
Randomized algorithms and matrix

decompositions

Luis Rademacher

1 Introduction (L1)

These notes discuss novel randomized algorithms for some tasks in numerical
linear algebra, such as matrix multiplication and certain matrix decompositions
(SVD, interpolative decomposition). One of the main motivations is the need
for fast algorithms for the analysis of massive data. The emphasis will be more
on algorithms and algorithmic tools rather than complexity or linear algebra.

Randomized algorithms are frequently faster or simpler that deterministic
counterparts. For example, Karger’s algorithm [?, ?] for the minimum cut of a
graph is simpler than deterministic algorithms. The only theoretically efficient
ways of estimating the volume of high dimensional convex bodies are based on
random walks [?, ?].

While randomized algorithms commonly have a chance of failure, this chance
can be made arbitrarily small (say, smaller than the chance that the computer
fails for any other reason) with a modest computational cost.

In the case of massive data or massive computation, they frequently provide
a tradeoff between use of computational resources and approximation quality of
the output. This is the idea behind approximation algorithms, many of which
are randomized. For example, random projection [?, ?], a building block in
the design of many efficient randomized algorithms, is based on the idea of
randomly embedding high-dimensional data into a space of lower dimension,
with guaranteed low distortion, where the choice of the target dimension gives
the tradeoff between computational cost and approximation quality.

We will discuss some basic “phenomena in high dimension”, while discussing
the analysis and design of some randomized algorithms, such as those based
on random projection. For example: What is the “typical” angle between two
random unit vectors in Rn? For an answer, it is easy to show E((X ·Y)2) = 1/n.
What is the typical length of a random Gaussian vector in n dimensions? How
concentrated is it?

The two main algorithmic problems that we will discuss:

1. (Subspace approximation) Given m points in Rn and k ≤ m,n, find a
k-dimensional subspace that minimizes the sum of squared distances of
the points to the subspace.

1

2. (Subset selection) Givenm points in Rn and k ≤ m,n, find a k-dimensional
subspace spanned by k input points that minimizes the sum of squared
distances of the points to the subspace.

In a linear algebraic language, if the points are arranged as rows of an m×n ma-
trix A, the first problem corresponds to finding the best rank-k approximation
(in the squared Frobenius norm, the sum of squares of entries), and the second
problem corresponds to an “interpolative decomposition”, A ≈ XR, where the
rows of R are k rows of A.

The first problem is fundamental in modern data analysis. For example, the
points may correspond to input data that is intrinsically low dimensional (i.e.
the coordinates are not independent), but that has been corrupted by moderate
noise. Finding the optimal subspace and projecting the noisy data to it would
essentially remove the noise. Solving the subspace approximation problem and
picking an orthonormal basis of it can give the most relevant k-dimensional basis
in which to analyze the data, acting as a sort of dimensionality reduction and
hopefully highlighting the relevant features of the data. Unfortunately this basis
is made of arbitrary vectors in space and can be difficult to interpret. The second
problem, subset selection, tries to overcome this as a refinement of subspace
approximation: The desired subspace is spanned by k of our input points and
therefore gives a basis that can be immediately interpreted in terms of the
original data, as well as giving a representative set of k input data points. Both
problems work as a form of data compression, as a special case of dimensionality
reduction.

We will discuss two ways in which randomization has been used to speed-up
linear-algebraic computations: sampling (of rows or columns of a given matrix
according to non-uniform distributions) and random projection. Frequently,
the randomized algorithms do not provide a completely new way of solving the
problem, but instead replace it with a much smaller problem while incurring a
small error. The smaller problem can then be solved by classical techniques.

There are other problems that have been approached with randomized al-
gorithms that we may discuss briefly, such as matrix multiplication and linear
regression.

The emphasis will be on algorithms and tools from discrete geometry and
probability rather than complexity or linear algebra.

A thorough understanding of these algorithmic problems would involve some
additional topics that we may discuss only briefly: concentration bounds for the
quality of randomized matrix decomposition, streaming algorithms (that work
with only one pass over the input data), and stability.

2 Randomized algorithms (L1)

2.1 The union bound

An elementary probabilistic bound that is surprisingly useful. If A1, . . . , Am are
“bad” events in a common probability space, each occurring with probability at

2

most p, then the probability that at least one of them happens is

Pr(
⋃
Ai) ≤

∑
Pr(Ai) ≤ mp.

Thus, the probability that none of them happen is at least 1−mp. Here is an
example:

In Rd, how large can a set of orthonormal vectors be? Answer: d. What if
we relax the condition to almost orthogonality, say, for all distinct x, y in the
set we have |x · y| ≤ 1/100? Then the size of the set can be eΩ(d) (note that
the relaxation does not seem to help much in low dimension). We will need the
following fact:

Lemma 1 (from Ball’s notes). For any 0 < ε < 1/2, the (d − 1)-dimensional
volume of {x ∈ Sd−1 : x1 ≥ ε} (the cap at distance ε from the origin) as a

fraction of the volume of Sd−1 is at most e−dε
2/2.

