parameters.
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compact. Moreover, d(S, ·) : K → R is continuous. Also, it is sufficient to consider
convex sets contained in conv S, that is,

inf
C∈K

d(S, C) = inf
C∈K

C⊆conv S

d(S, C) .

The last expression is the infimum of a continuous function on a compact set, thus it
is attained.

Definition 6.2. Given S ⊆ Rn compact, a set C ∈ argminC∈K d(S,C) is called a
closest convex set of S. S is said to be ε-convex iff d(S,C) ≤ ε vol(S).

6.2 Algorithms for testing approximate convexity

We are interested in the following algorithmic problem:
Let S ⊆ Rn be compact. We are given a membership oracle that given x ∈ Rn

answers “YES” if x ∈ S and “NO” if x /∈ S; we also have access to a random oracle
that when called gives a uniformly sampled random point from S. For any given
ε > 0, our goal is to determine either that S is ε-convex (output “YES”) or that S is
not convex (output “NO”).

In this section, we will give a randomized algorithm for the problem. We will prove
that the algorithm works with probability at least 3/4. This can be easily boosted to
any desired 1−δ while incurring an additional factor of O(ln(1/δ)) in the complexity.

6.2.1 The one-dimensional case

One-dimensional algorithm
Input: Access to membership and random oracles of S ⊆ R.

1. Get 12/ε points from the random oracle. Let C be their convex hull (the
interval containing them).

2. Choose 12/ε random points in C. Check if they are all in S using the
membership oracle. If so, output “YES”, else output “NO”.

Theorem 6.3. With probability at least 3/4, the one-dimensional algorithm deter-
mines that S is not convex or that S is ε-convex.

Proof. Clearly, if S is convex then the algorithm answers “YES”. So assume that S
is not ε-convex. We say that the first step succeeds if we get at least one point in the
leftmost ε/4 fraction of S and another point in the rightmost ε/4 fraction of S. The
first step fails with probability at most 2(1 − ε/4)12/ε ≤ 2/e3. Suppose the first step
succeeds. Then,

vol(S \ C) ≤ vol(S)
ε

2
.

This implies that

vol(C \ S) ≥ vol(S)
ε

2
.
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From this, we get

vol(C \ S) ≥ max
{ ε

2
vol(S), vol(C)− vol(S)

}

= vol(C) max

{
ε

2

vol(S)

vol(C)
, 1− vol(S)

vol(C)

}
.

(6.1)

Given that ε > 0, the expression

max
{ ε

2
α, 1− α

}

is minimized as a function of α when ε
2
α = 1 − α, i.e., for α = 2

ε+2
. Thus, from

Equation (6.1) we get

vol(C \ S) ≥ ε

2 + ε
vol(C) .

That is, conditioned on the success of the first step, with probability at least
1− (1− ε/3)12/ε ≥ 1− 1/e4 the algorithm answers “NO”. Thus, overall the algorithm
answers “NO” with probability at least (1− 1/e4)(1− 2/e3) ≥ 3/4.

6.2.2 The general case

Here we consider the problem in Rn. It is not evident that the time complexity of the
problem can be made independent of the given set S (that is, depending only on ε
and the dimension). The following algorithm shows such independence (m = m(ε, n)
will be chosen later).

n-dimensional algorithm
Input: Access to membership and random oracles of S ⊆ Rn.

1. Get m random points from S. Let C be their convex hull.

2. Get 4/ε random points from S. If any of them is not in C, output “NO”.

3. Get 6/ε random points from C. If each of them is in S according to the
membership oracle, then output “YES”, else output “NO”.

Checking if a point y belongs to C is the same as answering whether y can be
expressed as a convex combination of the m points that define C. This can be done
by solving a linear program. The third step requires random points from C, which
is a convex polytope. Sampling convex bodies is a well-studied algorithmic problem
and can be done using O∗(n3) calls to a membership oracle (see [27], for example).

To prove the correctness of the algorithm we will use the following lemmas (the
first is from [18] and the second is paraphrased from [3]).

