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Abstract. The complexity of Philip Wolfe's method for the minimum Euclidean-norm point
problem over a convex polytope has remained unknown since he proposed the method in 1974. The
method is important because it is used as a subroutine for one of the most practical algorithms
for submodular function minimization. We present the first example that Wolfe's method takes
exponential time. Additionally, we improve previous results to show that linear programming reduces
in strongly polynomial time to the minimum norm point problem over a simplex.
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The fundamental algorithmic problem we consider here1 is: Given a convex poly-
tope P \subset \BbbR d, find the point x \in P of minimum Euclidean norm, i.e., the closest
point to the origin or what we call its minimum norm point for short. We denote the
Euclidean norm by \| \cdot \| throughout. We assume P is presented as the convex hull of
finitely many points p1,p2, . . . ,pn (not necessarily in convex position). We wish to
find

argmin \| x\| 

subject to x =

n\sum 
k=1

\lambda kpk,

n\sum 
k=1

\lambda k = 1,

\lambda k \geq 0, for k = 1, 2, . . . , n.

Finding the minimum norm point in a polytope is a basic auxiliary step in several
algorithms arising in many areas of optimization and machine learning; a subroutine
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for solving the minimum norm point problem can be used to compute the projec-
tion of an arbitrary point to a polytope (indeed, argmin\bfx \in P \| x - a\| is the same as
a + argmin\bfy \in P - \bfa \| y\| ). The minimum norm point problem additionally appears in
combinatorial optimization, e.g., the nearest point problem for transportation poly-
topes [2, 5], and as a vital subroutine in B\'ar\'any and Onn's approximation algorithm
to solve the colorful linear programming problem [3]. One of the most important
reasons to study this problem is because the minimum norm point problem can be
used as a subroutine for submodular function minimization through projection onto
the base polytope, as proposed by Fujishige [12]. Submodular minimization is useful
in machine learning, where applications such as large scale learning and vision require
efficient and accurate solutions [1, 26]. The problem also appears in optimal loading of
recursive neural networks [7]. The Fujishige--Wolfe algorithm is currently considered
an important practical algorithm in applications [6, 13, 14]. Furthermore, Fujishige,
Hayashi, and Isotani first observed that linear programs may be solved by solving the
minimum norm point problem [13], so this simple geometric problem is also relevant
to the theory of algorithmic complexity of linear optimization.

One may ask about the complexity of closely related problems. First, it is worth
remembering that Lp norm minimization over a polyhedron is NP-hard for 0 \leq p < 1
(see [17] and the references therein), while for p \geq 1 the convexity of the norm allows
for computation of an \epsilon -approximate solution in time polynomial in log(1/\epsilon ) [4, 22].
We do not aim to be comprehensive in this discussion; see [19] for a detailed discussion
of the complexity of convex programming. When p = 1, 2, Lp norm minimization over
a polyhedron given by rational data has a rational solution (see [30] for details), so
the minimum norm point can be computed exactly in polynomial time. Meanwhile,
we now prove that the seemingly similar problem of finding the minimum norm vertex
of a convex polytope given by inequalities is NP-hard. Here the distinction between
point and vertex distinguishes the polynomially solvable problem from the NP-hard
problem. The reduction for hardness is from the directed Hamiltonian path problem:
Given a directed graph G = (V,A) and two distinct vertices s, t \in V , one aims to
decide whether G contains a directed Hamiltonian path from s to t. To be precise,
we argue that the directed Hamiltonian path problem reduces to the problem of
determining whether there is a vertex of squared norm at most a given value K. It
is well known that there is a polytope represented by inequalities which has some
vertices corresponding to the characteristic vectors of directed paths joining s to
t in G. Let P be the directed st-path polytope of a directed graph G = (V,A)
and vertices s, t mentioned in [15]. The polytope is defined by the inequalities and
equations

\sum 
j:(s,j)\in A

xsj  - 
\sum 

j:(j,s)\in A

xjs = 1,

\sum 
j:(t,j)\in A

xtj  - 
\sum 

j:(j,t)\in A

xjt =  - 1,

\sum 
j:(i,j)\in A

xij  - 
\sum 

j:(j,i)\in A

xji = 0 for all i \in V  - \{ s, t\} ,

0 \leq xij \leq M for all (i, j) \in A,
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where there is a variable xij for every edge (i, j) in A. For M \geq | V | , there are two
types of vertices of P . Either the vertices of P are characteristic vectors of the simple
directed st-paths in G [15] or at least one of the entries of the vertex must be xij = M .
Hamiltonian paths in G correspond to 0--1 vectors in P with exactly | V |  - 1 ones. Now
we introduce the reflected st-path polytope, \=P , by applying the affine transformation
yij = 1  - xij . Note that the vertices of this polytope correspond to the vertices of
polytope P . The vertices of \=P corresponding to directed st-paths are 0--1 vectors with
at least | A|  - | V | +1 ones. Moreover, they have exactly | A|  - | V | +1 ones if and only
if they correspond to a directed st-Hamiltonian path in the graph. The vertices of \=P
corresponding to vertices of P with at least one entry equal to M must have at least
one entry equal to  - M +1, so these have squared norm at least (M  - 1)2. We choose
M := max\{ | A| + 2, | V | \} so that (M  - 1)2 \geq (| A| + 1)2 > | A|  - | V | + 1. Thus, the
minimum norm vertex of \=P has squared norm less than or equal to | A|  - | V | +1 if and
only if it corresponds to a directed st-Hamiltonian path in G. TakingK := | A|  - | V | +1
completes the correctness of the hardness reduction.

In this paper, we focus on combinatorial algorithms that rely on the structure
of the polytope. There are several reasons to study the complexity of combinatorial
algorithms for the minimum norm problem. On one hand, the minimum norm problem
can indeed be solved in strongly polynomial time for some polytopes, most notably
in network-flow and transportation polytopes (see [2, 5, 34], and references therein,
for details). On the other hand, while linear programming reduces to the minimum
norm problem, it is unknown whether linear programming can be solved in strongly
polynomial time [32]; thus the complexity of the minimum norm point problem could
also impact the algorithmic efficiency of linear programming and optimization in gen-
eral. For all these reasons it is natural to ask whether a strongly polynomial time
algorithm exists for the minimum norm point problem for general polytopes.

Our contributions.
\bullet In 1974, Philip Wolfe proposed a combinatorial method that can solve the
minimum norm point problem exactly [35, 36]. Since then, the complexity
of Wolfe's method has not been understood. In section 1 we present our
main contribution and give the first example in which Wolfe's method has
an exponential number of iterations. This is akin to the well-known Klee--
Minty examples on which the simplex method has an exponential number of
iterations [21].

\bullet As we mentioned earlier, an enticing reason to explore the complexity of
the minimum norm problem is its intimate link to the complexity of linear
programming. It is known that linear programming can be polynomially
reduced to the minimum norm point problem [13]. In section 2, we strengthen
earlier results showing that linear optimization is strongly polynomial time
reducible to the minimum norm point problem on a simplex.

1. Wolfe's method exhibits exponential behavior. For convenience of the
reader and to set up notation we start with a brief description of Wolfe's method;
however, for efficiency of presentation, we refer the reader to [30] for relevant defini-
tions and preliminary results in convex analysis. We will then describe our exponential
example in detail, proving the exponential behavior of Wolfe's method. First, we re-
view definitions to describe the method. We denote the line segment between points
x and y by [x,y]. Given a set of points S \subseteq \BbbR d, we have two minimum-norm points
to consider. One is the affine minimizer, which is the point of minimum norm in
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the affine hull of S, argmin\bfx \in aff(S) \| x\| . The second is the convex minimizer, which
is the point of minimum norm in the convex hull of S, argmin\bfx \in conv(S) \| x\| . Note
that solving for the convex minimizer of a set of points is exactly the problem we are
solving, while solving for the affine minimizer of a set of points is easily computable
by solving a system of linear equations and may be computed in strongly polynomial
time; see [30, section 3.3] and references therein.

1.1. A brief review of Wolfe's combinatorial method. Wolfe's combi-
natorial method solves the minimum norm point problem over a polytope, P =
conv(p1,p2, . . . ,pn) \subset \BbbR d, and was introduced by Wolfe in [36]. The method it-
eratively solves the minimum norm point problem over a sequence of subsets of no
more than d + 1 affinely independent points from p1, . . . ,pn and it checks to see if
the solution to the subproblem is a solution to the problem over P using the following
lemma due to Wolfe. We call this Wolfe's criterion; a visualization is provided in
Figure 1.1.

Lemma 1.1 (Wolfe's criterion [36]). Let P = conv(p1,p2, . . . ,pn) \subset \BbbR d. Let
x \in P . Then x is the minimum norm point in P if and only if

x\top pj \geq \| x\| 2 for all j \in [n].

Note that this tells us that if there exists a point pj so that x\top pj < \| x\| 2 (i.e., the
hyperplane \{ y : x\top y = \| x\| 2\} does not weakly separate P from 0), then x is not the
minimum norm point in P . We say that pj violates Wolfe's criterion and using this
point should decrease the norm of the minimum norm point of the current subproblem.
This criterion is a special case of the general optimality criterion in differentiable
convex optimization which says that x\ast is optimal over a convex set if and only if
\nabla f(x\ast )\top (x  - x\ast ) \geq 0 for all feasible x [4, p. 139]; to apply this result consider the
objective function f(\bfitlambda ) = 1

2\| Q\bfitlambda \| 2 over the feasible region \{ \bfitlambda :
\sum 

i \lambda i = 1,\bfitlambda \geq 0\} 
where Q is the matrix with the points p1,p2, . . . ,pn as columns.

It should be observed that just as Wolfe's criterion is a rule to decide optimality
over conv(P ), one has a very similar rule for deciding optimality over the affine hull,
aff(P ).

p1

p2

p3

x

p5

p4

P

0

\{ y : x\top y = \| x\| 2\} 

Fig. 1.1. A visualization of Wolfe's criterion. Note that \{ y : x\top y = \| x\| 2\} weakly separates P
from 0, so x is the minimum norm point in P .
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s1 s2

0

s1 s2

s3

0
s2s1

0

Fig. 1.2. Left: Example of corral. Middle: Example of corral. Right: Not a corral.

Lemma 1.2 (Wolfe's criterion for the affine hull). Let P = \{ p1,p2, . . . ,pn\} \subseteq \BbbR d

be a nonempty finite set of points. Let x \in aff(P ). Then x is the minimum norm
point in aff(P ) if and only if for all pi \in P we have p\top 

i x = \| x\| 2.