Proof. It is easier to compare the volume of the convex hull C of the origin and
the cap with the volume of the unit ball, which is the desired ratio. But C is
contained in a ball of radius

√
1− ε2 so that the ratio is at most (

√
1− ε2)d ≤

e−dε
2/2

In particular, given any hyperplane, a constant fraction of the mass of Sd−1

lies within distance O(1/
√
d) of the hyperplane.

Here is a simple argument for almost orthogonal vectors: For m to be fixed
later, pickm random points P1, . . . , Pm from Sd−1. By Lemma 1, the probability
that |Pi · Pj | ≥ 1/100 for i 6= j is at most 2e−d/(2×104). Thus, the probability

that all pairs are almost orthogonal is at least 1 − 2
(
m
2

)
e−d/(2×104) (the union

bound). This is positive for some m = eΩ(d), which implies that in a random set
of points of exponential size, with high probability all pairs are nearly orthogonal.

Exercise 1. Show a matching upper bound up to exponential factors for the
problem of nearly orthogonal vectors: Show that any set of unit vectors such that
all pairwise inner products are at most 1/100 in absolute value has cardinality
eO(d).

2.2 The method of conditional expectation

Example from Alon-Spencer 3rd, 16.1

3 Random projection (L2)

Random projection is the following basic idea: That given a set of n points in
Rd one can map (or embed or project) this set of points to a set of n points in
Rk for k � d while preserving the metric structure approximately, say, pairwise
distances are preserved to within a constant factor. More precisely, Johnson and
Lindenstrauss proved the following result. We need a definition to state it: For a

3

pair of metric spaces (X, dX), (Y, dY), a map f : X → Y is a (1 + ε)-embedding
iff for all x, y ∈ X we have

(1− ε)dX(x, y) ≤ dY (f(x), f(y)) ≤ (1 + ε)dX(x, y)

Theorem 2 (Johnson-Lindenstrauss lemma). Let X be an n-point set in an
Euclidean space, and let ε ∈ (0, 1/2] be given. Then there exists a (1 + ε)-
embedding of X into lk2 , where k = O(ε−2 log n).

So, if an algorithm takes as input a set of n points in Rd, the algorithm only
cares about pairwise distances between the points and an approximate answer
is acceptable, then we could improve the running time of the algorithm by first
embedding the input points in a space of dimension O(ε−2 log n). For this to
be possible, we need an embedding that is efficiently computable. Initially,
Theorem 2 was proven by projecting the points to a random k-dimensional
subspace and showing that with high probability such a projection gives a (1+ε)-
embedding. Later [Achlioptas] showed that a random {−1, 1} matrix works as
the embedding map, and [Indyk and Motwani, Dasgupta and Gupta] showed it
by using a random Gaussian matrix. The Gaussian case leads to a simple proof
that we will see in a moment. A projection as in the Johnson-Lindenstrauss
lemma is sometimes called a Johnson-Lindenstrauss transform.

One can think of random projection in the most basic form as preserving
approximately the lengths of n vectors. Of course, from such a statement one
can easily deduce a version that preserves an Euclidean metric (that is, pairwise
distances) by considering all pairwise differences and then applying the basic
form that preserves lengths. Similarly, we can deduce a version that preserves
pairwise angles.

Part of the algorithmic power of random projection comes from the fact
that it is given simply by a linear map and it is data oblivious, that is, it can be
chosen randomly with high probability of success without looking at the input
points.

The basic idea for a proof using Gaussian matrices is that if R is a k-by-n
matrix with standard Gaussian entries and x is an n-dimensional vector, then
the entries of Rx are Gaussian and ‖Rx‖2 is highly concentrated around its
expected value (as it has a χ2 distribution with k degrees of freedom, after a
suitable scaling). More precisely, we have the following standard concentration
result:

Lemma 3 (as exposed in Santosh’s book). Let each entry of a k× n matrix R
be chosen independently from N(0, 1). Let v = 1√

k
Ru for u ∈ Rn. Then for any

ε > 0,

1. E(‖v‖2) = ‖u‖2,

2. P(|‖v‖2 − ‖u‖2| ≥ ε‖u‖2) < 2e−(ε2−ε3)k/4.

Proof. Intuition: sum of bounded independent random variables is highly con-
centrated around its mean, as in Chernoff’s inequality.

