
SIAM J. COMPUT. c© 2014 Society for Industrial and Applied Mathematics
Vol. 43, No. 2, pp. 497–513

EXPANDERS VIA RANDOM SPANNING TREES∗

ALAN FRIEZE† , NAVIN GOYAL‡ , LUIS RADEMACHER§, AND SANTOSH VEMPALA¶

Abstract. Motivated by the problem of routing reliably and scalably in a graph, we introduce
the notion of a splicer, the union of a small number of spanning trees of a graph. We prove that for
any bounded-degree n-vertex graph, the union of two uniformly random spanning trees approximates
the expansion of the graph to within a factor of O(logn). For the complete graph, we prove that the
union of two uniformly random spanning trees is an expander with high probability. For the random
graph Gn,p, for p = Ω(log n/n), we give a randomized algorithm for constructing two spanning trees
whose union is an expander. A closely related construction, which we call a selector, has similar
properties. A random selector of a graph is obtained by starting with any spanning tree of the graph
and adding a small number of random edges at each vertex.

Key words. random spanning tree, random mapping, sparsification

AMS subject classifications. 68R05, 68R10

DOI. 10.1137/120890971

1. Introduction. In this paper, we present a new method for obtaining sparse
expanders from spanning trees. We begin with some motivation.

Recovery from failures is considered an important problem for the internet today.
Ideally, one desires a network where “even right after failure, routing finds [a] path
to [the] destination” [23]. How should routing proceed in the presence of link or node
failures?

Roughly speaking, to recover from failures, the network should have many alter-
native paths, a property sometimes called path diversity, measured in several ways,
including network reliability and congestion. It is well known that expander graphs
have low congestion and remain connected even after many (random) failures. In-
deed, there is a large literature on routing to minimize congestion and on finding
disjoint paths that is closely related to the study of expansion (or more generally,
conductance); e.g., [22, 13, 3].

In practice, efficient routing also needs to be compact and scalable; in particular,
the memory overhead should be linear or sublinear in the number of vertices. This
requirement is satisfied by routing using trees, one tree per destination. In fact, the
most commonly used method in practice is shortest path routing, which is effectively
one tree per destination.1 Since the final destination determines the next edge to
be used, this gives an O(n) bound on the size of the routing table that needs to be
stored at each vertex. If a constant-factor stretch is allowed, this can be reduced. For
example, with stretch 3, tables of size O(

√
n) suffice as shown by Abraham et al. [1].

The main problem with shortest-path routing or any tree-based scheme is the
lack of path diversity. Failing any edge disconnects some pairs of vertices. Recovery

∗Received by the editors September 11, 2012; accepted for publication (in revised form) January 9,
2014; published electronically March 25, 2014.

http://www.siam.org/journals/sicomp/43-2/89097.html
†Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213 (alan@

random.math.cmu.edu). The work of this author was partially supported by NSF grant ccf1013110.
‡Microsoft Research India, #9 Lavelle Road, Bangalore, India (navin001@gmail.com).
§Computer Science and Engineering, Ohio State University, Columbus, OH 43210 (Lrademac@

cse.ohio-state.edu).
¶School of Computer Science, Georgia Tech, Atlanta, GA 30332 (vempala@math.mit.edu). The

work of this author was partially supported by NSF grant AF0915903.
1This is called Open Shortest Path First.

497

http://www.siam.org/journals/sicomp/43-2/89097.html
mailto:alan@random.math.cmu.edu
mailto:alan@random.math.cmu.edu
mailto:navin001@gmail.com
mailto:Lrademac@cse.ohio-state.edu
mailto:Lrademac@cse.ohio-state.edu
mailto:vempala@math.mit.edu

498 A. FRIEZE, N. GOYAL, L. RADEMACHER, AND S. VEMPALA

is usually achieved by recomputing shortest path trees in the remaining network, an
expensive procedure. Moreover, congestion (number of pairs using the same edge) can
be high for tree-based routing, despite the fact that the underlying graph might have
high expansion, implying that low congestion and high fault-tolerance are possible.
There is evidence that AS-level internet topologies are expanders; some stochastic
models for networks lead to expanders [16]. However, known algorithms that achieve
near-optimal congestion use arbitrary paths in the network and therefore violate the
scalability requirement. This raises the following question: is it possible to have
a routing scheme that is both scalable and achieves congestion and fault-tolerance
approaching that of the underlying graph?

Our work is motivated by the idea and experimental results of the method known
as path splicing [18, 17], a conceptually simple extension of tree-based routing to
multiple trees. With one tree there is a unique path between any two points. With
two trees, by allowing a path to switch between the trees multiple times, there could
be a large number of available paths. Motiwala et al. showed experimentally that a
small number of randomly perturbed shortest path trees for each destination leads to
a highly reliable routing method: the union of these trees has reliability approaching
that of the underlying graph.

This raises the question whether the results of this experiment can be true in
general. In other words, for a given graph does there exist a small collection of
spanning trees such that the reliability of the union approaches that of the base
graph? As a first step, we study the question of whether for a given graph the
union of a few spanning trees captures the expansion of the original graph. In this
paper, we propose very simple constructions that use only a small number of trees
in total (as opposed to one tree per destination) and work for graphs with bounded
degrees, random graphs, and the complete graph. The trees are chosen independently
from the uniform distribution over all spanning trees, a distribution that can be
sampled efficiently with simple algorithms. The simplest of these, due to Aldous [2]
and Broder [8], is to take a random walk in the graph and include in the tree every
edge that goes to a previously unvisited vertex. Roughly speaking, our main result
is that for bounded degree graphs and for the complete graph, a small number of
such trees give a subgraph with expansion comparable to the original graph for each
cut. Splicers can thus be viewed as a new way to construct expanders with O(n)
edges.

In our routing application, the fault-tolerance property we want from splicers is
that no cut that was large in the original graph is small in the splicer, and thus we
are looking for one-sided approximation of cuts in the original graph. If we look for
two-sided approximation, then we get the well-studied notion of cut-sparsifiers : The
goal here is to approximate every cut using only a small subgraph of the original
graph. Note that the property of having efficient routing is not required, unlike for
splicers. Cut sparsifiers were first defined by Benczur and Karger [6], who gave an
algorithm to construct cut-sparsifiers with O(n log n) edges. Spielman and Srivas-
tava [24] used a stronger definition requiring that the sparsifier should approximate
the Laplacian quadratic form of the original graph. They gave an algorithm that
constructs O(n logn)-size sparsifiers. Batson, Spielman, and Srivastava [5] gave an
algorithm to construct O(n)-size sparsifiers. It is an important problem to find sim-
ple and fast sparsification algorithms. Splicers, constructed using random spanning
trees obtained by a simple random process called Process Bp, provide cut-sparsifiers
of size O(n) for random graphs in Gn,p: When the base graph is random, with high
probability, the union of two spanning trees approximates all cuts to within a factor

RANDOM SPANNING TREES 499

of O(log n). A similar result holds for random selectors. This is a modest step toward
a simple and fast algorithm for graph sparsification.