This result follows from [4, p. 139] applied to objective function f(\bfitlambda ) = 1
2\| Q\bfitlambda \| 2

over the feasible region \{ \bfitlambda :
\sum 

i \lambda i = 1\} where Q is the matrix with the points
p1,p2, . . . ,pn as columns. Finally, the linear inequality must actually be an equality,
since if there is feasible \bfitlambda with \nabla f(\bfitlambda \ast )(\bfitlambda  - \bfitlambda \ast ) > 0, then the feasible affine space
also contains \bfitlambda \prime with \nabla f(\bfitlambda \ast )(\bfitlambda \prime  - \bfitlambda \ast ) < 0, which is a contradiction.

We say a set of affinely independent points S is a corral if the affine minimizer
of S lies in the relative interior of conv(S); see Figure 1.2 for examples. Requiring
the affine minimizer to lie in the relative interior of the convex hull ensures that
corrals are of minimal size and without points unnecessary for expressing the affine
minimizer as a convex combination of the corral. Note that singletons are always
corrals. Carath\'eodory's theorem implies that the minimum norm point of P will lie
in the convex hull of some corral of points among p1, . . . ,pn. The goal of Wolfe's
method is to search for a corral containing the (unique) minimizing point.

The pseudocode in Method 1.1 below presents the iterations of Wolfe's method.
We have additionally provided a visualization of the iterations of the method on an
example in Figure 1.3; this example is the same as in [36]. It is worth noticing that
some steps of the method can be implemented in more than one way and Wolfe proved
that all of them lead to a correct, terminating algorithm (for example, the choice of
the initial point in line 2). We therefore use the word method to encompass all these
variations and we discuss specific choices when they are relevant to our analysis of
the method.

The subset of points being considered as the potential corral is maintained in
the set C. Iterations of the outer loop, where points are added to C, are called
major cycles and iterations of the inner loop, where points are removed from C, are
called minor cycles. The potential corral, C, is named so because at the beginning
of a major cycle it is guaranteed to be a corral, while within the minor cycles it
may or may not be a corral. Intuitively, a major cycle of Wolfe's method inserts an
improving point which violates Wolfe's criterion (pj so that x\top pj < \| x\| 2) into C,
then the minor cycles remove points until C is a corral, and this process is repeated
until no points are improving and C is guaranteed to be a corral containing the
minimizer.

It can be shown that this method terminates because the norm of the convex
minimizer of the corrals visited strictly decreases and thus no corral is visited twice
[36]. Like [6], we sketch the argument in [36]. One may see that the norms of the
iterates strictly decrease by noting that there are two possible updates to the current
iterate x, either at the end of a major cycle or at the end of a minor cycle. Let C be
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Method 1.1 Wolfe's method [36].

1: procedure Wolfe(p1,p2, . . . ,pn)
2: Initialize x = pi for some i \in [n], initial corral C = \{ pi\} , I = \{ i\} , \lambda = ei,

\alpha = 0.
3: while x \not = 0 and there exists pj with x\top pj < \| x\| 2 do
4: Add pj to the potential corral: C = C \cup \{ pj\} , I = I \cup \{ j\} .
5: Find the affine minimizer of C, y = argmin\bfy \in aff(C) \| y\| , and the affine

coefficients, \alpha .

6: while y is not a strict convex combination of C; \alpha i \leq 0 for some i \in I do
7: Find z, closest point to y on [x,y] \cap conv(C); z = \theta y + (1  - \theta )x,

\theta = mini\in I:\alpha i\leq 0
\lambda i

\lambda i - \alpha i
.

8: Select pi \in \{ pk \in C : \theta \alpha k + (1 - \theta )\lambda k = 0\} .
9: Remove this point from C; C = C  - \{ pi\} , I = I  - \{ i\} , \alpha i = 0, \lambda i = 0.

10: Update x = z and the convex coefficients, \lambda , of x for C; solve x =\sum 
\bfp i\in C \lambda ipi for \lambda .

11: Find the affine minimizer of C, y = argmin\bfy \in aff(C)\| y\| and the affine
coefficients, \alpha .

12: end while
13: Update x = y and \lambda = \alpha .
14: end while
15: Return x.
16: end procedure

p1 = x

p3

p2

O
C = \{ p1\} 

P

p1

p3

p2

O
C = \{ p1,p2\} 

P
x = y

z

p1

p3

p2

O = y
C = \{ p1,p2,p3\} 

P
x

x = z

p1

p3

p2

O

P

y

C = \{ p2,p3\} 

Fig. 1.3. Example of several iterations of Wolfe's method on a polytope in \BbbR 2. Upper left: Line
2 of Method 1.1. Upper right: This example is the same as in [36].

the corral at the beginning of a major cycle (line 3 of Method 1.1) and let x be the
current convex minimizer of C, then the affine minimizer of C \cup \{ pi\} , y, has norm
strictly less than that of x by Lemma 1.2, uniqueness of the affine minimizer, and the
fact that p\top 

i x < \| x\| 2, where pi is the added point. Now, either x is updated to y or
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a minor cycle begins. Let S be the potential corral at the beginning of the first minor
cycle (line 6 of Method 1.1) of a major cycle, let x be the current iterate (which is
a convex combination of points of S but not the convex minimizer of S), and let y
be the affine minimizer of S. Note that z is a proper convex combination of x and y
and since \| y\| < \| x\| , we have \| z\| < \| x\| . Thus, we see that within a major cycle the
first update of x decreases its norm (at either line 10 or line 13 of Method 1.1). Note
that the number of minor cycles within any major cycle is bounded by d + 1, where
d is the dimension of the space. Thus, the total number of iterations is bounded by
the number of corrals visited multiplied by d + 1. It is nevertheless not clear how
the number of corrals grows. A trivial bound is given by

\sum d+1
i=1

\bigl( 
n
i

\bigr) 
. We think this

problem should be investigated further.
Within the method, there are two moments at which one may choose which

points to add to the potential corral. Observe that at line 2 of the pseudocode, one
may choose which initial point to add to the potential corral. In this paper we will
only consider one initial rule, which is to initialize with the point of minimum norm.
Observe that at line 4 of the pseudocode, there are several potential choices of which
point to add to the potential corral. Two important examples of insertion rules are,
first, the minnorm rule which dictates that one chooses, out of the improving points
for the potential corral, to add the point pj of minimum norm. Second, the linopt
rule dictates that one chooses, out of the improving points for the potential corral, to
add the point pj minimizing x\top pj . Notice that insertion rules are to Wolfe's method
what pivot rules are to the simplex method (see [33] for a summary). Additionally,
in line 8 of Method 1.1, there can be choices of which points to remove. However,
removal rules of this type are less important to the analysis of Wolfe's method as any
points which are able to be removed will be removed before the end of the major
cycle.

As with pivot rules, there are advantages and disadvantages of insertion rules. For
example, the minnorm rule has the advantage that its implementation only requires
an initial ordering of the points; then in each iteration it needs only to search for an
improving point in order of increasing norm and to add the first found. However, the
linopt insertion rule has the advantage that if the polytope is given in H-representation
(intersection of halfspaces) rather than V-representation (convex hull of points), one
may still perform Wolfe's method by using linear programming to find pj minimizing
x\top pj over the polytope. In other words, Wolfe's method does not need to have the
list of vertices explicitly given but suffices to have a linear optimization oracle that
provides the new vertex to be inserted. This feature of Wolfe's method means that
each iteration can be implemented efficiently even for certain polyhedra having too
many vertices and facets, specifically over zonotopes (presented as a Minkowski sum
of segments) [13] and over the base polyhedron of a submodular function [12]. It also
works for some polytopes that do not admit small linear programming formulations
such as the matching polytope, which has an efficient linear optimization oracle; see
[28, 29] and references therein. This is not a property that the minnorm rule shares;
we must have the polytope in explicit V-representation to perform Wolfe's method
with the minnorm rule.

Wolfe's method with the linopt insertion rule was independently discovered by
Lawson and Hanson in an essentially equivalent form, known as the Lawson--Hanson
algorithm for nonnegative least squares [25, section 23.3]). They are similar to other
active-set methods in convex optimization. In particular, von Neumann's algorithm
for determining whether the origin lies in a convex polytope [9], Gilbert's procedure for
computing the minimum of a quadratic form on a convex set [18], and the Frank--Wolfe
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method for convex optimization [11] make use of the same active-set selection criterion,
the linopt insertion rule. Several of these methods and their variants have been shown
to have sublinear or linear convergence (with appropriate assumptions on the location
of the minimizer); see e.g., [23, 24, 27]. In [24], the authors additionally studied
Wolfe's method with the linopt insertion rule, showing that the method converges
linearly with a rate O(e - \rho t), where \rho is an eccentricity parameter of the polytope.
This improved upon prior results by [6], which had provided a sublinear (O(1/t)) rate.
Note, however, that the parameter \rho defined in [24] may be exponentially small in the
encoding length of the problem, so both results give only a pseudo-polynomial time
bound for Wolfe's method with the linopt insertion rule. A simple example exhibiting
exponentially small \rho is A = \{ a1 = (1/2k, 0),a2 = ( - 1/2k, 0),a3 = (0, 1)\} ; using the
notation of [24], note that diam(A) \geq 1 while

PWidth(A) \leq PdirW(\{ a1,a2\} ,a1, (0, 0)) = max
\bfs \in A,\bfv \in \{ \bfa 1,\bfa 2\} 

\langle (1, 0), s - v\rangle = 1/2k - 1

so \rho \leq 1/2k - 1.
In general, the optimal choice of insertion rule depends on the input data. We first

present a simple example where the minnorm rule outperforms the linopt rule. That
is, the minnorm insertion rule is not in obvious disadvantage to the linopt rule. This is
in contrast to the family of examples we present in subsection 1.2, where the minnorm
rule takes exponential time, while we expect the linopt rule to take polynomial time
in this family.

Consider the simplex P shown in Figure 1.4 (we present the coordinates of vertices
in the figure's caption). We list the steps of Wolfe's method on P for the minnorm and
linopt insertion rules in Tables 1.1 and 1.2 and demonstrate a single step from each
set of iterations in Figure 1.5. Each row lists major cycle and minor cycle iteration
number, the vertices in the potential corral, and the value of x and y at the end of
the iteration (before x = y for major cycles). Note that the vertex p4 is added to the
potential corral twice with the linopt insertion rule, as evidenced in Table 1.2.

Currently, there are examples of exponential behavior for the simplex method for
all known deterministic pivot rules. It is our aim to provide the same for insertion
rules on Wolfe's method. In the next subsection we will present the first exponential-
time example using the minnorm insertion rule. We additionally note that while in
the previous tables we recorded all sets C constructed by the algorithm (corral and
noncorral), we will now track only the corrals the method passes through.