4

Let Xj = Rju/‖u‖. Then Xj is distributed as a standard Gaussian, as it
is a one dimensional marginal of Rj , a Gaussian vector. Let X =

∑
X2
j =

k‖v‖2/‖u‖2. X is a sum of k independent squared standard Gaussians (a χ2

with k degrees of freedom). Then, for λ > 0,

Pr(‖v‖2 ≥ (1 + ε)‖u‖2) = Pr(X ≥ (1 + ε)k)

= Pr(eαX ≥ e(1+ε)αk)

≤ E(eαX)

e(1+ε)αk

=

(
E(eαX

2
1)

e(1+ε)α

)k
Using the explicit density of the Gaussian distribution, one can easily show (for
λ < 1/2)

E(eαX
2
1) =

1√
1− 2α

to get

Pr(X ≥ (1 + ε)k) ≤
(
e−2α(1+ε)

1− 2α

)k/2
.

The optimal choice of α is ε/2(1 + ε), and this implies

Pr(X ≥ (1 + ε)k) ≤ ((1 + ε)e−ε)k/2 < e−(ε2−ε3)k/4

where the last inequality is obtained from a Taylor expansion of log(1 + ε). The
inequality for the lower tail is proven similarly.

We can use this and the union bound to prove Theorem 2:

Proof (of Theorem 2). For x ∈ X, let f(x) = k1/2Rx for R as in Lemma 3 and
k to be fixed later. As the embedding map is linear, we just need to preserve
approximately the lengths of the at most n2 vectors of the form x − y for
x, y ∈ X. By Lemma 3 and for ε ≤ 1/2, the probability that ‖f(x)− f(y)‖2 /∈
[(1−ε), (1+ε)]‖x− y‖2 for any single pair x, y is at most 2e−ε

2k/8. By the union

bound, the probability that f is a (1 + ε)-embedding is at least 1− 2n2e−ε
2k/8.

This is positive for k = O(ε−2 log n).

As an application, we will see an algorithm by [Sarlos] for fast approximate
matrix multiplication. To compute the product of two matrices A ∈ Rm×d and
B ∈ Rd×p, the algorithm randomly projects the rows of A and the columns of
B. The idea is that the matrix product involves mp inner products of m + p
vectors in Rd, and random projection preserves inner products:

Corollary 4. For any ε < 1/2 and for any V ⊆ Rd, |V | = n there exists a
linear map R : Rn → Rk with k = O(ε−2 log n), such that for all u, v ∈ V we
have

u · v − ε‖u‖‖v‖ ≤ Ru ·Rv ≤ u · v + ε‖u‖‖v‖.

5

Moreover, a random Gaussian matrix scaled by 1/
√
k is such R with high prob-

ability.

Exercise 2. Prove Corollary 4.

Theorem 5 (Sarlos). Let A ∈ Rm×d, B ∈ Rd×p. Let R : Rd → Rk be a
random Gaussian matrix scaled by 1/

√
k. Then, with high probability for k =

O(ε−2 log(m+ p)) we have

‖AB −ARTRB‖F ≤ ε‖A‖F ‖B‖F

Proof. By Corollary 4,

‖AB −ARTRB‖2F =
∑
i,j

(Ai ·Bj −RAi ·RBj)2

≤ ε2
∑
i,j

‖Ai‖2‖Bj‖
2

= ε‖A‖2F ‖B‖
2
F .

The generation of the projected matrices takes time O((md+dp)ε−2 log(m+
p)) and space O((m + p)ε−2 log(m + p)). Multiplying the projected matrices
would take time O(mpε−2 log(m + p). For fixed ε, the whole algorithm takes
time that is nearly linear (up to logarithmic factors) in the size of the input plus
the size of the output.

3.1 Fast random projection (Ailon-Chazelle)

The projection step is a bottleneck for many algorithms (e.g. approximate
nearest neighbor search) using random projection: Ω(dk) per vector. One could
make the projection matrix sparser (Achlioptas), but it still needs a constant
fraction of non-zero entries. Intuitively, it needs many non-zero entries to pre-
serve the length of a sparse vector (e.g. canonical vectors). Another idea would
be to make k, the target dimension smaller. But Alon showed a lower bound of
k = Ω(logn

ε2 log(1/ε)).

Idea for a fast Johnson-Lindenstrauss transform (FJLT): “Pre-process” by
pre-multiplying vectors by a matrix H that turns sparse vectors into dense vec-
tors and structured so that matrix-vector multiplication is fast. Then, project
using a sparse Gaussian matrix. An example of a pre-processing matrix H con-
sidered in the literature, the discrete Fourier transform (DFT). In the case of
Ailon-Chazelle, they use the Hadamard-Walsh transform, a sort of generalized
Fourier transform, but which is actually quite easy to understand.