1.1. Our results. A k-splicer is the union of k spanning trees of a graph. By a
random k-splicer we mean the union of k uniformly randomly chosen spanning trees.
We show that for any bounded degree graph, the union of two random spanning trees
of the graph approximates the expansion of every cut of the graph. Using more trees
gives a better approximation. In the following, δG(A) stands for the set of edges in
graph G that have exactly one endpoint in A, a subset of vertices of G.

Theorem 1.1. For a graph G = (V,E) with degree at most d, let Uk
G be a random

k-splicer, obtained by the union of k uniformly random spanning trees. Also let α > 0
be a constant and α(k − 1) ≥ 9d2. Then with probability 1 − o(1), for every A ⊂ V ,
we have

|δUk
G
(A)| ≥ 1

α log n
· |δG(A)|.

Our proof of this makes novel use of a known property of a random spanning tree
of a graph, namely, the events of two given edges in the graph being included in the
tree are negatively correlated.

Next we show that the factor 1/ logn is the best possible for k-splicers con-
structed from random spanning trees for any constant k. Definitions of expansion
and expanders referred to below can be found in section 2.

Theorem 1.2. For every n, there is a bounded-degree edge expander G on n
vertices such that with probability 1 − o(1) the edge expansion of a random k-splicer
Uk
G is at most k2/C logn for any k ≥ 1 and a constant C > 0 depending only on the

maximum degree of G.
For the complete graph, one can do better, requiring only two trees to get a

constant-factor approximation. In fact, we get constant vertex expansion.
Theorem 1.3. The union of two uniformly random spanning trees of the complete

graph on n vertices has constant vertex expansion with probability 1− o(1).
Since constant vertex expansion implies constant edge expansion, we get that the

union of two uniform random spanning trees has constant edge expansion with high
probability.

Next we turn to the random graph Gn,p. Our main result here is that w.h.p.,
Gn,p has two spanning trees whose union has constant vertex expansion. We give a
simple random process (called Process Bp henceforth) to find these trees.

Theorem 1.4. There exists an absolute constant C, such that for p ≥ C logn/n
with probability 1−o(1), the union of two random spanning trees obtained from Process
Bp applied to a random graph H drawn from Gn,p has constant vertex expansion.

The proof of this theorem is via a coupling lemma (Lemma 7.2) showing that a
tree generated by Process Bp applied to a random graph H is nearly uniform among
spanning trees of the complete graph.

Theorem 1.4 relates to the work of [6, 24, 5] and leads to simple linear-size spar-
sifiers with nontrivial approximation guarantees for random graphs. Let w(δH′ (A))
denote the sum of the weights of the edges in δH′(A).

Theorem 1.5. There exists an absolute constant C > 0 such that for p ≥
C logn/n the following holds: Let H be a Gn,p random graph and let H ′ be the 2-
splicer obtained from it via process Bp with a weight of pn on every edge. Then with
probability 1− o(1), for every A ⊂ V we have

c1|δH(A)| ≤ w(δH′ (A)) ≤ c2|δH(A)| logn
for some absolute constants c1, c2 > 0.

500 A. FRIEZE, N. GOYAL, L. RADEMACHER, AND S. VEMPALA

We now provide an alternative construction that gives basically the same results.
We will replace our k random trees by the union of (i) an arbitrary tree and (ii) k− 1
random G-mappings. A G-mapping is a function f : V → V such that (v, f(v)) ∈ E
for all v ∈ V . Less formally, in a random G-mapping each v ∈ V independently
chooses a uniformly random neighbor f(v). As we are always dealing with loopless
graphs, we can assume that f(v) �= v here. We call this construction a k-selector.

When G = Kn, it is known that the graph Gf induced by the edges (v, f(v)) is
“close” to being a spanning tree. Gf is the union of γ cycles containing γ̄ vertices and
a forest of rooted trees with a root for each cycle vertex. Furthermore, E(γ) ∼ logn
and E(γ̄) ∼ (πn/2)1/2 (see, e.g., Chapter XIV of Bollobás [7]). Hopefully, this gives
the reader some intuition as to why k-selectors have similar properties to k-splicers.

Theorem 1.6. For a graph G = (V,E) with vertex degree at most d, let W k
G

be a random k-selector, k ≥ 2, obtained by the union of an arbitrary tree and k − 1
independent random G-mappings. Let θk = 1− (1− 1

d)
2k−2 and let α = 16/θk. Then

with probability 1− o(1), for every A ⊂ V , we have

|δWk
G
(A)| ≥ 1

α logn
· |δG(A)|.

In analogy to Theorem 1.3, we note that the union of k random Kn-mappings is
a well-studied model called Gk−out.

Theorem 1.7. G2−out has constant vertex expansion w.h.p.
We now consider the random graph Gn,p.
Theorem 1.8. If p ≥ 1+ε

n logn, where ε > 0 is constant, then the following holds:
Let G be a Gn,p random graph and let H be the graph obtained from it by letting each
vertex independently choose two neighbors. Put a weight of pn on every edge. Then
with probability 1− o(1), for every A ⊂ V we have

c1|δG(A)| ≤ w(δH(A)) ≤ c2|δG(A)| log n

for some absolute constants c1, c2 > 0.
Note that w.h.p. G(n, p) is connected and has minimum degree Ω(logn) for p ≥

1+ε
n log n.

The theorem can be strengthened so that p = 1
n (logn+ω(n)), where ω(n) → ∞.

For slowly growing ω we can have O(log n) vertices of degree one. This makes the
calculations more complicated, and we do not include them here.

1.2. Related work. The idea of using multiple routing trees and switching
between them is inspired by the work of [18], which proposed a multipath extension
to standard tree-based routing. The method, called path splicing, computes multiple
trees to each destination vertex, using simple methods to generate the trees; in one
variant, each tree is a shortest path tree computed on a randomly perturbed set of
edge weights. Path splicing appears to do extremely well in simulations, approaching
the reliability of the underlying graph using only a small number of trees.2

Sampling for approximating graph cuts was introduced by Karger, first for global
min-cuts and then extended to min s-t cuts and flows. The most recent version due
to Benczur and Karger [6] approximates the weight of every cut of the graph within
factors of 1+ε and 1−ε using O(n logn/ε2) samples; edges are sampled independently
with probability inversely proportional to a connectivity parameter, and each chosen

2It has several other features from a practical viewpoint, such as allowing end vertices to specify
paths, that we do not discuss in detail here.