Fig. 1.4. The simplex P = conv\{ p1,p2,p3,p4\} \subset \BbbR 3, where p1 = (0.8, 0.9, 0),p2 =
(1.5, - 0.5, 0),p3 = ( - 1, - 1, 2), and p4 = ( - 4, 1.5, 2).
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Table 1.1
Iterations for minnorm insertion rule.

Major, minor C x y

0, 0 \{ p1\} p1

1, 0 \{ p1,p2\} p1 (1, 0.5, 0)

2, 0 \{ p1,p2,p3\} (1, 0.5, 0) (0.3980, 0.199, 0.5473)

3, 0 \{ p1,p2,p3,p4\} (0.3980, 0.199, 0.5473) (0, 0, 0)

3, 1 \{ p1,p2,p4\} (0.2878, 0.1439, 0.3957) (0.1980, 0.0990, 0.4455)

Table 1.2
Iterations for linopt insertion rule.

Major, minor C x y

0, 0 \{ p1\} p1

1, 0 \{ p1,p4\} p1 (0.2219, 0.9723, 0.2409)

2, 0 \{ p1,p4,p3\} (0.2219, 0.9723, 0.2409) (0.2848, 0.3417, 0.5810)

2, 1 \{ p1,p3\} (0.2835, 0.3548, 0.5739) (0.2774, 0.3484, 0.5807)

3, 0 \{ p1,p3,p2\} (0.2774, 0.3484, 0.5807) (0.3980, 0.199, 0.5473)

4, 0 \{ p1,p3,p2,p4\} (0.3980, 0.199, 0.5473) (0, 0, 0)

4, 1 \{ p1,p2,p4\} (0.2878, 0.1439, 0.3957) (0.1980, 0.0990, 0.4455)

Fig. 1.5. Left: Major cycle 1, minor cycle 0 for the linopt rule on P illustrates the end of
a major cycle; the affine minimizer y1 \in relint(conv\{ C\} ) = relint(conv\{ p1,p4\} ). Right: Major
cycle 2, minor cycle 0 for the linopt rule on P illustrates the beginning of a minor cycle; the affine
minimizer y2 \not \in relint(conv\{ C\} ) = relint(conv\{ p1,p4,p3\} ), and the vertex p4 will be removed in
the next minor cycle.

1.2. An exponential lower bound for Wolfe's method. To understand our
hard instance, it is helpful to consider first a simple instance that shows an inefficiency
of Wolfe's method. The example is a set of points where a point leaves, and reenters
the current corral: four points in \BbbR 3, (1, 0, 0), (1/2, 1/4, 1), (1/2, 1/4, - 1), ( - 2, 1/4, 0).
If one labels the points 1, 2, 3, 4, the sequence of corrals with the minnorm rule is
1, 12, 23, 234, 14, where point 1 enters, leaves, and reenters (for succinctness, sets of
points like \{ a, b, c\} may be denoted abc). The idea now is to recursively replace
point 1 (that reenters) in this construction by a recursively constructed set of points
whose corrals are then considered twice by Wolfe's method. To simplify the proof,
our construction uses a variation of this set of four points with an additional point
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Fig. 1.6. Left: In this view of P (d), the point labeled P (d  - 2) represents all points from
P (d  - 2) embedded into \BbbR d. The axis labeled \BbbR d - 2 represents the (d  - 2)-dimensional subspace,
span (P (d - 2)) projected into span (o\ast 

d - 2). Right: A two-dimensional view of P (d) projected along
the xd coordinate axis.

and modified coordinates. This modified construction is depicted in Figure 1.6, where
point 1 corresponds to a set of points P (d  - 2), points 2 and 3 correspond to points
pd,qd, and point 4 corresponds to points rd, sd.

The high-level idea of our exponential lower bound example is the following. We
will inductively define a sequence of instances of the minimum norm point problem
of increasing dimension. Given an instance in dimension d  - 2, we will add a few
dimensions and points so that, when given to Wolfe's method, the new augmented
instance in dimension d has about twice the number of corrals of the input instance
in dimension d  - 2. More precisely, our augmentation procedure takes an instance
P (d  - 2) in \BbbR d - 2, adds two new coordinates, and adds four points, pd,qd, rd, sd, to
get an instance P (d) in \BbbR d.

Points pd,qd are defined so that the method on instance P (d) first goes through
every corral given by the points in the prior configuration P (d - 2) and then goes to
corral pdqd. To achieve this under the minimum norm rule, the four new points have
greater norm than any point in P (d - 2) and they are in the geometric configuration
sketched in Figure 1.6.

At this time, no point in P (d  - 2) is in the current corral and so, if a point in
P (d  - 2) is part of the optimal corral, it will have to reenter, which is expensive.
Points rd, sd are defined so that rdsd is a corral after pdqd, but now every point in
P (d - 2) is improving according to Wolfe's criterion and may enter again. Specifically,
every corral in P (d - 2), with rdsd appended, is visited again.

Before we start describing the exponential example in detail, we wish to review
preliminary lemmas of independent interest which will be used in the arguments. The
first proposition gives us an explicit description of the point of minimum norm in the
line through two distinct points and is easily proven via techniques of differentiable
convex optimization. Throughout the following results, we will often provide both
geometric and analytical proof alternatives.

Proposition 1.3. Given two distinct points a,b, the minimum norm point in
the line through them is \lambda a+ (1 - \lambda )b, where \lambda = b\top (b - a)/\| b - a\| 2.

The next lemma demonstrates that orthogonality between finite point sets allows
us to easily describe the affine minimizer of their union. Figure 1.7 shows two such
situations, one in which the affine hull of the union of the point sets spans all of \BbbR 3

and one in which it does not.
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Fig. 1.7. Examples of Lemma 1.4. Left: The affine hull of P \cup Q is not full-dimensional, and
thus the affine minimizer lies at z along the line segment connecting x = p and y. Right: The
convex hull of P \cup Q is full-dimensional and thus the affine hull of P \cup Q includes O, which is the
affine minimizer.

Lemma 1.4. Let A \subseteq \BbbR d be a proper linear subspace. Let P \subseteq A be a nonempty
finite set. Let Q \subseteq A\bot be another nonempty finite set. Let x be the minimum norm
point in aff(P ). Let y be the minimum norm point in aff(Q). Let z be the minimum
norm point in aff(P \cup Q). We have

1. z is the minimum norm point in [x,y] and therefore, if x \not = 0 or y \not = 0, then

z = \lambda x+ (1 - \lambda )y with \lambda = \| \bfy \| 2

\| \bfx \| 2+\| \bfy \| 2 .

2. If x \not = 0 and y \not = 0, then z is a strict convex combination of x and y.
3. If x \not = 0, y \not = 0, and P and Q are corrals, then P \cup Q is also a corral.

Proof. If x = y = 0, then part 1 follows immediately. If at least one of x,y is
nonzero, then they are also distinct by the orthogonality assumption. For points x,y
as in the statement, Proposition 1.3 guarantees the minimum norm point in aff(x\cup y)

is z\prime = \lambda x+ (1 - \lambda )y with \lambda = \| \bfy \| 2

\| \bfx \| 2+\| \bfy \| 2 \in [0, 1]. Thus, z\prime is also the minimum norm

point in [x,y]. We will now use the optimality condition in Lemma 1.2 to conclude
that z\prime = z. Let p \in P . Then p\top z\prime can be computed in two steps. First project p
onto span (x,y) (a subspace that contains z\prime ). This projection is x by optimality of
x. Then project onto z\prime . This shows that p\top z\prime = x\top z\prime = \| z\prime \| 2.

One may alternatively prove p\top z\prime = \| z\prime \| 2 using direct calculations. From the
definition of z\prime we have p\top z\prime = \lambda p\top x = \lambda \| x\| 2 by orthogonality of p and y and
optimality of x, \lambda \| x\| 2 = x\top z\prime by orthogonality of x and y, and x\top z\prime = \| z\prime \| 2 by
optimality of z\prime over aff(\{ x,y\} ).

A similar calculation shows q\top z\prime = \| z\prime \| 2 for any q \in Q. We conclude that z\prime is
the minimum norm point in aff(P \cup Q). This proves part 1.

Part 2 follows from our expression for \lambda above, which is in (0, 1) when x \not = 0 and
y \not = 0.

Under the assumptions of part 3, we have that x is a strict convex combination
of P and y is a strict convex combination of Q. This combined with the conclusion
of part 2 gives that z is a strict convex combination of P \cup Q. The claim in part 3
follows.



THE MINIMUM EUCLIDEAN-NORM POINT IN A POLYTOPE 149

Fig. 1.8. An example of Lemma 1.5 in which point q satisfies all assumptions and P \cup \{ q\} 
is a corral. The hyperplanes are labeled with their defining properties and demonstrate that q\top x <
min\{ \| x\| 2, \| q\| 2\} . The minimizer of P \cup \{ q\} lies at the intersection of the blue, vertical axis and
conv(P \cup \{ q\} ).

The following lemma shows conditions under which if we have a corral and a
new point that only has components along the minimum norm point of the corral
and along new coordinates, then the corral with the new point added is also a corral.
Moreover, the new minimum norm point is a convex combination of the old minimum
norm point and the added point. Figure 1.8 gives an example of such a situation in
\BbbR 3. Denote by span (M) the linear span of the set M .

Lemma 1.5. Let P \subseteq \BbbR d be a finite set of points that is a corral. Let x be the
minimum norm point in aff(P ). Let q \in span(x, span (P )\bot ), and assume q\top x <
min\{ \| q\| 2, \| x\| 2\} . Then P \cup \{ q\} is a corral. Moreover, the minimum norm point y
in conv(P \cup \{ q\} ) is a (strict) convex combination of q and the minimum norm point
of P : y = \lambda x+ (1 - \lambda )q with \lambda = q\top (q - x)/\| q - x\| 2.

Proof. Let y be the minimum norm point in aff(P \cup \{ q\} ). Intuitively, y should
be the minimum norm point in the line through x and q. We will characterize y
and show that it is a strict convex combination of P \cup \{ q\} (which implies that it is a
corral). We define y = \lambda x+(1 - \lambda )q with \lambda = q\top (q - x)/\| q - x\| 2; note Proposition
1.3 guarantees this is the point of minimum norm in [x,q]. By definition we have
y \in aff(P \cup \{ q\} ).