Lemma 6.4. Let C = conv{X1, . . . , Xm}, where the Xi’s are independent uni-
form random samples from a convex body K. Then for any integer t > 0 we have
E

(
(vol(C)/ vol(K))t

)
is minimized iff K is an ellipsoid.
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Lemma 6.5. Let Bn ⊆ Rn be the unit ball. Let C = conv{X1, . . . , Xm}, where the
Xi’s are independent uniform random samples from Bn. There exists a constant c
such that, for m = (cn/ε)n,

E
(
vol(Bn \ C)

) ≤ ε vol(Bn) .

Theorem 6.6. Using m = (224cn/ε)n random points and poly(n)/ε membership
calls, the n-dimensional algorithm determines with probability at least 3/4 that S is
not convex or that S is ε-convex.

Proof. First, assume that S is convex. We want to show that the algorithm outputs
“YES” with probability at least 3/4. Let X = vol(S \ C)/ vol(S). Then by Lemma
6.4, E(X) is maximized when K is a ball and using Lemma 6.5 with our choice of m,
we get that

E(X) ≤ ε

224n
.

By Markov’s inequality, with probability at least 6/7,

vol(S \ C) ≤ ε

32
vol(S) .

Given this, Markov’s inequality implies that the algorithm will not stop at step 2
with probability at least 3/4: in step 2, if we let Y be the number of points not in C
then

E(Y ) ≤ ε

32

4

ε
=

1

8
,

and therefore, by Markov’s inequality,

P(algorithm outputs “NO” in step 2) = P(Y ≥ 1) = P
(
Y ≥ 8E(Y )

) ≤ 1

8
.

Thus, the algorithm outputs “YES” with probability at least 6
7

7
8

= 3
4
.

Next, if S is not ε-convex, the analysis can be divided into two cases after the first
step: either vol(S \ C) ≥ vol(S)ε/2 or vol(S \ C) < vol(S)ε/2. In the first case, step

2 outputs “NO” with probability at least 1− (
1− ε

2

)4/ε ≥ 1− 1
e2 ≥ 3

4
. In the second

case we have
vol(C \ S) ≥ ε

2
vol(S)

and by the same analysis as the one-dimensional case, vol(C \ S) ≥ ε
3
vol(C). Thus,

step 3 outputs “NO” with probability at least 1− (1− ε
3
)6/ε ≥ 3/4.

Note that, unlike the one-dimensional case, this algorithm has two-sided error.
The complexity of the algorithm is independent of S and depends only on n and ε.
It makes an exponential number of calls to the random oracle and this dependency is
unavoidable for this algorithm. It is known for example that the convex hull of any
subset of fewer than cn points of the ball, contains less than half its volume [4].

The one-dimensional algorithm suggests another algorithm for the general case:
let `(x, y) be the line through x and y,
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Lines-based algorithm
Input: Access to membership and random oracles of S ⊆ Rn compact.

Generate m pairs of random points (x, y) and test if `(x, y) ∩ S is convex.

How large does m need to be? Somewhat surprisingly, we show in the next section
that this algorithm also has an exponential complexity. Testing if `(x, y)∩S is convex
is not a trivial task (note that we have a membership oracle for `(x, y) ∩ S from the
oracle for S, but simulating a random oracle is not so simple). However, for the
purpose of showing a lower bound in m we will assume that the one-dimensional
algorithm checks exactly whether `(x, y) ∩ S is convex (that is, it is an interval).

6.3 The lines-based algorithm is exponential

In this section, we construct an explicit family of compact sets each of which has the
following properties: (i) the set is far from convex, and (ii) for all but an exponentially
small fraction of pairs of points from the set, the line through the pair of points
has a convex intersection with the set. This implies that the lines-based algorithm
(described at the end of Subsection 6.2.2) has exponential worst-case complexity.
Thus, although exact convexity is characterized by “convex along every line,” the
corresponding reduction of approximate convexity to “convex along most lines” is
not efficient.

The proof of the lower bound is in two parts, first we show that the algorithm
needs many tests and then that the test family is far from convex (i.e., ε is large).