RANDOM SPANNING TREES 501

edge is weighted with the reciprocal of their probability. Recently, Spielman and
Srivastava [24] gave a similar method where edges are sampled independently with
probability proportional to the effective resistance and weighted in a similar way, by
the reciprocal of the probability with which they are chosen. They show that the
quadratic form of the Laplacian of the original graph is approximated within factors
1−ε and 1+ε. The similarity in the two methods extends to their analysis also—both
parameters, edge strength, and edge resistance share a number of useful properties.

A well-known fact (e.g., [14]) about uniformly random spanning trees is that the
probability that an edge e belongs to the uniformly random spanning tree is equal
to the effective resistance of e. (There are several equivalent definitions of effective
resistance. One of them is the following: Thinking of the graph as an electrical
network, let each edge have unit resistance, and then the effective resistance of e
is the potential difference applied to the endpoints of e to induce a unit current.)
This fact shows a connection of our work with [24], which samples edges in a graph
according to their effective resistances to construct a sparsifier.

It is well known that the union of three random perfect matchings in a complete
graph with an even number of vertices (see, e.g., [11]) is an expander with high
probability. Our result on the union of random spanning trees of the complete graph
can be considered as a result in a similar vein. While our proof for spanning trees
has a similar high-level outline, it seems to require new ideas. On the other hand,
our result for the union of spanning trees of bounded degree graphs does not seem
to have any analogue for the union of matchings. Indeed, generating random perfect
matchings of graphs is a highly nontrivial problem—computing the permanent of 0–1
matrices being the special case of bipartite graphs [12].

2. Preliminaries. Let G = (V,E) be an undirected graph. For v ∈ V define
Γ(v) := {u ∈ V : (u, v) ∈ E}, the set of neighbors of v. For A ⊆ V , define Γ(A) :=
∪v∈AΓ(v) and Γ′(A) := Γ(A) \ A. Finally, let δG(A) := {(u, v) ∈ E : u ∈ A, v /∈ A}.
The edge expansion of G is

min
A⊆V,1≤|A|≤|V |/2

|δG(A)|
|A| .

The vertex expansion of G is

min
A⊆V,1≤|A|≤|V |/2

|Γ′(A)|
|A| .

We say that a family of graphs is an edge expander (family) if the edge expansion
of the family is bounded below by a positive constant. Vertex expanders are defined
similarly.

Let Kn denote the complete graph on n vertices.
For a ∈ R, let [a] := {i ∈ N : 1 ≤ i ≤ a}. On several occasions we will use the

inequality
(
n
k

)
≤ (nek)k.

3. Uniform random spanning trees. Uniformly random spanning trees of
graphs are fairly well-studied objects; see, e.g., [15]. In this section we describe
properties of random spanning trees that will be useful for us. There are several
algorithms known for generating a uniformly random spanning tree of a graph, e.g.,
[2, 8, 21, 15]. The algorithm due to Aldous and Broder is very simple and will be
useful in our analysis: Start a uniform random walk at some arbitrary vertex of the
graph, and when the walk visits a vertex for the first time, include the edge used

502 A. FRIEZE, N. GOYAL, L. RADEMACHER, AND S. VEMPALA

to reach that vertex in the tree. When all the vertices have been visited, we have a
spanning tree which is uniformly random regardless of the initial vertex.

For a connected base graph G = (V,E), random variable TG denotes a uniformly
random spanning tree of G. Uk

G will denote the union of k such trees chosen indepen-
dently. For edge e ∈ E, abusing notation a little, we will refer to events e ∈ E(TG)
and e ∈ E(Uk

G) as e ∈ TG and e ∈ Uk
G.

Negative correlation of edges. The events of various edges belonging to the random
spanning tree are negatively correlated: For any subset of edges e1, . . . , ek ∈ E, we
have

P
[
(e1 ∈ TG) ∧ (e2 ∈ TG) ∧ · · · ∧ (ek ∈ TG)

]
≤ P[e1 ∈ TG]P[e2 ∈ TG] · · ·P[ek ∈ TG].

(3.1)

A similar property holds for the complementary events:

P
[
(e1 /∈ TG) ∧ (e2 /∈ TG) ∧ · · · ∧ (ek /∈ TG)

]
≤ P[e1 /∈ TG]P[e2 /∈ TG] · · ·P[ek /∈ TG].

(3.2)

These are easy corollaries of [15, Theorem 4.5], which in turn is based on the work of
Feder and Mihail [10] and a classical result that (3.1) holds for two edges.

Negatively correlated random variables and tail bounds. For e ∈ E, define indica-
tor random variables Xe to be 1 if e ∈ T , and 0 otherwise. Then we can rewrite (3.1)
as follows.

For any subset of edges e1, . . . , ek ∈ E, we have

E[Xe1 · · ·Xek] ≤ E[Xe1] · · ·E[Xek].(3.3)

For random variables {Xe} satisfying (3.3), we say that {Xe} are negatively
correlated. Several closely related notions exist; see Dubhashi and Ranjan [9] and
Pemantle [20]. Dubhashi and Ranjan [9] gave a property of negative correlation that
will be useful for us: It essentially says that Chernoff’s bound for the tail probability
for sums of independent random variables applies unaltered to negatively correlated
random variables. More precisely, we will use the following version of Chernoff’s
bound.

Theorem 3.1. Let {Xi}ni=1 be a family of 0–1 negatively correlated random
variables such that {1−Xi}ni=1 are also negatively correlated. Let pi be the probability
that Xi = 1. Let p := 1

n

∑
i∈[n] pi. Then for λ > 0,

P

⎡
⎣∑
i∈[n]

Xi < pn− λ

⎤
⎦ ≤ e−λ2/(2pn).

Proof. The proof splits into two steps: In the first step we prove that for arbitrary
λ, we have

E

[
exp

(
λ

n∑
i=1

Xi

)]
≤

n∏
i=1

E
[
exp(λXi)

]
.(3.4)

The second step is a standard Chernoff bound argument as in the proof of Theo-
rem A.1.13 in [4]. Since the first step is short and perhaps not that well known,

RANDOM SPANNING TREES 503

we provide a proof here for completeness. In this, we basically follow Dubhashi and
Ranjan [9].

The case λ = 0 is trivially true. We now prove (3.4) for λ > 0. Since Xi’s take 0–1
values, for any integers a1, . . . , an > 0, we have Xa1

1 Xa2
2 · · ·Xan

n = X1X2 · · ·Xn. Now,
writing exp(λ

∑n
i=1 Xi) using the Taylor series for ex, and expanding each summand,

we get a sum over various monomials over the Xi’s. For each monomial we have by
the definition of negative correlation that E[X1 · · ·Xn] ≤

∏n
i=1 E[Xi]. This gives (3.4)

for λ > 0.
For λ < 0, a similar argument using 1−Xi in the role of Xi gives (3.4).