The minimality of the norm of y follows from the optimality condition in Lemma
1.2. It holds by construction for q. It also holds for p \in P : The projection of p
onto y can be computed in two steps. First, project onto span (x,q) (a subspace that
contains y), which is x by optimality of x. Then project onto y. This shows that

p\top y = x\top y = \| y\| 2 (the second equality, by optimality of y). We conclude that y is
of minimum norm in aff(P \cup \{ q\} ).

One may alternatively prove p\top y = \| y\| 2 using direct calculations. We have
q =

\sum 
i \alpha iqi + \beta x, where the qi are a basis of span (P )\bot . Then we have p\top y =

\lambda p\top x + (1  - \lambda )p\top q and x\top y = \lambda \| x\| 2 + (1  - \lambda )x\top q. Now, the \lambda -terms are equal
by optimality of x and the (1  - \lambda )-terms are equal since p\top q = \beta p\top x = \beta \| x\| 2 by
orthogonality of p and qi, and \beta \| x\| 2 = x\top q by orthogonality of x and qi. Thus, we
have p\top y = x\top y = \| y\| 2, where the second equality follows from optimality of y over
aff(\{ x,q\} ).
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Fig. 1.9. An example of Lemma 1.6 in which adding points Q from A\bot to points P from A
creates a new affine minimizer, z, but the points satisfying Wolfe's criterion in A remain the same.
Note that both hyperplanes intersect at the affine minimizer of P , so the halfspace intersections with
A are the same.

To conclude that P \cup \{ q\} is a corral, we show that y is a strict convex combination
of points P \cup \{ q\} . It is enough to show that y is a strict convex combination of x and

q. We have \lambda = q\top (q  - x)/\| q  - x\| 2 = \| \bfq \| 2 - \bfq \top \bfx 
\| \bfq  - \bfx \| 2 > 0 by assumption. We also have

1 - \lambda =  - x\top (q - x)/\| q - x\| 2 = \| \bfx \| 2 - \bfq \top \bfx 
\| \bfq  - \bfx \| 2 > 0 by assumption.

Our last lemma shows that if we have points in two orthogonal subspaces, A and
A\bot , then adding a point from A\bot to a set from A does not cause any points from A
that previously did not violate Wolfe's criterion (for the affine minimizer) to violate
it. Figure 1.9 demonstrates this situation.

Lemma 1.6. For a point z define H\bfz = \{ w \in \BbbR n : w\top z < \| z\| 2\} . Suppose that
we have an instance of the minimum norm point problem in \BbbR d as follows: Some
points, P , live in a proper linear subspace A and some points, Q, in A\bot . Let x be the
minimum norm point in aff(P ) and y \not = 0 be the minimum norm point in aff(P \cup Q).
Then H\bfy \cap A = H\bfx \cap A.

Proof. Let B be the span of x and Q. We first show y \in B. To see this, suppose
not. Decompose y as y = \lambda v +

\sum 
\bfq \in Q \mu qq, where v \in aff(P ) and \lambda +

\sum 
\mu q = 1.

Decompose v as v = u + x where u \bot x and u \in A (this is possible because v  - x
is orthogonal to x, by optimality of x, Lemma 1.2). Thus, y = \lambda u+ \lambda x+

\sum 
\bfq \in Q \mu qq

with \lambda u orthogonal to \lambda x +
\sum 

\bfq \in Q \mu qq. This implies that y\prime = \lambda x +
\sum 

\bfq \in Q \mu qq has
a smaller norm than y and y\prime \in aff(P \cup Q). This is a contradiction.

To conclude, we have H\bfy \cap A is a halfspace in A whose normal is parallel to the
projection of y onto A. (It is helpful to understand how to compute the intersection
of a hyperplane with a subspace. If T\bfg = \{ w : w \cdot g = 1\} and S is a linear subspace,
then T\bfg \cap S = \{ w \in S : w \cdot projS g = 1\} . In other words, in order to intersect a
hyperplane with a subspace we project the normal.) That is, it is parallel to x. But
that halfspace must also contain x on its boundary. Thus, that halfspace is equal to
H\bfx \cap A.
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Once we see that y \in B, so y = \lambda x +
\sum 

\bfq \in Q \mu \bfq q, we can alternatively prove

H\bfy \cap A = H\bfx \cap A using direct computations. First, let w \in A and note that w\top y =
\lambda w\top x +

\sum 
\bfq \in Q \mu \bfq w

\top q = \lambda w\top x since q \in A\bot . Now, let p \in P and note that

\| y\| 2 = p\top y by Lemma 1.2 since p \in aff(P \cup Q) and y is the affine minimizer of
P \cup Q. Similarly, \| x\| 2 = p\top x. Finally, p\top y = \lambda p\top x+

\sum 
\bfq \in Q \mu \bfq p

\top q = \lambda p\top x since

p \in A and q \in A\bot , so we have \| y\| 2 = p\top y = \lambda p\top x = \lambda \| x\| 2. Thus, for w \in A, we
see w\top y < \| y\| 2 if and only if w\top x < \| x\| 2, so H\bfy \cap A = H\bfx \cap A.

We will now describe our example in detail. The simplest version of our construc-
tion uses square roots and real numbers. We present instead a version with a few
additional tweaks so that it only involves rational numbers.

Let P (1) = \{ 1\} \subseteq \BbbQ . For odd d \geq 1, let P (d + 2) be a list of points in \BbbQ d+2

defined inductively as follows: Let o\ast 
d denote the minimum norm point in conv(P (d)).

Let Md be a value larger than or equal to the 2-norm of all points in P (d). For a
first reading, one can let Md be the maximum 2-norm among points in P (d), which
leads to an instance that shows the exponential complexity but it is not necessarily
rational. For a rational instance, one can take Md := max\bfp \in P (d) \| p\| 1, which is a
rational upper bound to the maximum 2-norm among the points in P (d). Similarly,
let md be a positive value that is a lower bound to \| o\ast 

d\| . Again, for a first reading
one can define md = \| o\ast 

d\| , which leads to an instance that shows the exponential
complexity but it is not rational. For a rational instance, one can take md = \| o\ast 

d\| \infty ,
which is a rational lower bound to \| o\ast 

d\| . If we want a worst-case lower bound in the
Turing machine model (as a function of the bit-length of the input), then we not only
need to ensure that the proposed instance has rational entries. We want an instance
whose numerators and denominators are integers with binary encodings of length
bounded by a polynomial in d. Choices that provably lead to this are md = 1/4d and
Md = 2d. This is analyzed in detail at the end of subsection 1.2.

We finally present the example. If we identify P (d+ 2) with a matrix where the
points are rows, then the points in P (d+ 2) are given by the following block matrix:

(1.1) P (d+ 2) =

\left(       
P (d) 0 0
1
2o

\ast 
d

md

4 Md
1
2o

\ast 
d

md

4  - (Md + 1)

0 md

4 Md + 2

0 md

4  - (Md + 3)

\right)       .

The last four rows of the matrix P (d+2) are the points pd+2,qd+2, rd+2, sd+2 of
the configuration. For a picture of the case of P (3) see Figure 1.10. We also present
the sets C, and points x and y defined throughout the iterations of Wolfe's method
with the minnorm insertion rule on P (3) in Table 1.3. For comparison only, we include
the same for the iterations of Wolfe's method with the linopt insertion rule on P (3)
in Table 1.4. In this example, we choose m1 = \| o\ast 

1\| \infty and M1 = \| o\ast 
1\| 1 so that

P (3) is made up of the points o\ast 
1 = (1, 0, 0), p3 = (1/2, 1/4, 1), q3 = (1/2, 1/4, - 2),

r3 = (0, 1/4, 3), and s3 = (0, 1/4, - 4). Where appropriate, we have truncated the
decimal approximations of the coordinates of the points x and y.

Theorem 1.7. Consider the execution of Wolfe's method with the minnorm
insertion rule on input P (d) where d is odd and parameters satisfying for all d\prime =
1, 3, . . . , d: 0 < md\prime \leq \| o\ast 

d\prime \| and Md\prime \geq \| p\| for all p \in P (d\prime ). Then the sequence of

corrals has length 5 \cdot 2 d - 1
2  - 4.
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Fig. 1.10. Left: Three-dimensional view of P (3). Right: A two-dimensional view of P (3)
projected along the x3 coordinate axis.

Table 1.3
Iterations for minnorm insertion rule on P (3) = \{ 0\ast = (1, 0, 0), p3 = (1/2, 1/4, 1), q3 =

(1/2, 1/4, - 2), r3 = (0, 1/4, 3), s3 = (0, 1/4, - 4)\} . Cycle i, j denotes the ith major cycle and the jth
minor cycle within.

Cycle C x y

0, 0 \{ o\ast \} o\ast 

1, 0 \{ o\ast ,p3\} o\ast (0.810, 0.095, 0.381)

2, 0 \{ o\ast ,p3,q3\} (0.810, 0.095, 0.381) (0.2, 0.4, 0)

2, 1 \{ p3,q3\} (0.5, 0.25, 0.1875) (0.5, 0.25, 0)

3, 0 \{ p3,q3, r3\} (0.5, 0.25, 0) (0, 0.25, 0)

3, 1 \{ q3, r3\} (0.3, 0.25, 0) (0.297, 0.25, 0.0297)

4, 0 \{ q3, r3, s3\} (0.297, 0.25, 0.0297) (0, 0.25, 0)

4, 1 \{ r3, s3\} (0, 0.25, 0) (0, 0.25, 0)

5, 0 \{ r3, s3,o\ast \} (0, 0.25, 0) (0.059, 0.235, 0)

Remark. First note that strictly speaking P (d) \subset \BbbQ d and that we are defining
an embedding of it into \BbbQ d+2, for which we have to use a recursive process. To avoid
unnecessary indices in what follows, we will abuse the notation. The point vd denotes
a point both of P (d) and of the subsequent P (d + 2), i.e., vd = (v, 0, 0) will be the
identical copy of vd within P (d), but we add two extra zero coordinates. Depending
on the context vd will be understood as both a d-dimensional vector and as a (d+2)-
dimensional vector (e.g., when doing dot products). The points of P (d) become a
subset of the point configuration P (d + 2) by padding extra zeros. See Figures 1.6
and 1.11, which illustrate this embedding and address our visualizations of these sets
in three dimensions.

Proof. Points in P (d) appear in (1.1) sorted by increasing norm, due to the choices
of Md\prime for d\prime = 1, 2, . . . , d  - 2. Let pd,qd, rd, sd denote the last four points of P (d),
respectively. Let C(d) denote the ordered sequence of corrals in the execution of
Wolfe's method on P (d). Let O(d) denote the last (optimal) corral in C(d).
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Table 1.4
Iterations for linopt insertion rule on P (3) = \{ 0\ast = (1, 0, 0), p3 = (1/2, 1/4, 1), q3 =

(1/2, 1/4, - 2), r3 = (0, 1/4, 3), s3 = (0, 1/4, - 4)\} . Cycle i, j denotes the ith major cycle and the jth
minor cycle within.