6.3.1 The family of sets: the cross-polytope with peaks

The n-dimensional cross-polytope is an n-dimensional generalization of the octahe-
dron and can be defined as the unit ball with the norm ‖x‖1 =

∑n
i=1|xi|. Let Tn

be the “cross-polytope with peaks”, that is, the union of the cross-polytope and, for
each of its facets i ∈ {1, . . . , 2n}, the convex hull of the facet and a point vi = λd,
where d is the unit outer normal to the facet and λ ≥ 1/

√
n is a parameter (that may

depend on the dimension). Informally, one adds an n-dimensional simplex on top of
each facet of the cross-polytope. The volume of the cross-polytope is a 1

λ
√

n
fraction

of the volume of Tn. We will choose λ =
√

n
n−2

. In that case, the cross-polytope as a

convex set shows that Tn is O( 1
n
)-convex. We will prove that Tn is not 1

18n2 -convex,
i.e., for any convex set K, we have d(K, Tn) > 1

18n2 vol Tn.

6.3.2 The non-convexity of the family cannot be detected by
the lines-based algorithm

Proposition 6.7. If λ ≤
√

n
n−2

then the one-dimensional test has an exponentially low
probability of detecting the non-convexity of the cross-polytope with peaks.
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Proof. First, we will prove the following claim:

Under the hypothesis, every peak is contained in the intersection of the
half-spaces determining the n facets of the cross-polytope adjacent to the
peak.

It is enough to see that the point vi = λd (a vertex of the peak) is contained in
that intersection. Because of the symmetry, we can concentrate on any particular
pair of adjacent facets, say those having normals d = (1, 1, . . . , 1)/

√
n and d′ =

(−1, 1, . . . , 1)/
√

n. The halfspace determining the facet with normal d is given by
{x ∈ Rn : x · d′ ≤ 1/

√
n}. Then vi = λd is contained in the halfspace associated to

the facet with normal d′ (which is sufficient) if λd·d′ ≤ 1/
√

n. That is, λ ≤ √
n/(n−2).

This proves the claim.
It is sufficient to note that, for the algorithm to answer “NO”, we need to choose

a line whose intersection with Tn is not convex. Suppose that a line L shows non-
convexity. Then it does not intersect the cross-polytope part of Tn a. s. (almost
surely), otherwise L intersects exactly 2 facets of the cross-polytope a. s., and inter-
sects only the peaks that are associated to those facets, because of the claim (if one
follows the line after it leaves the cross-polytope through one of the facets, it enters a
peak, and that peak is the only peak on that side of the facet, because of the claim),
and thus L∩Tn would be convex. Now, while intersecting a peak, L intersects two of
its facets at two points that are not at the same distance of the cross-polytope, a.s.
The half of L that leaves the peak through the farthest point cannot intersect any
other peak because of the claim (the halfspace determined by the respective facet of
the cross-polytope containing this peak contains only this peak, and this half of L
stays in this halfspace). The half of L that leaves the peak through the closest point
will cross the hyperplane determined by one of the adjacent peaks2 before intersecting
any other peak, a.s.; after crossing that hyperplane it can intersect only one peak,
namely, the peak associated to that hyperplane, because of the claim. Thus, L has
to intersect exactly 2 peaks that have to be adjacent a. s., and L does not intersect
the cross-polytope. In other words, the two random points that determine L are in
the same peak or in adjacent peaks. The probability of this event is no more than
n+1
2n .

6.3.3 The sets in the family are far from convex

To prove that Tn is far from being convex, we will prove that a close convex set must
substantially cover most peaks, and because of this, a significant volume of a close
convex set must lie between pairs of adjacent substantially covered peaks, outside of
Tn, adding to the symmetric difference. The following lemma will be useful for this
part. For A ⊆ Rn, H a hyperplane and v ∈ Rn a unit normal for H, let

wH(A) = sup
x∈A

v · x− inf
x∈A

v · x .

2“The hyperplane determined by a peak” is the unique hyperplane that contains the facet of the
cross-polytope associated to the peak.
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Figure 6-1: Projection of the peaks (i, j) of the cross-polytope with peaks onto vi, vj

for n = 4.

Lemma 6.8. Let A,B ⊆ Rn compact. Let H be a separating hyperplane3 for A,B.
Let C = H ∩ conv(A ∪B). Then

Vn−1(C) ≥ min

{
vol A

wH(A)
,

vol B

wH(B)

}
.