4. Expansion when base graph is a complete graph. Our proof here has
the same high-level outline as the proof for showing that the union of three random
perfect matchings in a complete graph with an even number of vertices is a vertex-
expander (see, e.g., [11]): One shows that for any given vertex set A of size ≤ n/2,
the probability is very small for the event that |Γ′(A)| is small in the union of the
matchings. A union bound argument then shows that the probability is small for the
existence of any set A with |Γ′(A)| small. However, new ideas are needed in our case
because spanning trees are generated by the random walk process, which appears to
be more complex to analyze than random matchings in complete graphs.

Proof of Theorem 1.3. For given A ⊆ V , |A| = a, and given expansion constant
c, we will upper bound the probability that |Γ′

T (A)| ≤ ca for random spanning tree
T in Kn. To this end, we fix a set A′ ⊆ V \A of size �ca� and bound the probability
that Γ′

T (A) ⊆ A′, and then we use a union bound over all possible choices of A and A′

to show that no such A,A′ are likely to exist. Without loss of generality the vertices
are labeled V = {1, . . . , n}, A = [a] = {1, . . . , a}, and A′ = {a + 1, a + �ca�}. The
probability that there exists a set A ⊆ V such that |A| ≤ n/2 and |Γ′

T (A)| ≤ ca in
the union of t random independent spanning trees is at most

�n/2	∑
a=1

(
n

a

)(
n

�ca�

)
P
(
ΓT (A) ⊆ [a+ ca]

)t
.(4.1)

We divide the sum into two parts and bound them separately: For a ≤ n/12, we use
the random walk construction of the random spanning tree which, as we will see, can
be interpreted as every vertex in A essentially picking a random neighbor (but not in a
completely independent way). For a ∈ (n/12, n/2], we look at all the edges of the cut
as if they were independently selected in the spanning tree by negative correlation.

For a ≤ n/12, we first consider a random walk on V starting outside A. We use
this walk to generate the random spanning tree. Let X1, X2, . . . denote the states of
this random walk. Let T = {τ1, τ2, . . . , τa} be the times when the walk adds a new
member of A to the tree. Let Ut denote the set of vertices in A that have not been
visited at the completion of step t.

At the completion of step τi, we have Xτi /∈ Uτi and |Uτi | = a− i and so

(4.2) P(Xτi+1 ∈ Uτi) =
a− i

n− 1
.

This holds conditional on X1, X2, . . . , Xτi.
In addition, if B = [a+ ca], then

(4.3) P(Xt ∈ [a+ ca] | Ut, t /∈ T , t+ 1 ∈ T) ≤ |B| − |Ut|
n− 1− |Ut|

.

504 A. FRIEZE, N. GOYAL, L. RADEMACHER, AND S. VEMPALA

Here the conditioning tells us that Xt is chosen uniformly in B \ (Ut−1 ∪ {Xt−1}),
whereas Xt has n− 1− |Ut−1| choices overall. Note that Ut = Ut−1. Also, (4.3) holds
conditional on X1, X2, . . . , Xt−1.

Let k be the number of times that Xτi+1 ∈ Uτi . Then

P(ΓT (A) ⊆ [a+ ca]) ≤
a−1∑
k=0

⎛
⎝a−k∏

j=1

a+ ca− j

n− 1− j

⎞
⎠(a− 1

k

)(k∏
i=1

a− i

n− 1

)
(4.4)

≤
a−1∑
k=0

(
a− 1

k

)(
a+ ca

n− 1

)a−k (a
n

)k

=
a+ ca

n

(
a+ ca

n− 1
+

a

n

)a−1

≤
(
2(1 + c)a

n

)a

.

Explanation of (4.4). If we fix k, then
(
a−1
k

)
determines the i for which Xτi+1 ∈

Uτi . The product terms maximize the corresponding products (4.2), (4.3) under these
circumstances.

We now use this in (4.1) for a ≤ n/12. Let K = 2(1 + c).

�n/12	∑
a=1

(
n

a

)(
n

�ca�

)
P
(
ΓT (A) ⊆ [a+ ca]

)t

≤
�n/12	∑
a=1

(en
a

)a (en
ca

)ca(aK

n

)at

=

�n/12	∑
a=1

αaKat
(a
n

)a(t−1−c)
(
where α =

e1+c

cc

)

≤
�√n�∑
a=1

αaKat

(
1√
n

)a(t−1−c)

+

�n/12	∑
a=�√n�+1

αaKat

(
1

12

)a(t−1−c)

≤
[
αKtn−(t−1−c)/2 +

(
αKt

12t−1−c

)�√n�+1
]

1

1− αKt12−(t−1−c)
,

which goes to 0 as n → ∞ when αKt/12t−1−c < 1, and this happens for t = 2 and a
sufficiently small constant c.

For the rest of the sum in (4.1), a ∈ (n/12, n/2], we use negative correlation of
the edges of the random spanning tree T (section 3) to estimate the probability that
ΓT (A) ⊆ [a + ca]. Any fixed edge from Kn appears in T with probability 2/n. We
have that ΓT (A) ⊆ [a + ca] iff no edge between A and V \ [a + ca] is present in
T , and negative correlation (3.2) implies that this happens with probability at most

RANDOM SPANNING TREES 505

(1− 2/n)a(n−(a+ca)). Thus,

�n/2	∑
a=�n/12	+1

(
n

a

)(
n

�ca�

)
P(ΓT (A) ⊆ [a+ ca])t

≤
�n/2	∑

a=�n/12	+1

(en
a

)a (en
ca

)ca(
1− 2

n

)ta(n−(a+ca))

≤ n sup
γ∈[1/12,1/2]

(
e

γ

)γn(
e

cγ

)cγn(
1− 2

n

)tγn(n−(1+c)γn))

≤ n sup
γ∈[1/12,1/2]

(
(e/γ)1+c

cc

)γn

e−2tγn(1−(1+c)γ)

= n sup
γ∈[1/12,1/2]

(
(e/γ)1+c

cce2t(1−(1+c)γ)

)γn

.

For any fixed c > 0, the function

f(γ) =
(e/γ)1+c

cce2t(1−(1+c)γ)

is convex for γ > 0 and hence the sup is attained at one of the boundary points
1/12 and 1/2, and the function is strictly less than 1 at these boundary points for
t = 2 and a sufficiently small constant c. This implies that this sum goes to 0 as
n → ∞.

5. Expansion when base graph is a bounded-degree graph: positive
result. In this section we consider graphs with bounded degrees. To simplify the
presentation we restrict ourselves to regular graphs; it is easy to drop this restriction
at the cost of extra notation. We show that for constant degree graphs the edge
expansion is captured fairly well by the union of a small number of random spanning
trees.