Cycle C x y

0, 0 \{ o\ast \} o\ast 

1, 0 \{ o\ast , r3\} o\ast (0.901, 0.025, 0.298)

2, 0 \{ o\ast , r3, s3\} (0.901, 0.025, 0.298) (0.059, 0.235, 0)

Fig. 1.11. As described in Figure 1.6, the axis labeled \BbbR d - 2 represents the (d - 2)-dimensional
subspace span (P (d - 2)) projected onto the one-dimensional subspace span (o\ast 

d - 2). Here we illustrate

that the projection of the set P (d - 2) forms a ``cloud"" of points and the convex hull of this projection
has many fewer faces than the unprojected convex hull. For simplicity, we will visualize P (d  - 2)
and subsets of P (d - 2) as a single point in span (o\ast 

d - 2) as in Figure 1.6.

The rest of the proof will establish that the sequence of corrals C(d) is

C(d - 2),

O(d - 2)pd,

pdqd,

qdrd,

rdsd,

C(d - 2)rdsd

(where a concatenation such as C(d - 2)rdsd denotes every corral in C(d - 2) with
rd and sd added). After this sequence of corrals is established, we solve the resulting
recurrence relation: Let T (d) denote the length of C(d). We have T (1) = 1, T (d) =

2T (d - 2) + 4. This implies T (d) = 5 \cdot 2 d - 1
2  - 4 (with d odd).

All we must show now to complete the proof of Theorem 1.7 is that C(d) has
indeed the stated recursive form. We do this by induction on d. The steps of the
proof are written as claims with individual proofs.

By construction, C(d) starts with C(d - 2). This happens because points in C(d)
are ordered by increasing norm and the proof proceeds inductively as follows: The
first corral in C(d) is the minimum norm point in P (d) (equal to the minimum norm
point in P (d  - 2)), which is also the first corral in C(d - 2). Suppose now that the
first t corrals of C(d) coincide with the first t corrals of C(d - 2). We will show that



154 J. A. DE LOERA, J. HADDOCK, AND L. RADEMACHER

corral t+1 in C(d) is the same as corral t+1 in C(d - 2). To see this, it is enough to
see that the set of points in P (d) that can enter (improving points) contains the point
that enters in C(d - 2) (with two zeros appended) and contains no point of smaller
norm. This two-part claim is true because the two new zero coordinates play no role
in this and points in P (d) \setminus P (d  - 2) = \{ pd,qd, rd, sd\} have a larger norm than any
other point in P (d).

Once corral O(d - 2) is reached (with minimum norm point o\ast 
d - 2), the set of

improving points, as established by Wolfe's criterion, consists of \{ pd,qd, rd, sd\} , since
p\top 
d o

\ast 
d - 2 = q\top 

d o
\ast 
d - 2 = 1

2\| o
\ast 
d - 2\| 2 < \| o\ast 

d - 2\| 2 and r\top d o
\ast 
d - 2 = s\top d o

\ast 
d - 2 = 0 < \| o\ast 

d - 2\| 2.
Now, because we are using the minimum-norm insertion rule, the next point to enter
is pd.

Claim 1.8. O(d - 2)pd is a corral.

Proof of Claim. This is a special case of Lemma 1.5. The coordinates of point
pd are pd = (o\ast 

d - 2/2,md - 2/4,Md - 2). We just need to verify the two inequalities in

Lemma 1.5: (o\ast 
d - 2)

\top pd = \| o\ast 
d - 2\| 2/2 < \| pd\| 2.

Claim 1.9. The next improving point to enter is qd.

Proof of Claim. We first check that no point in P (d  - 2) can enter. From
Lemma 1.5 we know the optimal point y in corral O(d - 2)pd explicitly in terms
of the optimal point o\ast 

d - 2 of O(d - 2) and pd, namely y is a convex combination

\lambda o\ast 
d - 2 + (1  - \lambda )pd, with \lambda =

\| \bfp d\| 2 - \bfp d
\top \bfo \ast 

d - 2

\| \bfp d - \bfo \ast 
d - 2\| 2 . Let p \in P (d  - 2). We check that it

cannot enter via Wolfe's criterion. We compute p\top y in two steps: First project p
onto span (o\ast 

d - 2,pd) (a subspace that contains y). This projection is longer than o\ast 
d - 2

by optimality of o\ast 
d - 2. Then project onto y. This shows that p\top y \geq o\ast 

d - 2
\top y = \| y\| 2

and p cannot enter as it is not an improving point according to Wolfe's criterion.
By construction, qd is closer to the origin than rd, sd, so to conclude it is enough

to check that qd is an improving point per Wolfe's criterion. Compute

y\top qd = \lambda (o\ast 
d - 2)

\top qd + (1 - \lambda )p\top 
d qd

\leq \lambda 

2
\| o\ast 

d - 2\| 2 + (1 - \lambda )

\biggl[ 
1

4
\| o\ast 

d - 2\| 2 +
1

16
\| o\ast 

d - 2\| 2  - M2
d - 2  - Md - 2

\biggr] 
\leq \lambda 

2
\| o\ast 

d - 2\| 2

since by construction Md - 2 \geq 1 and md - 2 < \| o\ast 
d - 2\| \leq \| p1\| = 1. On the other hand,

\| y\| 2 = \lambda 2\| o\ast 
d - 2\| 2 + (1 - \lambda )2\| pd\| 2 + 2\lambda (1 - \lambda )

1

2
\| o\ast 

d - 2\| 2

= \lambda \| o\ast 
d - 2\| 2 + (1 - \lambda )2\| pd\| 2

\geq \lambda \| o\ast 
d - 2\| 2.

Thus, y\top qd < \| y\| 2, that is, qd is an improving point.

Claim 1.10. The current set of points, O(d - 2)\cup \{ pd,qd\} , is not a corral. Points
in O(d - 2) leave one by one. The next corral is pdqd.

Proof of Claim. Instead of analyzing the iterations of Wolfe's inner loop, we use
the key fact, from subsection 1.1, that the inner loop must end with a corral whose dis-
tance to the origin is strictly less than the previous corral. We look at the alternatives:
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Fig. 1.12. A projection of the point set in the direction of xd - 1. Any corral of the form Sqd

where S \subset O(d - 2) would have distance larger than the previous corral, O(d - 2)pd.

Fig. 1.13. The minimum norm point in conv(S \cup \{ pd,qd\} ) is in the line segment between pd

and qd.

This new corral cannot be O(d - 2) \cup \{ pd\} (the previous corral) or any subset of it
because it would not decrease the distance. Since (o\ast 

d - 2)
\top qd < \| o\ast 

d - 2\| 2/2 < \| o\ast 
d - 2\| 2

< \| qd\| 2, we have by Lemma 1.5 that O(d - 2) \cup \{ qd\} is a corral whose distance to
the origin is larger than the distance for O(d - 2) \cup \{ pd\} . See Figure 1.12, where
we show a projection, and the perpendicular line segments to conv(O(d - 2),pd) and
conv(O(d - 2),qd) are shown in dotted line after projection. Thus, the new corral
cannot be O(d - 2) \cup \{ qd\} or any subset of it.

No set of the form S \cup \{ pd,qd\} with S \subseteq O(d - 2) and S nonempty can be a
corral. To see this, first note that the minimum norm point in conv(S \cup \{ pd,qd\} )
is in the segment [pd,qd], specifically, point (o\ast 

d - 2/2,md - 2/4, 0) (minimality follows
from Wolfe's criterion, Lemma 1.1). This implies that the minimum norm point in
aff(S \cup \{ pd,qd\} ) cannot be in the relative interior of conv(S \cup \{ pd,qd\} ) when S is
nonempty (see Figure 1.13).

The only remaining nonempty subset is \{ pd,qd\} , which is the new corral.

Claim 1.11. The set of improving points is now \{ rd, sd\} .

Proof of Claim. Recall that the optimal point in corral \{ pd,qd\} has coordinates
(o\ast 

d - 2/2,md - 2/4, 0). Thus, when computing distances and checking Wolfe's crite-
rion it is enough to do so in the two-dimensional situation depicted in Figure 1.14.
Thus, a hyperplane orthogonal to the segment from the origin to (o\ast 

d - 2/2,md - 2/4, 0)
is shown in the figure. It leaves the points in P (d  - 2) above (as z \in P (d  - 2)
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Fig. 1.14. The set of improving points is now \{ rd, sd\} .

Fig. 1.15. The set \{ pd,qd, rd\} is not a corral. Fig. 1.16. The only improving point is sd.

satisfies z\top (o\ast 
d - 2/2,md - 2/4, 0) = z\top o\ast 

d - 2/2 > \| o\ast 
d - 2\| 2/2 > \| (o\ast 

d - 2/2,md - 2/4, 0)\| 2)
and both rd and sd below making them the only improving points. Alternatively, note
that r\top d (o

\ast 
d - 2/2,md - 2/4, 0) = s\top d (o

\ast 
d - 2/2,md - 2/4, 0) =

1
16m

2
d - 2 < \| (o\ast 

d - 2/2,md - 2/4,
0)\| 2, so rd and sd are available.

Point rd enters since it has smallest norm.

Claim 1.12. Point pd leaves and the next corral is qdrd.

Proof of Claim. To start, notice that by construction the four points pd,qd, rd, sd
lie on a common hyperplane, L, parallel to the line spanned by o\ast 

d - 2. Thus, one does
not need to do distance calculations but rather Figure 1.15 is a faithful representation
of the positions of points. The closest point to the origin within L is in the line
segment joining rd, sd; thus, as we move parallel to o\ast 

d - 2 in L, the closest point to the
origin in triangle pd,qd, rd must be in the line segment joining rd and qd.

Claim 1.13. The only improving point now is sd.

Proof of Claim. Figures 1.15 and 1.16 provide geometric intuition that the point
sd is available to add while pd and P (d - 2) are not. We provide a full proof next.

First, let x denote the minimum norm point in the line segment joining rd and
qd so we can write x = (\alpha o\ast 

d - 2,md - 2/4, \epsilon ). Furthermore, x = \lambda qd + (1 - \lambda )rd where

\lambda =
r\top d (rd  - qd)

\| rd  - qd\| 2
=

(Md - 2 + 2)(2Md - 2 + 3)

\| o\ast 
d - 2\| 2/4 + (2Md - 2 + 3)2
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by Proposition 1.3. Note that we have \alpha = \lambda /2. Since x\top (rd  - qd) = 0, we have

\epsilon =
\alpha \| \bfo \ast 

d - 2\| 
2/2

2Md - 2+3 .