Proof. There exist sections, parallel to H, of A and B that have (n− 1)-volumes at
least (vol A)/wH(A) and (vol B)/wH(B), respectively. That is, there exist a, b ∈ Rn

such that A′ = (H + a)∩A, B′ = (H + b)∩B satisfy Vn−1(A
′) ≥ (vol A)/wH(A) and

Vn−1(B
′) ≥ (vol B)/wH(B). Clearly H ∩ conv(A′ ∪B′) ⊆ C and therefore

Vn−1(C) ≥ Vn−1(H ∩ conv(A′ ∪B′))

≥ min{Vn−1(A
′), Vn−1(B

′)}

≥ min

{
vol A

wH(A)
,

vol B

wH(B)

}
.

This bound is sharp: consider a cylinder with a missing slice in the middle, that
is, consider in the plane as A a rectangle with axis-parallel sides and non-adjacent
vertices (1, 0) and (2, 1), as B the reflection of A with respect to the y-axis and as
the separating line, the y-axis.

Lemma 6.9. For λ =
√

n
n−2

, Tn is not 1
18n2 -convex.

Proof. Let Cn be a closest convex set to Tn.
Consider a pair of adjacent peaks (i, j). Figure 6-1 shows the projection of the

pair onto the plane containing the vertices vi, vj and the origin. B is the projection

3That is, a set of the form H = {x ∈ Rn : x · y = α} for some y ∈ Rn and α ∈ R, such that for
all x ∈ A we have x · y ≤ α and for all x ∈ B we have x · y ≥ α.
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of the intersection of the two peaks, an (n− 2)-dimensional simplex. Points A and C
are the other two vertices of one of the peaks, A′ and C ′ are the respective vertices
of the other peak. The plane is orthogonal to the two respective facets of the cross-
polytope, the segment AB is the projection of one of them and A′B is the projection
of the other facet. D is such that DB is orthogonal to OB, where O is the origin.

The idea of the proof is that if Cn is close to Tn, then it covers a good fraction
of the preimage (with respect to the projection) of the triangles SFT and S ′F ′T ′.
Lemma 6.8 applied to this covered parts implies that a certain fraction of Cn lies in
the preimage of R, contributing to Cn \ Tn, that is, to the symmetric difference, and
this is happening between most pairs of peaks.

First, we will compute α and β. Without loss of generality we can assume that
vi is parallel to (−1, 1, . . . , 1) and vj is parallel to (1, . . . , 1). Then (0, 1

n−1
, . . . , 1

n−1
)

is a vector in the preimage of B that is in the projection plane, and α is the norm
of that vector, that is, α = 1/

√
n− 1. An orthonormal basis of the projection plane

corresponding to the x, y axes of Figure 6-1 is

{(1, 0, . . . , 0), (0, 1/
√

n− 1, . . . , 1/
√

n− 1)} .

Then, α + β is the length of the projection of vj onto (0, 1/
√

n− 1, . . . , 1/
√

n− 1),

that is, α + β =
√

n−1
n−2

and β = 1
(n−2)

√
n−1

.

EF is a segment parallel to DB and at a distance βδ from it (δ will be chosen
later). S is a point on EF such that the triangle SFT is a scaled and translated
version of EFC, with scaling factor δ.

Let DB, AA′ be the lengths of the segments DB, AA′, respectively. We have that
DB = AA′ β

α+β
= 2/(n− 1), and Vn−2(preimage of B) as a fraction of the volume of

a peak is given by the following identity:

vol(one peak) =
1

n
(α + β)Vn−1(preimage of DB)

=
1

n
(α + β)

1

n− 1
Vn−2(preimage of B)DB ,

that is, Vn−2(preimage of B) is a n(n−1)2(n−2)

2
√

n−1
fraction of the volume of a peak.

The preimage of any point in SFT has volume at least Vn−2(preimage of B)(1−
δ)2(n−2). The area of SFT is [(1− δ)δ]2βDB/2. Then,

vol(preimage of SFT ) ≥ Vn−2(preimage of B)(1− δ)2(n−2)[(1− δ)δ]2
βDB

2
,

that is, fixing δ = 1/n and using the previously computed values of β, DB and
Vn−2(preimage of B),

vol(preimage of SFT ) ≥ vol(peak)

(
1− 1

n

)2n−2
1

2n

≥ vol(peak)
1

2ne2
.

(6.2)
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Given a particular peak, we will say that it is substantially covered (by Cn) iff
the volume of the intersection of Cn and the peak is at least a 1 − 1

4ne2 fraction of
the volume of the peak. Thus, by means of Equation (6.2), if a peak is substantially
covered, then at least a 1

4ne2 fraction of its volume is covered in the preimage of the
triangle SFT .