Proof of Theorem 1.1. It follows by the random walk construction of random
spanning trees that for any edge (u, v) ∈ E, we have P[(u, v) ∈ T] ≥ 1/d(u). To see
this, note that if we start the random walk at vertex u, then with probability 1/d(u)
the first traversed edge is (u, v), which then gets included in T . Thus for A ⊂ V , we
have that

E
[
|δTG(A)|

]
≥ 1

d
· |δG(A)|.

We would now like to use the above expectation result to prove our theorem.
Recall the definition of random variables Xe from section 3: For edge e ∈ E, Xe is
the indicator random variable taking value 1 if e ∈ T , and value 0 otherwise. Thus we
have |δT (A)| =

∑
e∈δG(A)Xe. We want to show that

∑
e∈δG(A) Xe is not much smaller

than its expectation with high probability. Random variablesXe are not independent.
Fortunately, they are negatively correlated as we saw in section 3, which allows us to
use Theorem 3.1:

P

⎡
⎣ ∑
e∈δG(A)

Xe < p|δG(A)| − λ

⎤
⎦ < e−λ2/(2p|δG(A)|) ≤ e−λ2/(2|δG(A)|),(5.1)

506 A. FRIEZE, N. GOYAL, L. RADEMACHER, AND S. VEMPALA

where p is the average of P[Xe = 1] for e ∈ δG(A). Since P[Xe = 1] ≥ 1/d for all
edges e, we have p ≥ 1/d, and for λ = (p− 1/(2d))|δG(A)| we have

P

[
|δTG(A)| <

1

2d
|δG(A)|

]
< e−

|δG(A)|
8d2 .

This gives

P

[
|δUk

G
(A)| < 1

2d
|δG(A)|

]
< e−

k|δG(A)|
8d2 .(5.2)

Now we estimate the probability that there is a bad cut, namely, a cut A such
that |δUk

G
(A)| = a and |δG(A)| ≥ αa lnn. To do this we first look at cuts of size a in

the first random tree, which have size at least αa lnn in G. (This step is necessary:
the modified Chernoff bound that we use is only as strong as the independent case,
and when edges are chosen independently one is likely to get isolated vertices; looking
at the first tree ensures that this does not happen.) In order to be bad, these cuts
must have small size in all the remaining trees. The probability of that happening is
given by (5.2). The number of cuts in the first tree of size a is clearly no more than(
n−1
a

)
<
(
n
a

)
, as there are

(
n−1
a

)
ways of picking a edges out of n− 1, although not all

of these may correspond to valid cuts. Then, the probability that a bad cut exists is
at most

n/ lnn∑
a=1

(
n

a

)
e−

(k−1)αa lnn

8d2 ≤
n/ lnn∑
a=1

(en
a

)a
e−

(k−1)αa lnn

8d2

=

n/ lnn∑
a=1

exp

((
ln(en/a)− (k − 1)α lnn

8d2

)
a

)

=

n/ lnn∑
a=1

exp

((
ln(e/a) +

(
1− (k − 1)α

8d2

)
lnn

)
a

)
.

Choosing (k − 1)α > 9d2 makes the above sum o(1).

6. Expansion when base graph is a bounded-degree graph: Negative
result. Here we show that Theorem 1.1 is the best possible up to a constant factor
for expansion.

Proof of Theorem 1.2. We begin with a d-regular edge expander G′ on n vertices
with a Hamiltonian cycle, where d > 4 is a fixed integer. (It is easy to construct
such expanders by starting with a (d − 2)-regular expander and adding edges of a
Hamiltonian cycle to it, so that the graph can be completed to a d-regular graph.
We omit the easy details.) Let 0 < � < logn be an integer to be chosen later, and
let H be a Hamiltonian path in G′. Subdivide H into subpaths P1, . . . , Pn/�, each of
length �. (To keep the formulas simple, we suppress the integrality issues here which
are easily taken care of.)

For two subpaths Pi and Pj , we say that they interact if (Pi ∪ Γ′(Pi)) ∩ (Pj ∪
Γ′(Pj)) �= ∅. Since G′ is d-regular, |Γ′(Pi)| ≤ d�. So, any subpath can interact with

RANDOM SPANNING TREES 507

at most d2� other subpaths. Indeed, Pi can interact with Pj only if there is a vertex
in Pj within distance two of a vertex in Pi. There are at most d2� vertices at distance
two from a vertex of Pi, and as the Pr’s are vertex disjoint, each one of these vertices
within distance two of a vertex in Pi can be in at most one such Pj . So there are at
most d2� Pj ’s that interact with any given Pi.

Thus we can find a set I of 1
d2� · n/� paths among P1, . . . , Pn/�, so that no two

paths in I interact.
We now describe the construction of G, which will be obtained by adding edges

to G′. For each path P ∈ I, we do the following. Add an edge between the two
end-points of P if such an edge did not already exist in G′. If the subgraph G[Γ′(P)]
induced by the neighborhood of path P does not have a Hamiltonian cycle, then we
add edges to it so that it becomes Hamiltonian. Clearly, in doing so we only need to
increase the degree of each vertex by at most two. The final graph that we are left
with is our G. For each path P ∈ I, we fix a Hamiltonian cycle in G[Γ′(P)], and we
also have the cycle of which P is a part. We denote these two cycles by C1(P) and
C2(P).

We will generate a random spanning tree T of G by the random walk algorithm
starting the random walk at some vertex outside of all paths in I. For P ∈ I, we
say that event EP (over the choice of a random spanning tree T of G) occurs if the
random walk, on first visit to C1(P) ∪C2(P), first goes around C1(P) without going
out or visiting any vertex twice, and then it goes on to traverse C2(P), again without
going out or visiting any vertex twice until it has visited all vertices in C2(P). For all
P ∈ I, we have

P[EP] ≥ 1/(d+ 2)|C1(P)|+|C2(P)|−1 ≥ 1/(d+ 2)(d+1)�−1.(6.1)

If event EP happens, then in the resulting tree T we have |δT (V (P))| = 1. Thus our
goal will be to show that with substantial probability there is a P ∈ I such that EP

happens. Since no two paths in I interact with each other, events EP are mutually
independent. If we are choosing k random spanning trees, then define Ek

P to be the
event that EP occurs for all k spanning trees. Clearly, P[Ek

P] = P[EP]
k. Then the

probability that Ek
P doesn’t occur for any P ∈ I is at most

(
1− 1

(d+ 2)k(d+1)�−k

)|I|
=

(
1− 1

(d+ 2)k(d+1)�−k

) n
d2�2

≤ exp

(
− n

(d+ 2)k(d+1)�−k+2�2

)
.

It follows readily that there is a constant C (that depends on d) such that for
�k ≤ C logn the above probability is o(1). Hence, with probability 1 − o(1) there
is a path P ∈ I such that |δUk

G
(V (P))| ≤ k. The edge expansion of P therefore is

k/� = k2/(C logn) for � = C(logn)/k.