Now, we develop estimates on \alpha and \epsilon . First, note that

\lambda =
(Md - 2 + 2)(2Md - 2 + 3)

\| o\ast 
d - 2\| 2/4 + (2Md - 2 + 3)2

\leq (Md - 2 + 2)(2Md - 2 + 3)

(2Md - 2 + 3)2
=

Md - 2 + 2

2Md + 3
\leq 3

5

since Md - 2 \geq 1. Thus, \alpha = \lambda /2 \leq 3/10. Additionally, since \| o\ast 
d - 2\| 2/4 \leq 1/4 and

(2Md - 2 + 3)2 \geq 25, we have \| o\ast 
d - 2\| 2/4 \leq (2Md - 2 + 3)2/100. This yields

\lambda =
(Md - 2 + 2)(2Md - 2 + 3)

\| o\ast 
d - 2\| 2/4 + (2Md - 2 + 3)2

\geq 100(Md - 2 + 2)

101(2Md - 2 + 3)
\geq 100(Md - 2 + 3/2)

101(2Md - 2 + 3)
=

50

101
.

Thus, we have \alpha = \lambda /2 \geq 25/101 and \epsilon \leq 3\| o\ast 
d - 2\| 2/100.

Now, note that

\| x\| 2 = \alpha 2\| o\ast 
d - 2\| 2 +m2

d - 2/16 + \epsilon 2

\leq 9

100
\| o\ast 

d - 2\| 2 +
1

16
\| o\ast 

d - 2\| 2 +
\biggl( 

3

100
\| o\ast 

d - 2\| 2
\biggr) 2

<
9

100
\| o\ast 

d - 2\| 2 +
1

10
\| o\ast 

d - 2\| 2 +
3

100
\| o\ast 

d - 2\| 2 =
22

100
\| o\ast 

d - 2\| 2.

Thus, for p \in P (d - 2), we have

p\top x = \alpha p\top o\ast 
d - 2 \geq \alpha \| o\ast 

d - 2\| 2 \geq 25

101
\| o\ast 

d - 2\| 2 >
22

100
\| o\ast 

d - 2\| 2 > \| x\| 2,

so p is not available. Similarly,

p\top 
d x =

\alpha 

2
\| o\ast 

d - 2\| 2 +
m2

d - 2

16
+Md - 2\epsilon \geq \alpha 2\| o\ast 

d - 2\| 2 +
m2

d - 2

16
+ \epsilon 2 = \| x\| 2,

where the inequality follows from \alpha < 1/2, Md - 2 \geq 1, and \epsilon < 1. Thus, pd is not
available. Finally,

s\top d x =
m2

d - 2

16
 - (Md - 2 + 3)\epsilon <

m2
d - 2

16
< \| x\| 2,

where the first inequality follows since Md - 2, \epsilon > 0. Thus, sd is available.

Point sd enters as the closest improving point to the origin.

Claim 1.14. Point qd leaves. The next corral is rdsd.

Proof of Claim. We follow the execution of the algorithm. It finds the affine
minimizer for C = \{ qd, rd, sd\} (the minimum norm point in their affine hull, y in
Method 1.1). It is between rd and sd; this point is (md - 2/4)ed - 1 (where ed - 1 is the
(d  - 1)st canonical vector). While this point is in the convex hull of C, it is not a
strict convex combination; see Figure 1.17 for a visualization. Point qd is not used
in the convex combination and therefore leaves C. The resulting set, \{ rd, sd\} , is the
next corral.

Claim 1.15. The set of improving points is now P (d - 2) (with two zero coordi-
nates appended).
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Fig. 1.17. The point qd leaves.
Fig. 1.18. The improving points are P (d - 2).

Proof of Claim. NowWolfe's criterion hyperplane contains the four points pd, qd,
rd, sd by construction leaving P (d - 2) on the same side as the origin (see Figure 1.18).
Note that for all p \in P (d - 2) we have p\top (md - 2/4)ed - 1 = 0 < \| (md - 2/4)ed - 1\| 2.

The first (and minimum norm) point in P (d) enters and the next corral is this
point together with rd and sd. That is, the next corral is precisely the first corral
in C(d - 2)rdsd. This is a corral by Lemma 1.4. We will prove inductively that
the sequence of corrals from now on is exactly all of C(d - 2)rdsd. To see this, we
repeatedly invoke Lemma 1.6 after every corral with A equal to the subspace spanned
by the first d - 2 coordinate vectors of \BbbR d. Suppose that the current corral is Crdsd,
where C is one of the corrals in C(d - 2), and denote the next corral in C(d - 2)
by C \prime . Applying Lemma 1.6 with P = C and Q = \{ rd, sd\} , we get that the set of
improving points for corral Crdsd contains the set of improving points for corral C.
Thus, by the use of the minnorm rule, the point that enters is the same that would
enter after corral C. Let a denote that point.

Claim 1.16. The next corral is C \prime rdsd.

Proof of Claim. The current set of points is Crdsda. If Ca is a corral, then so
is Crdsda = C \prime rdsd (by Lemma 1.4, part 3, with P = Ca and Q = rdsd) and the
claim holds. If Ca is not a corral, it is enough to prove that the sequence of points
removed by the inner loop of Wolfe's method on this set is the same as the sequence
on set Crdsda. We will show this now by simultaneously analyzing the execution of
the inner loop of Wolfe's method (Method 1.1) on Ca and Crdsda. We distinguish
the two cases with the following notation: variables are written without a bar (\=) and
with a bar, respectively.

Let C0 = Ca and x0 be the point x defined as at line 5 of Method 1.1 prior
to entering the inner loop. Let x1, . . . ,xk be the sequence of current points con-
structed by the inner loop on Ca at line 10 of Method 1.1. Let p1, . . . ,pk be the
sequence of removed points defined at line 8 of Method 1.1. Let C1, . . . , Ck be the
sequence of current sets of points at every iteration defined at line 9 of Method 1.1.
Let \=x0, \=x1, . . . , \=x\=k be the corresponding sequence on Crdsda. Let \=p1, . . . , \=p\=k be the
corresponding sequence of removed points. Let \=C0, \=C1, . . . , \=C\=k be the corresponding
sequence of current sets of points. We will show inductively that k = \=k, there is a
one-to-one correspondence between sequences (xi) and (\=xi), and (pi) = (\=pi). More
specifically, the correspondence is realized by maintaining the following invariant in
the inner loop: \=xi is a strict convex combination of xi and the minimum norm point
in [rd, sd].
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For the base case, from Lemma 1.4, part 2, we have that \=x0 is a strict convex
combination of x0 (which is the minimum norm point in conv(C)) and the minimum
norm point in segment [rd, sd], specifically w := md - 2

4 ed - 1.
For the inductive step, if xi is a strict convex combination of the current set of

points Ci, then so is \=xi of \=Ci and the inner loop ends in both cases with corrals
Ci = C \prime and \=Ci = C \prime rdsd, respectively. The claim holds. If xi is not a strict convex
combination of the current set of points Ci, then neither is \=xi of \=Ci, since it inherits
this property from xi by Lemma 1.4. The inner loop then continues by computing
the minimum norm point y in aff(Ci) and \=y in aff( \=Ci), respectively. It then finds
point z in conv(Ci) that is closest to y in segment [xi,y]. It finds \=z, respectively. It
then selects a point pi to be removed and a point \=pi, respectively. From Lemma 1.4,
part 2, we have that \=y is a strict convex combination of y and w.

We will argue that \=z is a strict convex combination of z andw. To see this, we note
that segment [\=xi, \=y] lies in the hyperplane where the last coordinate is 0. Therefore
we only need to intersect it with the part of conv( \=Ci) that lies in that hyperplane.
This part is exactly conv(Ci \cup \{ w\} ), which can be written in a more explicit way as
the union of all segments of the form [b,w] with b \in Ci. Even more, we only need
to look at triangle w,xi,y, as all relevant segments lie on it. The intersection of this
triangle with conv(Ci) is segment [xi, z] and therefore the intersection of the triangle
with conv( \=Ci) is simply triangle xi, z,w. This implies that the intersection between
segment [\=xi, \=y] and conv( \=Ci) is the same as the intersection between segment [\=xi, \=y]
and triangle xi, z,w. This intersection is an interval [\=xi,\=z] where \=z is a strict convex
combination of w and z and \=z is the closest point to \=y in that intersection.

It follows that the set of potential points to be removed is the same for the two
executions. Specifically, if z is a strict convex combination of a certain subset C\ast of
Ci, then \=z is a strict convex combination of C\ast \cup \{ rd, sd\} . The sets of points that can
potentially be removed are Ci \setminus C\ast and \=Ci \setminus (C\ast \cup \{ rd, sd\} ) = Ci \setminus C\ast (the same),
respectively. In particular, pi = \=pi (under a mild consistency assumption on the
way a point is chosen when there is more than one choice, for example, ``choose the
point with smallest index among potential points""). This implies Ci+1 = \=Ci+1. Also,
xi+1 = z and \=xi+1 = \=z is in [xi+1,w]. This completes the inductive argument about
the inner loop and proves the claim.

At this point the current corral is O(d - 2)rdsd. To conclude, we need to show that
this is the optimal corral according to Wolfe's criterion (Lemma 1.1). From Lemma 1.4
applied to O(d - 2) and \{ rd, sd\} , the minimum norm point (convex minimizer) for the
current corral is a strict convex combination of (o\ast 

d - 2, 0, 0) and
md - 2

4 ed - 1. That is, it
can be written in the form x = \lambda (o\ast 

d - 2, 0, 0) + (1 - \lambda )md - 2

4 ed - 1, 0 < \lambda < 1. No point

in P (d  - 2) can enter: if y \in P (d  - 2), then y\top x = \lambda y\top (o\ast 
d - 2, 0, 0) \geq \lambda \| o\ast 

d - 2\| 2 =

(o\ast 
d - 2, 0, 0)

\top x = \| x\| 2 (where the inequality is by optimality of o\ast 
d - 2 for P (d - 2) and

the last equality is by optimality of x for the current corral). Similarly, pd,qd cannot

enter: by definition p\top 
d x = q\top 

d x = \lambda 
2 \| o

\ast 
d - 2\| 2 + (1 - \lambda )

m2
d - 2

16 > (1 - \lambda )
m2

d - 2

16 = r\top d x =
\| x\| 2. Thus, no point can enter and the current corral is optimal.