Intuitively, why does a DFT turn sparse into dense? Heisenberg uncertainty
principle: A signal and its spectrum cannot be both concentrated. In other
words, a vector and its Fourier transform cannot both be sparse.

6

More precisely, the FJLT is given by a matrix Φ, which is the composition
of 3 linear maps:

Φ = PHD

where

1. P is a k × d matrix, each entry is 0 with probability 1− q and N(0, 1/q)
with probability q, where

q = min{Θ(
log2 n

d
), 1}.

2. H is the d× d Hadamard-Walsh transform (for simplicity we assume that
d is a power of 2).

3. D is a d× d diagonal matrix with independent random {−1, 1} entries.

The H-W transform H = Ht/
√
d for d = 2t is a d× d matrix given recursively

by

Ht =

(
Ht−1 Ht−1

Ht−1 −Ht−1.

)
H1 =

(
1
)

The transform H is just a change of basis: It is an orthonormal matrix. The
entries of Ht are −1, 1.

Note that H turns canonical vectors (sparsest) into dense vectors. On the
other hand, if x is some row of H, then Hx is a canonical vector (sparsest).
But the actual transform pre-multiplies by D, so Dx has a very low probability
of being equal to a row of H. Informally, dense vectors that become sparse
through HD are rare.

Naive matrix-vector multiplication with Ht would have cost O(d2), but the
recursive structure of Ht gives an O(d log d) algorithm (in the spirit of FFT,

but actually simpler): For x = (y, z) with y, z ∈ R2t−1

, compute w = Htx by
recursively computing w1 = Ht−1y and w2 = Ht−1z and setting w = (w1 +
w2, w1 − w2).

Theorem 6 (Ailon-Chazelle). Given a fixed set of n points in Rd and ε < 1,
draw a matrix Φ from FJLT. With probability at least 2/3, the following two
events occur:

1. For any x ∈ X;

(1− ε)k‖x‖ ≤ ‖Φx‖ ≤ (1 + ε)k‖x‖.

2. The mapping Φ : Rd → Rk requires

O(d log d+ min{dε−2 log n, ε−2 log3 n}).

Proof. Ailon-Chazelle’s CACM article.

7

Exercise 3. In this exercise you will investigate the use of random projection
to preserve the areas of triangles. Let S be a set of n points in Rd.

1. Show that for any ε there are 3 points in Rn and a (1 + ε)-embedding of
them such that the area (and therefore the heights) can be distorted by the
embedding by an arbitrarily large factor.

2. Show that a (1+ε)-embedding of an isosceles right angle triangle preserves
the heights to within a (1 +O(ε)) factor.

3. Conclude that one can embed S in Rm for m = O(ε−2 log n) so that all
distances are preserved to within a factor of 1+ε and all areas of triangles
determined by 3 points in S are preserved to within a factor of (1 + ε)2.
(Hint: for every triangle T , add an isosceles right angle triangle to be
(1 + ε)-embedded whose height is the same as one height of T)

4 Matrix decompositions (L3)

4.1 Best subspace fitting, matrix approximation and the
singular value decomposition (SVD)

This section is partly based on the upcoming book on spectral algorithms by
Ravi Kannan and Santosh Vempala.

We will now discuss the first basic problem mentioned in the introduction:
to find a k-dimensional subspace that is close to a given set of points in the
sense of minimizing the sum of squared distances.

A theoretical framework as well as an algorithm to understand this problem
is given by the singular value decomposition that we will review now. To this
end we will think of the input points as rows of an m × n matrix that we will
denote A. As mentioned in the introduction, the geometric problem is equivalent
to the problem of finding the best rank-k approximation to A in the Frobenius
norm (discussed below).

Let A be an m× n matrix with entries aij .
For k = 1, we want to find a line through the origin L such that

∑
d(Ai, L)2

is minimized. We can think of this line as being spanned by a unit vector v and
then by the Pythagorean theorem the problem is equivalent to

max
v∈Sn−1

‖Av‖2. (1)

We have:

Proposition 7. Any top unit eigenvector of ATA is a solution of (1)

Proof. ATA is a symmetric positive semi-definite matrix and has an orthonor-
mal basis of eigenvectors v1, . . . , vn, and corresponding non-negative eigenvalues
λ1, . . . , λn, which we can assume are sorted in decreasing order. The objective at
v can be written in terms of this basis as v =

∑
αivi and then ‖Av‖2 =

∑
α2
iλi,

which is maximized by setting αi = 0 whenever λi is not maximal.