7. Splicers of random graphs. We will construct a random process on random
graphs that generates random spanning trees with a distribution that is very close
to the uniform distribution on the complete graph. The process first directs edges to
mimic the distribution of a directed random graph.

Given an undirected graph H and a parameter 0 < p ≤ 1, construct a random
directed graph denoted Dp(H) with vertex set V (H) and independently for every edge
(u, v) of H :

508 A. FRIEZE, N. GOYAL, L. RADEMACHER, AND S. VEMPALA

• directed edges (u, v) and (v, u) with probability −p−2
√
1−p+2
p ,

• only directed edge (u, v) with probability p+
√
1−p−1
p , and

• only directed edge (v, u) with probability p+
√
1−p−1
p .

If H is random according to Gn,p, then Dp(H) is random with each edge picked with
probability q = 1−

√
1− p. Note that p/2 ≤ q ≤ p.

Let T be the uniform distribution on spanning trees of Kn. We now describe
Process Bp, which is a random process that given an undirected graph H and a
parameter 0 < p ≤ 1 generates a spanning tree with a distribution that we denote
Tp,H . Consider the following random process that generates a walk in Dp(H) or stops
with no output:

1. Start at a vertex v0 of Dp(H).
2. At a vertex v, an edge is traversed as follows. Suppose d1(v) out of d(v)

outgoing edges at v are previously traversed. Then, the probability of picking
a previously traversed edge is 1/(n − 1) while the probability for each new
edge is

1− d1(v)
n−1

d(v)− d1(v)
.

3. If all vertices have been visited, output the walk and stop. If this has not
happened and at the current vertex v one has d1(v) = d(v), stop with no
output.

As in the random walk algorithm, the spanning tree given by Process Bp (if it succeeds
in visiting all the vertices) is the set of edges that are used on first visits to each vertex,
but the random sequence of edges is different here.

A covering walk of a graph is a walk passing through all vertices. Let D be the
distribution on covering walks of the (undirected) complete graph starting at a vertex
v0 where a walk is generated by a random walk that starts at v0 and walks until it has
visited all the vertices. Let Dp be the distribution on covering walks of the complete
graph given by first choosing H according to Gn,p and running Process Bp starting
from v0.

Lemma 7.1. There exists an absolute constant c such that for p > c logn/n the
total variation distance3 between the distributions D and Dp is o(1).

Proof. We will couple D and Dp so that the walk in D picks the same edges
as the walk in Dp, but if Dp fails, then D continues its random walk. Then these
covering walks coincide whenever Dp succeeds, and thus the probability of success is
an upper bound to the total variation distance between D and Dp. Now, Dp does
not fail if every vertex in Hd has out-degree at least c1 logn and Process Bp does not
visit any vertex more than c2 logn times for c1 > c2. A Chernoff bound gives c (from
the statement of the lemma) and c1 such that the first part happens with probability
1− o(1). For the second part, we observe that if there is no failure, then Process Bp

behaves exactly like a random walk in the complete graph, and therefore it visits all
vertices in at most c3n logn steps with probability 1− o(1) for some constant c3 (this
is essentially the coupon collector’s problem with n − 1 coupons; see [19, section 3.6
and Chapter 6]) and a walk of that length does not visit any vertex more than c2 logn
times with probability 1 − o(1) for some constant c2 (by a straightforward variation
of the occupancy problem in [19, section 3.1]).

3The variation distance ||D1 − D2|| between two distributions on a finite set X is defined as
1
2

∑
x∈X |D1(x)−D2(x)|.

RANDOM SPANNING TREES 509

Let Tp be the distribution on trees obtained by first choosing H from Gn,p and
then generating a random spanning tree according to Process Bp.

Lemma 7.2. There exists an absolute constant c such that for p > c logn/n, the
total variation distance between the distributions T and Tp is o(1).

Proof. This is immediate from Lemma 7.1, as random trees from T or Tp are just
functions of walks from D or Dp, respectively.

Proof of Theorem 1.4. In the random graph H , we generate two random trees
by using one long sequence of edges, with a breakpoint whenever we complete the
generation of a spanning tree. In the complete graph, also, we generate two trees from
such a sequence obtained from the uniform random walk. Using the same coupling
as in Lemma 7.2, we see that these distributions on these sequences have variation
distance o(1). Therefore the spanning trees of H obtained by the first process have
total variation distance o(1) to random spanning trees of the complete graph. By
Theorem 1.3, the union of these trees has constant expansion with probability 1−o(1)
overall.

With these results we are ready to prove our theorem about sparsifiers of random
graphs:

Proof of Theorem 1.5. We need the fact that for sufficiently large constant C with
probability 1− o(1), all cuts δH(A) in random graph H satisfy

(7.1) c3p|A|(n− |A|) ≤ |δH(A)| ≤ c4p|A|(n− |A|).

This is well known and follows immediately from appropriate Chernoff-type bounds.
We only need to prove the theorem for |A| ≤ n/2. We now prove the first

inequality in the statement of the theorem. By Theorem 1.3 with probability 1−o(1),
for any A ⊂ V such that |A| ≤ n/2, we have |δH′ (A)| ≥ c5|A| for some c5 > 0, and so
w(δH′ (A)) ≥ c5|A|pn ≥ c5p|A|(n− |A|) ≥ c5

c4
|δH(A)|.

For the second inequality in the statement of the theorem, we use the fact that
the maximum degree of a vertex in a random spanning tree in the complete graph
is O(log n) with probability 1 − o(1). Thus, by Lemma 7.2 the same holds for ran-
dom spanning trees generated by process Bp. We then have |δH′(A)| ≤ c6|A| logn
for some c6 > 0, and so w(δH′ (A)) ≤ c6pn|A| logn ≤ 2c6pn|A|(n − |A|) logn ≤
(2c6/c3)|δH(A)| log n.

8. Selectors.

8.1. Expansion when base graph is a bounded-degree graph.
Proof of Theorem 1.6. Let T be an arbitrary spanning tree ofG and letM1,M2, . . . ,

Mk−1 be independently chosen random G-mappings. Let H = T ∪M1 ∪ · · · ∪Mk−1.
Let A be a subset of V . Let a = |δT (A)|. Since H ⊇ T we can assume now that
|δG(A)| > aα logn.

For each edge e = (u, v) ∈ δG(A) let ηe = 1 if ∃i : Mi(u) = v or ∃i : Mi(v) = u
and zero otherwise and let X =

∑
e∈δG(A) ηe.

Now

E(X) ≥ θk|δG(A)|,

where

θk = 1−
(
1− 1

d

)2k−2

.