This completes the proof of Theorem 1.7.

Theorem 1.7 implies that Wolfe's method has exponential worst-case running
time on rational inputs in an arithmetic model of computation. For this claim one
can specifically use the integer RAM model discussed at the beginning of section 2
and understand the running time as a function of the number of numbers in the
input. To conclude that it is exponential in the Turing machine model (as a function
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of the bit-length of the input, not just the dimension or the number of points), one
also needs to argue that the numbers that appear in our hard instances P (d) are
not too large. It is enough to show that the bit-lengths of the numbers in our hard
instance P (d) (equation (1.1)) are bounded by a polynomial in d. We show this
in two steps: We first make explicit, nonrecursive choices of md,Md that grow at
most exponentially in d (which makes their bit-lengths grow at most polynomially in
d). This bounds the bit-lengths of entries in (1.1) involving md and Md. We then
argue that o\ast 

d has polynomial bit-length by expressing it nonrecursively as the affine
minimizer of O(d  - 2), whose points are explicitly defined in terms of md and Md.
This bounds the bit-lengths of entries in (1.1) involving o\ast 

d. We make this argument
precise in Theorem 1.17 below. Let the size of a rational number, represented by a/b
with a, b \in \BbbZ , b \geq 1, be size(a/b) := 1 + \lceil log(| a| + 1)\rceil + \lceil log b\rceil .

Theorem 1.17. Let md = 1/4d and Md = 2d. Then the size of every number in
P (d) is bounded by a (universal) polynomial in d. Moreover, md,Md as above satisfy
the assumptions of Theorem 1.7.

Proof. We first show that the choices of parametersmd,Md lead to a valid instance
(satisfy the conditions of Theorem 1.7). We proceed by induction on odd d. The
maximum 2-norm among points in P (d) is \| sd\| . We have M1 = 2 and \| s1\| = 1,
which gives the base case. We also have Md = 2d and \| sd\| \leq \| sd\| 1 < Md - 2 + 4,
which gives the inductive step. The desired bound on Md follows.

Similarly for md, we find estimates on o\ast 
d. We have o\ast 

1 = 1. From the proof of
Theorem 1.7, the optimal corral for P (d) is O(d) = O(d  - 2)rdsd so that O(1) = 1,
O(d) = 1, r3, s3, r5, s5, . . . , rd, sd. We just need to determine the minimum norm point
in this corral. We will use Lemma 1.4 to determine this point. We have that O(d - 2)
and rdsd are corrals contained in orthogonal subspaces with minimum norm points
(o\ast 

d - 2, 0, 0) and
md - 2

4 ed - 1, respectively. We conclude that the segment joining these
two points contains o\ast 

d. From Lemma 1.4, part 1, with x = (o\ast 
d - 2, 0, 0), y = md - 2

4 ed - 1

giving 0 < \lambda \leq md - 2/4
md - 2+md - 2/4

= 1/17, we conclude o\ast 
d = \lambda (o\ast 

d - 2, 0, 0)+(1 - \lambda )md - 2

4 ed - 1

and \| o\ast 
d\| 2 = \| \lambda (o\ast 

d - 2, 0, 0)\| 2 + \| (1 - \lambda )md - 2

4 ed - 1\| 2 so that

\| o\ast 
d\| \geq 

\bigm\| \bigm\| \bigm\| (1 - \lambda )
md - 2

4
ed - 1

\bigm\| \bigm\| \bigm\| \geq 
\bigm\| \bigm\| \bigm\| \bigm\| 12md - 2

4
ed - 1

\bigm\| \bigm\| \bigm\| \bigm\| \geq md - 2

8
.

We also have md = md - 2/16. The bound md \leq \| o\ast 
d\| follows.

To conclude that the sizes of numbers are bounded by a polynomial in d, it is
enough to notice that, given our explicit choices of constantsmd,Md of size polynomial
in d, there is a less recursive way of defining instance P (d): Write o\ast d - 2 more explicitly
as the affine minimizer of O(d - 2) = 1, r3, s3, r5, s5, . . . , rd - 2, sd - 2, where these points
are explicit, not recursively defined, given md,Md. We look at the entries in P (d)
(see (1.1)). We have that o\ast d - 2 is the solution to a linear system with entries of size
bounded by a polynomial in d (the system to determine the minimum norm point
in the affine hull of 1, r3, s3, r5, s5, . . . , rd - 2, sd - 2). From Cramer's rule, it follows
that o\ast d - 2 is a vector with rational entries and the size of every entry is bounded
by a polynomial in d. The other entries in P (d) are md or Md with a constant
multiplied or added, and their sizes are also bounded by a polynomial in d. The claim
follows.

2. Linear optimization reduces to minimum-norm point problems on
simplices. We reduce linear programming to the minimum norm point problem over
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a simplex via a series of strongly polynomial time reductions. The algorithmic prob-
lems we consider are defined below. We give definitions for the problems of linear
programming (LP), feasibility (FP), bounded feasibility (BFP), V-polytope mem-
bership (VPM), zero V-polytope membership (ZVPM), zero V-polytope membership
decision (ZVPMD), and distance to a V-simplex (DVS). (The prefix ``V-"" means that
the respective object is specified as the convex hull of a set of points.)

Existing works describe slightly different notions of a ``strongly polynomial time
algorithm."" A source of differences is the treatment of division and inputs that allow
rational or real numbers (as opposed to just integers). Some known algorithms are
strongly polynomial in some sort of ``real RAM"" (random access machine) model with-
out a particular concern about divisions and with an analysis of growth of numbers in
intermediate calculations (for example, algorithms that do not use division). At the
same time, some basic algorithms such as Gaussian elimination are only known to be
strongly polynomial when, on rational input, the integers in numerators and denom-
inators of intermediate values are carefully handled and division is implemented in a
particular form. For example, the analysis of Gaussian elimination in [19, sections 1.3
and 1.4] defines the result of dividing two integers as ``the rational number a/b, and
if it is known in advance that a/b is an integer, the integer a/b."" These analyses are
therefore performed in a sort of integer RAM where rational numbers are encoded as
pairs of integers.

Our reductions below use Gaussian elimination and deal with algorithmic prob-
lems related to the linear programming problem. As algorithmic issues around linear
programming are likely to run into similar issues as Gaussian elimination, we naturally
adopt a similar integer RAM for our claims of strongly polynomial time algorithms.
The precise definition of an arithmetic RAM that we use for the analysis of strongly
polynomial time algorithms is based on the one in [31, section 4.2]. We state our
version here for completeness.

An integer random access machine (RAM) has a finite set of variables z0, . . . , zk
and one array, f , of length depending on the input. Each array entry and variable
stores an integer. A pair of integers p, q can be interpreted as rational number p/q
if the machine needs to handle rational numbers. Initially z0, . . . , zk are set to 0 and
f contains the input. Each instruction is a finite sequence of resettings of one of the
following types, for i, j, h \in \{ 1, . . . , k\} :

zi := f(zj); f(zj) := zi; zi := zj + zh; zi := zj  - zh; zi := zjzh; zi := zi + 1;

zi := zj/zh if it is known in advance that zj/zh is an integer;

zi := 1 if zj > 0 and zi := 0 otherwise.

The instructions are numbered 0, 1, . . . , t, and z1 is the number of the instruction to
be executed. If z1 > t we stop and return the contents of the array f as output.

An algorithm is an integer RAM. An algorithm runs in time O(g) if it terminates
after O(g(n, s)) operations (including elementary arithmetic operations), where the
input consists of n integers of maximum size s and if the numbers occurring during
the execution of the algorithm have size O(s). The algorithm is called a strongly
polynomial time algorithm if it takes O(g(n)) time for some polynomial g in n (the
number of integer entries in the input array), where g is independent of s.

In our algorithms below, we assume that numbers in the inputs are rational
numbers, each given as a pair of integers (interpreted as numerator and denominator)
to an integer RAM. We do not make any claims about inputs that involve arbitrary
real numbers. Still, our model guarantees desirable properties of strongly polynomial
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time algorithms: the number of steps in an integer RAM is independent of the sizes of
the input numbers and the algorithms run in polynomial time in the Turing machine
model. In particular, the existence of a strongly polynomial time algorithm in the
integer RAM model for the distance to a V-simplex problem implies the existence of a
strongly polynomial time algorithm in the integer RAMmodel for linear programming.
See [19, 30, 31] for a detailed discussions of strongly polynomial time algorithms.

Definition 2.1. Consider the following computational problems:
\bullet LP: Given a rational d\times n matrix A, a rational column vector b, and a rational

row vector c\top , output rational x \in argmax\{ c\top x : Ax \leq b\} if max\{ c\top x :
Ax \leq b\} is finite, otherwise output INFEASIBLE if \{ x : Ax \leq b\} is empty
and else output INFINITE.

\bullet FP: Given a rational d \times n matrix A and a rational vector b, if P := \{ x :
Ax = b,x \geq 0\} is nonempty, output a rational x \in P , otherwise output NO.

\bullet BFP: Given a rational d \times n matrix A, a rational vector b and a rational
value M > 0, if P := \{ x : Ax = b,x \geq 0,

\sum n
i=1 xi \leq M\} is nonempty, output

a rational x \in P , otherwise output NO.
\bullet VPM: Given a rational d\times n matrix A and a rational vector b, if P := \{ x :
Ax = b,x \geq 0,

\sum n
i=1 xi = 1\} is nonempty, output a rational x \in P , otherwise

output NO.
\bullet ZVPM: Given a rational d \times n matrix A, if P := \{ x : Ax = 0,x \geq 
0,

\sum n
i=1 xi = 1\} is nonempty, output a rational x \in P , otherwise output

NO.
\bullet ZVPMD: Given rational points p1,p2, . . . ,pn \in \BbbR d, output YES if 0 \in 
conv\{ p1,p2, . . . ,pn\} and NO otherwise.

\bullet DVS: Given n \leq d + 1 affinely independent rational points p1,p2, . . . ,pn \in 
\BbbR d defining (n  - 1)-dimensional simplex P = conv\{ p1,p2, . . . ,pn\} , output
d(0, P )2.

The main result in this section reduces linear programming to finding the mini-
mum norm point in a (vertex-representation) simplex.

Theorem 2.2. LP reduces to DVS in strongly polynomial time.

To prove each of the lemmas below, we illustrate the problem transformation and
its strong polynomiality. The first two reductions are highly classical, while those
following are intuitive, but we do not believe they have been written elsewhere.