8

While A does not necessarily have eigenvalues and eigenvectors (as it may
not even be a square matrix), it has a generalized notion, singular values and
singular vectors: If u ∈ Rm, v ∈ Rn and σ > 0 satisfy Av = σu and uTA = σvT ,
then we say that u is a left singular vector, v is a right singular vector, and σ
is a singular value of A. It is easy to see that the right singular vectors are the
eigenvectors of ATA, the left singular vectors are the eigenvectors of AAT , and
the singular values squared are the eigenvalues of AAT and ATA.

In this new language, a solution to (1) is a top right singular vector of A.
We will now see that the subspace approximation problem for general k can be
solved in terms of singular vectors, as well as showing that the singular vectors
and singular values can be used to express any matrix in a generalized form of
eigendecomposition, the singular value decomposition (SVD).

Theorem 8 (existence of SVD and Eckart-Young). Let Vk = span (v1, . . . , vk)
where

v1 ∈ argmaxx∈Sn−1 ‖Ax‖
v2 ∈ argmaxx∈Sn−1,x⊥V1

‖Ax‖
...

vk ∈ argmaxx∈Sn−1,x⊥Vk−1
‖Ax‖

Then Vk is optimal for

min
V subspace, dim(V) = k

m∑
i=1

d(Ai, V)2.

Moreover, v1, . . . , vn are left singular vectors with singular values σi = ‖Avi‖.
Finally, A =

∑
σiuiv

T
i .

Proof. Idea: induction in k.
For k = 1, by definition.
Suppose V ′k is an optimal k-dimensional subspace. Let {w1, . . . , wk} be a

basis of V ′k such that wk is orthogonal to Vk−1. Optimality of Vk−1 implies

‖Aw1‖2 + · · ·+ ‖Awk−1‖2 + ‖Awk‖2 ≤ ‖Av1‖2 + · · ·+ ‖Avk−1‖2 + ‖Awk‖2.

Optimality of vk implies
‖Awk‖2 ≤ ‖Avk‖2.

and this completes the induction.
The fact that the vis are right singular vectors is an easy generalization of

Proposition 7.
A =

∑
σiuiv

T
i follows by evaluating both sides of this identity on the or-

thonormal basis (vi).

There are efficient algorithms to compute the SVD. A basic way is the power
method: Observe that UΣΣTUT is an eigendecomposition of AAT . So if we

9

compute an eigendecomposition of AAT we can get U and Σ. Then UTA = ΣV ,
from which we can get V . Let B = AAT , a symmetric positive semidefinite
matrix with eigenvectors (ui) and eigenvalues λi = σ2

i . To find an eigendecom-
position of B, consider the following procedure (the power method) to find a
top eigenvector: Pick a random unit vector in Rm, say x0 and compute the
sequence xt = Bxt−1/‖Bxt−1‖. If λ1 > λ2 and x0 · u1 6= 0, then the sequence
(xt) converges to a multiple of u1, a top eigenvector of B. To see this, write x0

in the basis (ui), that is, x0 =
∑
i αiui, and then we have

Btx0 =
∑

αiλ
t
iui

= α1λ
t
1

(
u1 +

α2

α1
(
λ2

λ1
)k + · · ·+ αm

α1
(
λm
λ1

)k
)

where the expression in parenthesis converges to u1 and xt converges to a vector
ũ1, a multiple of u1. An approximate top eigenvalue is given by λ̃1 = ‖Bũ1‖. Let
B ← B − λ̃1ũ1ũ

T
1 and repeat to find subsequent eigenvalues and eigenvectors.

5 Fast randomized numerical linear algebra

We already saw an algorithm for fast matrix multiplication based on random
projection. We will now discuss low rank matrix approximation, which is the
linear algebraic analog of subspace approximation.

5.1 Randomized low rank matrix approximation (L4)

Some drawbacks of classical methods that this line of work tries to address:

• Dependence on eigenvalue gaps: We want algorithms that work for all
inputs.

• Avoid random access to memory: We want algorithms that work with
only a few sequential passes over the input.

5.1.1 Sampling rows independently

The idea of sampling rows for matrix approximation was introduced in a sem-
inal paper by Frieze, Kannan and Vempala. Sampling-based approximation is
of course an old statistical trick, so it makes sense that in the span of a random
sample of rows of a matrix one may find something close to the best subspace ap-
proximation. But uniform sampling is easily seen to be a bad idea: For a matrix
that has a single non-zero entry one would need a sample of essentially the same
size as the matrix to “see” the interesting entry. So FKV introduced the idea of
sampling rows independently with repetition with probability proportional to
their squared length:

10

Theorem 9 (FKV). Let A ∈ Rm×n. Let k ≤ l. Let S = (s1, . . . , st) be a ran-
dom sample of t rows of A chosen independently from the following distribution:
row i is picked with probability

Pi =
‖Ai‖2

‖A‖2F
.