510 A. FRIEZE, N. GOYAL, L. RADEMACHER, AND S. VEMPALA

Now we will see that X is the sum of negatively correlated {0, 1} random variables
and so we can use Chernoff-type bounds. Therefore

P

(
X ≤ 1

2
E(X)

)
≤ e− E(X)/8 ≤ e−θk|δG(A)|/8 ≤ n−αθka/8 ≤ n−2a

since αθk ≥ 16.
The theorem now follows from the fact, observed in section 5, that there are at

most
(
n−1
a

)
sets such that a = δT (A).

Negative correlation of the ηe’s. Let ei = (ui, vi) ∈ δG(A), i = 1, 2. . . . ,m.
We have to prove (see (3.3)) that if em /∈ {e1, e2, . . . , em−1}, then

(8.1) P(ηem = 1 | ηe1 = · · · = ηem−1 = 1) ≤ P(ηem = 1).

Because ηem is independent of ηei when ei ∩ em = ∅, we will assume that ei ∩ em �= ∅
for i = 1, 2, . . . ,m− 1.

Let Ω = {G−mappings}k−1. Partition Ω into Ω1,Ω2, . . . , where Ωj is determined
by Ml(u), l = 1, 2, . . . , k − 1 for u /∈ {um, vm}. Suppose that there are Π parts in
all to this partition. Then each Ωj can be expressed as Ωj = {ωj} × Nk−1

um
×Nk−1

vm ,
where ωj defines Ml(u), l = 1, 2, . . . , k − 1 for u /∈ {um, vm} and Num , Nvm are the
G-neighborhoods of um, vm, respectively. Now let Ω∗

j = Ωj ∩ {ηe1 = · · · = ηem−1 = 1}
for j = 1, 2, . . . ,Π. Equation (8.1) will follow from

(8.2) P(ηem = 1 | Ω∗
j) ≤ P(ηem = 1), j = 1, 2, . . . ,Π.

(To verify (8.1), we only need to prove this when Ω∗
j �= ∅.)

Next let Ij = {i ∈ [m − 1] : ηei = 1 for all ω ∈ Ωj} be those indices i for which
ηei = 1 is already determined by the choices in ωj . Here we have ei = {x, y}, where
y ∈ em and in Ωj we have Ml(x) = y. In this case, ηem is (conditionally) independent
of ηei . We can therefore assume that Ij = ∅.

Claim (8.2) now amounts to the following: We randomly place k − 1 balls into
boxes B1, B2, . . . , Bd (the random values of Ml(um), l = 1, 2, . . . , k − 1) and ran-
domly place k − 1 balls into boxes C1, C2, . . . , Cd (the random values of Ml(vm), l =
1, 2, . . . , k−1). (Strictly speaking there are at most d boxes here, but this only causes
a change in notation.) Let Xr be the number of balls in box Br and let Ys be the
number of balls in box Cs. Then if B1, C1 correspond to um, vm, then we have to
show that

(8.3) P(X1 + Y1 ≥ 1 | Xl ≥ 1, l ∈ I and Yl ≥ 1, l ∈ J) ≤ P(X1 + Y1 ≥ 1),

where I, J are subsets of [d] \ {1}.
Now let

π1 = P(X1 ≥ 1 | Xl ≥ 1, l ∈ I) ≤ π′
1 = P(X1 ≥ 1),

π2 = P(y1 ≥ 1 | Yl ≥ 1, l ∈ I) ≤ π′
2 = P(Y1 ≥ 1),

where the inequalities follow from [9], Theorem 13.
The independence of the Xi’s and Yi’s implies that

LHS(8.3) = 1− (1 − π1)(1 − π2) ≤ 1− (1 − π′
1)(1 − π′

2) = RHS(8.3).

RANDOM SPANNING TREES 511

8.2. Expansion when base graph is a complete graph.
Proof of Theorem 1.7. Let G = G2−out. We choose some small positive ε. Then

the probability that G has vertex expansion at most ε can be bounded by

n/2∑
k=3

(
n

k

)(
n

εk

)(
k + εk

n

)2k (
n− k

n

)2(n−k−εk)

.(8.4)

The sum starts at 3 because in G2−out every set of size one or two has at least

one neighbor:

≤
n/2∑
k=3

(ne
k

)k (ne
εk

)εk (k + εk

n

)2k (
n− k

n

)2(n−k−εk)

=

n/2∑
k=3

uk,

where

uk =

((
k

n

)1−ε

· e ·
(e
ε

)ε
· (1 + ε)2

)k (
n− k

n

)2(n−k−εk)

.

When k ≤ n1/2, uk ≤ vk = (
(
k
n

)1−ε ·e ·
(
e
ε

)ε ·(1+ε)2)k ≤ n−k/3. If k ≤ n/3, then vk ≤
(0.95)k for ε sufficiently small. If n/3 ≤ k ≤ n/2, then

(
n−k
n

)2(n−k−εk) ≤
(
2
3

)2(1−ε)k

and so uk ≤ (e
1+ε(1+ε)2

21−εεε ·
(
2
3

)2(1−ε)
)k ≤ (0.7)k for ε sufficiently small.

8.3. Selectors of random graphs.
Proof of Theorem 1.8. The upper bound proof of Theorem 1.5 rests on the fact

that the maximum degree of a random tree is O(log n) w.h.p. This is also true for
a random mapping (actually o(log n) to be precise), and so the proof of the upper
bound goes through unchanged.

For the lower bound we let M1 = k+ εk−1 and N1 = n−M1 and M2 = n−k−1
and N2 = n−M2 and replace (8.4) by

(8.5) o(1) +

n/2∑
k=3

(
n

k

)(
n

εk

)
Ak

1A
n−k−εk
2 .

The o(1) term accounts for connectivity and minimum degree at least two. And

Ai =
∑
l≥2

∑
a+b=l

(
Mi

a

)(
Ni

b

)
pl(1 − p)n−1−l a(a− 1)

l(l − 1)

=
∑
l≥2

pl(1− p)n−1−lMi(Mi − 1)

l(l − 1)

∑
a+b=l

(
Mi − 2

a− 2

)(
Ni

b

)

=
∑
l≥2

pl(1− p)n−1−lMi(Mi − 1)

l(l − 1)

(
n− 3

l − 2

)

=
Mi(Mi − 1)p2

(n− 1)(n− 2)p2

∑
l≥0

(
n− 1

l

)
pl(1− p)n−1−l

=
Mi(Mi − 1)

(n− 1)(n− 2)
.(8.6)

512 A. FRIEZE, N. GOYAL, L. RADEMACHER, AND S. VEMPALA

Explanation of (8.5). Fix disjoint sets K,L of size k and εk, respectively. Then
for v ∈ K, A1 will be the probability that both its chosen neighbors are in K ∪L, and
for v /∈ K ∪L, A2 will be the probability that both its chosen neighbors are not in K.
Now for v ∈ K, the number of Gn,p neighbors in K ∪ L will be a = Bin(M1, p) and
the number of Gn,p neighbors not in K ∪ L will be b = Bin(N1, p). The probability

of this is
(
M1

a

)(
N1

b

)
pl(1 − p)n−1−l, where l = a + b. The probability that both of v’s

choices are in K ∪ L is
(
a
2

)
/
(
l
2

)
. When v /∈ K ∪ L, the number of Gn,p neighbors

not in K will be a = Bin(M2, p) and the number of Gn,p neighbors in K will be

b = Bin(N2, p). The probability of this is
(
M2

a

)(
N2

b

)
pl(1 − p)n−1−l, where l = a + b.