Now we will prove that every pair of adjacent substantially covered peaks con-
tributes to Cn \Tn with at least a 1

4ne2 fraction of the volume of a peak, disjoint from
the contribution of other pairs. To see this, let U be the subset of Cn intersected with
peak i that projects onto SFT and let V be the subset of Cn intersected with peak j
that projects onto F ′S ′T ′. We will apply Lemma 6.8 to U , V and every hyperplane
which is a preimage of a vertical line intersecting the rectangle R. Moreover, for any
such hyperplane H we have that wH(U) and wH(V ) are no more than δDB = 2

n(n−1)
.

Certainly W = R ∩ conv(U ∪ V ) is contained in Cn and disjoint from Tn. Because
of the choice of EF , the width of the rectangle R is a 1/n fraction of the distance
between C and C ′, that is, 2

n(n−2)
. Also, vol U and vol V are no less than a 1

4ne2

fraction of the volume of a peak. Lemma 6.8 gives that

vol W

vol(one peak)
≥ (width of R) min

{
vol U

2
n(n−1)

,
vol V

2
n(n−1)

}
1

vol(one peak)

≥ 2

n(n− 2)

n(n− 1)

2

1

4ne2
=

n− 1

n− 2

1

4ne2

≥ 1

4ne2
.

Let ε(n) = d(Cn, Tn). We claim that the number of peaks that are not substan-
tially covered is a fraction that is at most en2ε(n) of the total number of peaks. To
see this, let q(n) be the fraction of the volume of Tn that the peaks contain. Clearly

q(n) =
λ− 1√

n

λ
=

2

n
.

Let X be fraction of the number of peaks that are not substantially covered. Then,

X
1

4ne2
q(n) ≤ ε(n) ,

that is,
X ≤ 2n2e2ε(n) . (6.3)

We will see now that eventually (as n grows) the number of pairs of adjacent
peaks that are substantially covered is a substantial fraction of the total number of
adjacent pairs. For a contradiction, assume that, for some subsequence, ε(n) < 1

18n2 .
For that subsequence, 2n2e2ε(n) < 1/4. The number of peaks is 2n; the number of
(unordered) pairs of adjacent peaks is n2n−1. A peak that is not substantially covered
can participate in at most n pairs of adjacent peaks. Because of (6.3), there are at
most 1

4
2n = 2n−2 peaks that are not substantially covered (for the subsequence).
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That way, all the peaks that are not substantially covered can participate in at most
n2n−2 = 1

2
n2n−1 pairs of adjacent peaks. Thus, at least half of the pairs of adjacent

peaks involve only substantially covered peaks. For γ equal to the volume of the
contribution to Cn \ Tn of a pair of substantially covered peaks, this implies that

ε(n) ≥ vol(Cn \ Tn)

vol Tn

=
vol(Cn \ Tn)

vol(all peaks)

vol(all peaks)

vol Tn

≥
1
2
n2n−1γ

2n vol(one peak)
q(n) ≥ n

4

1

4ne2

2

n

=
1

8ne2

which is a contradiction.

6.4 An algorithm based on planes

In this section, we state a conjecture about approximate convexity. Let S be a
compact subset of Rn whose center of gravity is the origin. For a pair of points x, y 6= 0
in Rn let the subspace spanned by them be H(x, y) and define P (x, y) = S ∩H(x, y)
to be the part of S on this subspace. Our conjecture is the following:

Conjecture. Let µ be the distribution on 2-dimensional sections P (x, y) obtained
by picking x and y uniformly at random from S. If

Pµ

(
P (x, y) is convex

)
> 1− ε ,

then S is O(nε)-convex.
The conjecture motivates the following algorithm (here p(·) and q(·) are fixed

polynomials):
Repeat p(n, 1/ε) times

1. Get random points x, y from S.

2. Test if P (x, y) is q(1/n, ε)-convex.

Appendix

For the Hausdorff metric or the symmetric difference volume metric, we have (see
[34], Theorem 4.18, for example):

Theorem 6.10 (Blaschke’s selection theorem). In Rn, any bounded sequence (Ck)k∈N
of nonempty, convex sets has a subsequence converging to some nonempty, compact,
convex set C.
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