Then

E(‖A− Ã‖2F) ≤ ‖A−Ak‖2F +
k

t
‖A‖2F .

where Ã = πS,k(A), the best rank-k approximation of A with rows in span (AS)

Proof. Let V = span (v1, . . . , vk). The best rank-k approximation is given by

Ak = πV (A) =
∑k
i=1Aviv

T
i . Given that

∑n
j=1(ui)jAj = uTi A = σivi, the

following is a natural replacement of vi given our sampling distribution: For j a
random row according to squared length, the random variable Xi = (ui)jAj/Pj ,
which has expectation σivi. But we are picking t rows (to decrease the variance,
say), so our actual random estimate of vi is

yi =
1

σit

t∑
j=1

(ui)jAj/Pj .

A simple perturbation of Ak to get a rank-k approximation to A with rows
in span (S) is then F =

∑k
i=1Aviy

T
i . Clearly, the best rank-k approximation

with rows in span (AS) has error satisfying ‖A− Ã‖2F ≤ ‖A− F‖
2
F . To bound

this last expression, we write it in a suitable basis, (uj):

‖A− F‖2F =

n∑
j=1

‖uTj A− uTj
k∑
i=1

Aviy
T
i ‖

2

=

n∑
j=k+1

‖σjvj‖2 +

k∑
j=1

‖σjvj − σjyTj ‖
2

= ‖A−Ak‖2F +

k∑
j=1

‖σjvj − σjyj‖2

The last term is the sum of second moments of the distance of our approximation
σjyj to its expected value. This variance is E(‖Xj − σjvj‖2)/t as we will see

now. For any random vector X with mean µ we have E(‖X − µ‖2) = E(XTX)−
µTµ. For t independent copies X(1), . . . , X(t) of X we have, similarly,

E(‖1

t

t∑
i=1

X(i)− µ‖
2

) =
1

t
(E(XTX)− µTµ)

11

This implies

E(‖Xj − σjvj‖2) =

m∑
i=1

(uj)
2
i ‖Ai‖

2

Pi
− σ2

j = ‖A‖2F − σ
2
j

and

k∑
j=1

‖σjvj − σjyj‖2 =
1

t

k∑
j=1

(‖A‖2F − σ
2
j) ≤ k

t
‖A‖2F .

This completes the proof.

For an algorithm, one can first set t = k/ε to control the additive error (it

becomes ε‖A‖2F) and then use Markov’s inequality (on the non-negative random

variable ‖A− Ã‖2F)−‖A−Ak‖2F) to get a guarantee with constant probability

instead of on average. Then one can compute Ã by running any (truncated)
SVD algorithm on πS(A), which is an m by k/ε matrix, in additional time
O(mk2/ε2). The sampling and projection steps take time O(kmn/ε).

Strengths: The algorithm to pick the rows needs only two passes over the
data.

Weaknesses: The additive error could be large, when ‖A‖2F is much larger

than ‖A−Ak‖2F (which can happen when the spectrum decays slowly). It would

be better to have an error relative to ‖A−Ak‖2F (within a multiplicative factor).
Observation: FKV’s result does gives a factor 2 approximation when k = t =

1. That is, one row sampled according to squared length gives a one-dimensional
subspace with an error that is no worse than twice the best possible error.

Exercise 4. Prove the observation.

5.1.2 Adaptive sampling

Can one improve the error of FKV substantially by picking rows adaptively?
Here “adaptively” means that we pick rows in rounds, say t rounds of s rows,
where the rows of a certain round are picked with probability proportional to
the squared length in the residual or error matrix E from the previous rounds:
After r rounds where we have picked rows S ⊂ [m], E = A − πS(A). Then,
using induction on the number of rounds and a slight generalization of FKV
(for the inductive step) one can prove that the error decreases exponentially as
a function of the number of rounds:

Theorem 10. Let S = S1 ∪ · · · ∪ St be a random sample of rows of an m× n
matrix A where, for j = 1, . . . , t, each set Sj is a sample of s rows of A chosen
independently from the following distribution: row i is picked with probability

P
(j)
i =

‖E(i)
j ‖

2

‖Ej‖2F

12

where E1 = A, Ej = A−πS1∪···∪Sj−1(A). Then for s ≥ k/ε, span (AS) contains

the rows of a matrix Ãk of rank at most k such that

ES(‖A− Ãk‖
2

F) ≤ 1

1− ε
‖A−Ak‖2F + εt‖A‖2F .

The following theorem gives the inductive step:

Theorem 11. Let A ∈ Rm×n, and V ⊆ Rn be a vector subspace. Let E =
A− πV (A) and let S be a random sample of s rows of A from a distribution D
such that row i is chosen with probability

Pi =
‖E(i)‖2

‖E‖2F
. (2)

Then, for any nonnegative integer k,

ES(‖A− πV+span(S),k(A)‖2
F

) ≤ ‖A− πk(A)‖2F +
k

s
‖E‖2F .