The probability that both of v’s choices are not in K is
(
a
2

)
/
(
l
2

)
. Finally note that the

described events are independent for each possible v.
It follows from (8.6) that

A1 ≤
(
k + εk

n

)2

and A2 ≤
(
n− k

n

)2

.

Comparing (8.4) and (8.5) we see that w.h.p. H has constant vertex expansion. The
lower bound proof of Theorem 1.5 rests on the fact that H ′ has constant vertex
expansion, and so this proof can be repeated here.

9. Discussion. The problem of scalable routing in the presence of failures mo-
tivated our constructions in this paper. The use of trees is particularly natural for
routing. Our results suggest using a constant number of trees in total for routing, as
opposed to the norm of one or more trees per destination. Further, the manner in
which the trees are obtained is simple to implement and can lead to faster recovery
since (a) paths exist after several failures and (b) fewer trees need to be recomputed
in any case.

One aspect of splicers that we have not explored is the stretch of the metric
induced by them. For the case of the complete graph, it is not hard to see that
the diameter is O(log n) and hence so is the expected stretch for a pair of random
vertices. This continues to hold for Gn,p, in fact giving better bounds for small p
(expected stretch of O(log logn) for p = poly(logn)/n). It remains to study the
stretch of splicers for arbitrary graphs or bounded-degree graphs. This seems to be
an interesting question since on the complete graph, the expected stretch on one tree
is Θ(

√
n) while that of two trees is O(log n).

One future direction of research is to understand the trade-off between fault-
tolerance and stretch achievable by splicers (not necessarily union of uniformly random
spanning trees, but more carefully chosen spanning trees).

REFERENCES

[1] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup, Compact name-
independent routing with minimum stretch, in Proceedings of the 16th Annual ACM
Symposium on Parallelism in Algorithms and Architectures, New York, NY, ACM, 2004,
pp. 20–24.

[2] D. Aldous, The random walk construction of uniform spanning trees and uniform labelled
trees, SIAM J. Discrete Math., 3 (1990), pp. 450–465.

[3] N. Alon and M. R. Capalbo, Finding disjoint paths in expanders deterministically and online,
in FOCS, 2007, pp. 518–524.

[4] N. Alon and J. H. Spencer, The Probabilistic Method, 2nd ed., Wiley-Intersci. Ser. Discrete
Math. Optim., John Wiley & Sons, New York, 2000.

[5] J. Batson, D. A. Spielman, and N. Srivastava, Twice-Ramanujan sparsifiers, arXiv:
0808.0163v1, 2008.

RANDOM SPANNING TREES 513

[6] A. A. Benczúr and D. R. Karger, Approximating s-t minimum cuts in Õ(n2) time, in
Proceedings of STOC, 1996, pp. 47–55.

[7] B. Bollobás, Random Graphs, 2nd ed., Cambridge University Press, Cambridge, 2001.
[8] A. Z. Broder, Generating random spanning trees, in Proceedings of FOCS, 1989, pp. 442–447.
[9] D. P. Dubhashi and D. Ranjan, Balls and bins: A study in negative dependence, Random

Structures Algorithms, 13 (1998), pp. 99–124.
[10] T. Feder and M. Mihail, Balanced matroids, in Proceedings of the 24th Annual ACM Sym-

posium on Theory of Computing, New York, NY, ACM, 1992, pp. 26–38.
[11] O. Goldreich, Randomized Methods in Computation, Lecture 2, http://www.wisdom.

weizmann.ac.il/˜oded/rnd.html (2001).
[12] M. Jerrum, A. Sinclair, and E. Vigoda, A polynomial-time approximation algorithm for the

permanent of a matrix with nonnegative entries, J. ACM, 51 (2004), pp. 671–697.
[13] F. T. Leighton and S. Rao, Multicommodity max-flow min-cut theorems and their use in

designing approximation algorithms, J. ACM, 46 (1999), pp. 787–832.
[14] L. Lovász, Random walks on graphs: A survey, in Combinatorics, Paul Erdős is Eighty, Vol. 2,

D. Miklós, V. T. Sós, and T. Szőnyi, eds., János Bolyai Mathematical Society, Budapest,
1996, pp. 353–398.

[15] R. Lyons and Y. Peres, Probability on Trees and Networks, preprint http://mypage.iu.
edu/˜rdlyons/prbtree/prbtree.html (2005).

[16] M. Mihail, C. Papadimitriou, and A. Saberi, On certain connectivity properties of the
internet topology, J. Comput. System Sci., 72 (2006), pp. 239–251.

[17] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala, Path splicing, in Proceedings of
ACM SIGCOMM, Seattle, WA, 2008.

[18] M. Motiwala, N. Feamster, and S. Vempala, Path splicing: Reliable connectivity with
rapid recovery, in Proceedings of the 6th ACM SIGCOMM HotNets Workshop, Atlanta,
GA, 2007.

[19] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, Cam-
bridge, 1995.

[20] R. Pemantle, Toward a theory of negative dependence, J. Math. Phys., 41 (2000), pp. 1371–
1390.

[21] J. Propp and D. Wilson, How to get a perfectly random sample from a generic Markov
chain and generate a random spanning tree of a directed graph, J. Algorithms, 27 (1998),
pp. 170–217.

[22] P. Raghavan and C. D. Thompson, Randomized rounding: A technique for provably good
algorithms and algorithmic proofs, Combinatorica, 7 (1987), pp. 365–374.

[23] S. Shenker, We dream of geni: Exploring radical network designs, in Proceedings of FCRC,
http://lazowska.cs.washington.edu/fcrc/Shenker.FCRC.pdf (2007).

[24] D. Spielman and N. Srivastava, Graph sparsification by effective resistances, in Proceedings
of STOC, 2008.

http://www.wisdom.weizmann.ac.il/~oded/rnd.html
http://www.wisdom.weizmann.ac.il/~{}oded/rnd.html
http://mypage.iu.edu/~rdlyons/prbtree/prbtree.html
http://mypage.iu.edu/~{}rdlyons/prbtree/prbtree.html
http://lazowska.cs.washington.edu/fcrc/Shenker.FCRC.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