5.1.3 Volume sampling and relative error approximation

Definition 12. Given A ∈ Rm×n, volume sampling is defined as picking a
k-subset S of [m] with probability proportional to

det
(
ASA

T
S

)
= (k! · vol conv {0̄} ∪ {ai : i ∈ S})2

,

where ai denotes the i-th row of A, AS ∈ Rk×n denotes the row-submatrix of A
given by rows with indices i ∈ S, and conv · denotes the convex hull.

The application of volume sampling to low-rank approximation and, more
importantly, to the subset selection problem, is given by the following theorem
shown in [?]. It says that picking a subset of k rows according to volume
sampling and projecting all the rows of A onto their span gives a (k + 1)-
approximation to the nearest rank-k matrix to A.

Theorem 13. [?] Given any A ∈ Rm×n,

E
[
‖A− πS(A)‖2F

]
≤ (k + 1) ‖A−Ak‖2F ,

when S is picked according to volume sampling, πS(A) ∈ Rm×n denotes the
matrix obtained by projecting all the rows of A onto span (ai : i ∈ S), and Ak is
the matrix of rank k closest to A under the Frobenius norm.

Exercise 5. How to compute the characteristic polynomial of a matrix effi-
ciently? Recall that the characteristic polynomial of an n × n matrix is given
by pA(x) = det(xI − A). Design an algorithm and analyze its running time,
based on the following idea: The coefficients of the characteristic polynomial
are elementary symmetric polynomials of the eigenvalues. On the other hand,
trAk =

∑
λki (where (λi) are the eigenvalues of A), which can be computed ef-

ficiently for k = 1, . . . , n. It is not hard to see that one can go from these sums
of powers to the symmetric polynomials efficiently (this is know as “Newton’s
identities”).

13

5.2 Subset selection (L5)

Now we discuss the second basic problem discussed in the introduction: Given
m points in Rn and k ≤ l = min{m,n}, find a k-dimensional subspace spanned
by k of the input points so that the sum of squared distances is small. In linear-
algebraic terms it is also know as interpolative decomposition: We want to find
matrices X, R such that ‖A−XR‖F is small, where the rows of R ∈ Rk×n are
k rows of A and X ∈ Rm×k.

This problem could in principle be much harder than subspace approxima-
tion, as it has a combinatorial flavor: Select k rows.

We can think of the interpolative decomposition as a refinement of subspace
approximation: In subspace approximation we want to find a k-dimensional
subspace V such that the error of projecting every row of the given matrix onto
V is small in the Frobenius norm:

min
V :dim(V)=k

∑
i

d(Ai, V)2.

Eckart-Young implies that a solution to this problem is the span of the top k
right singular vectors: V = span (u1, . . . , uk). Let Uk = (u1, . . . , uk), then the
matrix of projected columns is B = UkX, where X = UTk A (so B = UkU

T
k A). In

the case of the subset selection problem, we want the subspace V to be spanned
by k actual rows of A (rather than arbitrary vectors, as in PCA). More precisely,
the problem is the following: Given A and k ≤ l, find a subset S of k rows of A
such that ‖A− πS(A)‖F is small, where πS(A) denotes matrix having as rows
the projections of the rows of A onto the span of the rows in S.

In the literature there are sometimes additional requirements in the subset
selection problem. Say, AS has large smallest singular value (rank revealing QR,
RRQR []), and entries in X are not too large (strong RRQR []).

Definition 14. Given A ∈ Rm×n, volume sampling is defined as picking a
k-subset S of [m] with probability proportional to

det
(
ASA

T
S

)
= (k! · vol conv {0̄} ∪ {ai : i ∈ S})2

,

where ai denotes the i-th row of A, AS ∈ Rk×n denotes the row-submatrix of A
given by rows with indices i ∈ S, and conv · denotes the convex hull.

The application of volume sampling to low-rank approximation and, more
importantly, to the row-subset selection problem, is given by the following the-
orem shown in [?]. It says that picking a subset of k rows according to volume
sampling and projecting all the rows of A onto their span gives a (k + 1)-
approximation to the nearest rank-k matrix to A.

Theorem 15. [?] Given any A ∈ Rm×n,

E
[
‖A− πS(A)‖2F

]
≤ (k + 1) ‖A−Ak‖2F ,

when S is picked according to volume sampling, πS(A) ∈ Rm×n denotes the
matrix obtained by projecting all the rows of A onto span (ai : i ∈ S), and Ak is
the matrix of rank k closest to A under the Frobenius norm.

14

Theorem 15 gives only an existence result for row-subset selection and we
also know a matching lower bound that says this is the best we can possibly do.

Theorem 16. [?] For any ε > 0, there exists a matrix A ∈ R(k+1)×k such that
picking any k-subset S of its rows gives

‖A− πS(A)‖F ≥ (1− ε)
√
k + 1 ‖A−Ak‖F .

A delicate analysis of the Johnson-Lindenstrauss transform by Magen and
Zouzias [?] shows that one can preserve the volumes of all k-subsets of rows to
within a factor of 1 + ε with a target dimension of d = O(k2 log(m)/ε2). Here
is a restatement of Theorem 1 of [?] using O(ε/k) instead of ε in their original
statement.

Theorem 17. [?] For any A ∈ Rm×n, 1 ≤ k ≤ n and 0 < ε ≤ 1/2, there is

d = O

(
k2 logm

ε2

)
,

and there is a mapping f : Rn → Rd such that

det
(
ASA

T
S

)
≤ det

(
ÃSÃ

T
S

)
≤ (1 + ε) det

(
ASA

T
S

)
,

for all S ⊆ [m] such that |S| ≤ k, where Ã ∈ Rm×d has its i-th row as f(ai).
Moreover, with constant probability, multiplication with a random n by d matrix
with i.i.d. Gaussian entries (suitably scaled) is such a mapping, so computing
Ã takes time O(mnd).

Theorem 18 (fast volume sampling). Using random projection for dimension-
ality reduction, the polynomial time algorithm for volume sampling mentioned
in Theorem 19 (i.e., Algorithm 1 with Algorithm 2 as its subroutine), gives
(1 + ε)-approximate volume sampling, using

O

(
mn logm · k

2

ε2
+m logωm · k

2ω+1

ε2ω
log(kε−1 logm)

)
.

arithmetic operations.

Theorem 19 (polynomial-time volume sampling). The randomized algorithm
given by the combination of the algorithm outlined in Algorithm 1 with Algorithm
2 as its subroutine, when given a matrix A ∈ Rm×n and an integer 1 ≤ k ≤
rk(A), outputs a random k-subset of the rows of A according to volume sampling,
using O(kmnω log n) arithmetic operations.

The basic idea of the algorithm is as follows: instead of picking a k-subset,
pick an ordered k-tuple of rows according to volume sampling (i.e., volume
sampling suitably extended to all k-tuples such that for any fixed k-subset,
all its k! permutations are all equally likely). We observe that the marginal
distribution of the first coordinate of such a random tuple can be expressed in

15

terms of coefficients of the characteristic polynomials of AAT and BiB
T
i , where

Bi ∈ Rm×n is the matrix obtained by projecting each row of A orthogonal to
the i-th row ai. Using this interpretation, it is easy to sample the first index
of the k-tuple with the right marginal probability. Now we project the rows of
A orthogonal to the chosen row and repeat to pick the next row, until we have
picked k of them.

Algorithm 1. Outline of our volume sampling algorithm

Input: a matrix A ∈ Rm×n and 1 ≤ k ≤ rk(A).
Output: a subset S of k rows of A picked with probability proportional to
det
(
ASA

T
S

)
.

1. Initialize S ← ∅ and B ← A. For t = 1 to k do:

(a) For i = 1 to m compute:

pi = ‖bi‖2 · |cm−k+t(CiC
T
i)|,

where Ci = B− π{i}(B) is a matrix obtained by projecting each
row of B orthogonal to bi.

(b) Pick i with probability proportional to pi. Let S ← S ∪ {i} and
B ← Ci.

2. Output S.

Algorithm 2. First subroutine for marginal probabilities

Input: B ∈ Rm×n.
Output: p1, p2, . . . , pm.

For i = 1 to m do:

1. Compute the matrix CTi Ci ∈ Rn×n by the following formula

CTi Ci = BTB − BTBbib
T
i

‖bi‖2
− bib

T
i B

TB

‖bi‖2
+
bib

T
i B

TBbib
T
i

‖bi‖4
.

2. Compute the characteristic polynomial of CTi Ci and output

pi = ‖bi‖2 · |cn−k+t(C
T
i Ci)|.

16

open problems: tensor decomposition, rank, etc restricted invertibility, Kadison-
Singer a la Vershynin

17

	Introduction (L1)
	Randomized algorithms (L1)
	The union bound
	The method of conditional expectation

	Random projection (L2)
	Fast random projection (Ailon-Chazelle)

	Matrix decompositions (L3)
	Best subspace fitting, matrix approximation and the singular value decomposition (SVD)

	Fast randomized numerical linear algebra
	Randomized low rank matrix approximation (L4)
	Sampling rows independently
	Adaptive sampling
	Volume sampling and relative error approximation

	Subset selection (L5)