Below is the sequence of algorithmic reductions that reduce LP to DVS. The
first result, which reduces LP to FP, is a classical result; see, e.g., [19, 0.1.49]. This
reduction consists of several FP problems. We first check feasibility of the primal and
if so, we check feasibility of the primal and dual LP simultaneously with the additional
constraint that the objective values are equal. If this FP is feasible, we return the
objective function value; otherwise we indicate it is infinite. The reduction requires
only the time to construct the FP problems and two calls to the FP oracle, so it is
a strongly polynomial reduction. We do not include this proof as it is so similar to
standard results. The second result, which reduces FP to BFP, is similar to classical
results; see, e.g., [30, Corollary 3.2b]. We include a proof here as the reduction is less
intuitive than the former.

Lemma 2.3. LP reduces in strongly polynomial time to FP.

Lemma 2.4. FP reduces in strongly polynomial time to BFP.
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Proof. Let \scrO denote the oracle for BFP. Suppose A = (aij/\alpha ij)
d,n
i,j=1, b =

(bj/\beta j)
d
j=1 and define

D := max( max
i\in [d],j\in [n]

| \alpha ij | ,max
k\in [d]

| \beta k| ),

N := max( max
i\in [d],j\in [n]

| aij | ,max
k\in [d]

| bk| ) + 1.

If the entry of A is zero, aij/\alpha ij = 0, define aij = 0 and \alpha ij = 1. If the entry of b is
zero, bj/\beta j = 0, define bj = 0 and \beta j = 1.

Require: A \in \BbbQ d\times n,b \in \BbbQ d.
Invoke \scrO on Ax = b,x \geq 0,

\sum n
i=1 xi \leq nDd(n+1)min(d3,n3)Nd(n+1). If the output is

NO, output NO, else output rational x.

Claim 2.5. The FP Ax = b,x \geq 0 is feasible if and only if the BFP Ax = b,x \geq 
0,

\sum n
i=1 xi \leq nDd(n+1)min(d3,n3)Nd(n+1) is feasible.

Proof of Claim. If the BFP is feasible, then clearly the FP is feasible. Suppose
the FP is feasible. By the theory of minimal faces of polyhedra, we can reduce this
to an FP defined by a square matrix, A, in the following way: By [8, Theorem 1.1],
there is a solution, x, with no more than min(d, n) positive entries so that Ax = b
and the positive entries of x combine linearly independent columns of A to form b.
Let A\prime denote the matrix containing only these linearly independent columns and x\prime 

denote only the positive entries of x. Then A\prime x\prime = b. Now, note that A\prime \in \BbbQ d\times m,
where m \leq d. Since the column rank of A\prime equals the row rank of A\prime , we may remove
d - m linearly dependent rows of A\prime and the corresponding entries of b, forming A\prime \prime 

and b\prime so that A\prime \prime x\prime = b\prime , where A\prime \prime \in \BbbQ m\times m, b\prime \in \BbbQ m, and A\prime \prime is a full-rank matrix.
Define M :=

\prod m
i,j=1 | \alpha \prime \prime 

i,j | 
\prod m

k=1 | \beta \prime 
k| and note that M \leq Dd(n+1). Define L :=\prod m

i,j=1(| a\prime \prime i,j | + 1)
\prod m

k=1(| b\prime k| + 1) and note that L \leq Nd(n+1). Define \=A = MA\prime \prime 

and \=b = Mb\prime and note that \=A and \=b are integral. By Cramer's rule, we known

that x\prime 
i = | det \=Ai| 

| det \=A| , where \=Ai denotes \=A with the ith column replaced by \=b. By

integrality, | det \=A| \geq 1, so x\prime 
i \leq | det \=Ai| \leq 

\prod m
i,j=1 M(| aij | + 1)

\prod m
k=1 M(| bk| + 1) =

Mm3

L \leq Dd(n+1)min(d3,n3)Nd(n+1). Now, note that x\prime defines a solution, x, to the
original system of equations. Let xi = x\prime 

j if the jth column of A\prime was the selected
ith column of A and xi = 0 if the ith column of A was not selected. Note then that
Ax = b,x \geq 0,

\sum n
i=1 xi \leq nDd(n+1)min(d3,n3)Nd(n+1).

Thus, we have that the FP and BFP are equivalent. To see that this is a strongly
polynomial time reduction, note that adding this additional constraint takes time for
constructing the number nDd(n+1)min(d3,n3)Nd(n+1) plus small constant time. This
number takes d(n+ 1) comparisons and d(n+ 1)min(d3, n3) multiplications to form.
Additionally, this number takes space which is polynomial in the size of the input
(polynomial in d,n and size of D, N).

Lemma 2.6. BFP reduces in strongly polynomial time to VPM.

Proof. Let \scrO denote the oracle for VPM.

Require: A \in \BbbQ d\times n, b \in \BbbQ d, 0 < M \in \BbbQ .
Invoke \scrO on

(2.1)
\bigl[ 
MA 0

\bigr] \biggl[ y
z

\biggr] 
= b,

\biggl[ 
y
z

\biggr] 
\geq 0, z +

n\sum 
i=1

yi = 1.

If the output is NO, output NO, else output rational x = My.
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Claim 2.7. A solution

\~w :=

\biggl[ 
y
z

\biggr] 
to (2.1) gives a solution the BFP instance, Ax = b,x \geq 0,

\sum n
i=1 xi \leq M and vice

versa.

Proof of Claim. Suppose \~w satisfies (2.1). Then x = My is a solution to the
BFP instance since Ax = MAy = b and since y \geq 0, x = My \geq 0 and since\sum n

i=1 yi + z = 1, we have
\sum n

i=1 yi \leq 1 so
\sum n

i=1 xi = M
\sum n

i=1 yi \leq M . Suppose x is
a solution to the BFP instance. Then y = 1

M x and z = 1  - 
\sum n

i=1 yi satisfies (2.1),
since

\bigl[ 
MA 0

\bigr] 
\~w = MAy = Ax = b, y \geq 0 since x \geq 0 and since

\sum n
i=1 xi \leq M , we

have
\sum n

i=1 yi =
1
M

\sum n
i=1 xi \leq 1 so z \geq 0.

Clearly, this reduction is simply a rewriting, so the reduction is strongly polyno-
mial time.

Lemma 2.8. VPM reduces in strongly polynomial time to ZVPM.

Proof. Let \scrO be the oracle for ZVPM.

Require: A \in \BbbQ d\times n, b \in \BbbQ d.
Invoke \scrO on

(2.2)
\bigl[ 
a1  - b a2  - b \cdot \cdot \cdot an  - b

\bigr] 
x = 0,x \geq 0,

n\sum 
i=1

xi = 1,

where ai \in \BbbQ m is the ith column of A. If the output is NO, output NO, else output
rational x.

Claim 2.9. A solution to (2.2) gives a solution to the VPM instance and vice
versa.

Proof of Claim. Note that x satisfies (2.2) if and only if 0 =
\sum n

i=1 xi(ai  - b) =\sum n
i=1 xiai  - b

\sum n
i=1 xi = Ax  - b so Ax = b. Thus, x is a solution to the VPM

instance if and only if x is a solution to (2.2).

Clearly, this reduction is simply a rewriting, so the reduction is strongly polyno-
mial time.

Lemma 2.10. ZVPM reduces in strongly polynomial time to ZVPMD.

Proof idea. The reduction sequentially asks for every vertex whether it is redun-
dant and if so, it removes it and continues. This process ends with at most d + 1
vertices so that x is a strict convex combination of them and the coefficients xi can
be found in this resulting case by solving a linear system.

Proof. Let \scrO denote the ZVPMD oracle.

Require: P := \{ A1, . . . ,An\} \subseteq \BbbQ d where Ai is the ith column of A.
Invoke \scrO on P . If the output is NO, output NO.
for i = 1, . . . , n do

Invoke \scrO on instance P without Ai. If output is YES, remove Ai from P .
end for
Let p1, . . . ,pm be the points in P , where m is the cardinality of P .
Output the solution x \in \BbbR m to the linear system

\sum m
i=1 xi = 1,

\sum m
i=1 xipi = 0.

Let P \ast be the resulting set of points P after the loop in the reduction. The correctness
of the reduction will follow from the following claim: P \ast contains at most d+1 points
so that 0 is a strict convex combination of (all of) them. We will show the claim in
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the rest of the proof. By Caratheodory's theorem there is a subset Q \subseteq P \ast of at most
d+ 1 points so that 0 is a strict convex combination of points in Q. We will see that
P \ast is actually equal to Q. Suppose not, for a contradiction. Let p \in P \ast \setminus Q. At
the time the loop in the reduction examines p, no point in Q has been removed and
therefore p is redundant and is removed. This is a contradiction.

In the last step of the reduction (Lemma 2.13), we make use of two claims. The
first one is so elementary that we omit the proof. The second is a more technical
claim and we include the proof.

Claim 2.11. Given an m \times n matrix A, let B be A with a row of 1s appended.
The columns of A are affinely independent if and only if the columns of B are linearly
independent. The convex hull of the columns of A is full-dimensional if and only if
rank of B is m+ 1.

Claim 2.12. Let P = conv\{ p1, . . . ,pn\} be a V-polytope with pi \in \BbbQ d. Let T be
the maximum of the absolute values of all numerators and denominators of entries in
(pi)

n
i=1. If 0 /\in P , then d(0, P ) \geq 1

(dT )d
\surd 
d
.

Proof. Let y = projP (0). We have that every facet of P can be written as
a\top x \leq k, where a(\not = 0) is an integral vector, k is an integer, and the absolute values
of the entries of a as well as k are less than (dT )d [20, Theorem 3.6]. By assumption
at least one these facet inequalities is violated by 0. Denote by a\top x \leq k one such
inequality. Let H = \{ x : a\top x = k\} . We have \| y\| = d(0, P ) \geq d(0, H), and
d(0, H)2 = k2/\| a\| 2 \geq 1

d(dT )2d
. The claim follows.

For the proof of Lemma 2.13, we will also need the fact that Gram--Schmidt
orthogonalization can be implemented in strongly polynomial time. By ``Gram--
Schmidt orthogonalization"" we mean that given vectors v1, . . . ,vk \in \BbbR n, compute

vectors ui = vi  - 
\sum i - 1

j=1 proj\bfu j
(vi), where proj\bfu (v) =

\bfu \top \bfv 
\bfu \top \bfu 

u. The subset of all non-
zero vectors in \{ ui : i = 1, . . . , k\} is a set of orthogonal (and thus linearly independent)
vectors. Moreover, the whole sequence satisfies span (u1, . . . ,ul) = span (v1, . . . ,vl)
for all l = 1, . . . , k.

We could not find in the literature a complete proof that Gram--Schmidt orthog-
onalization can be computed in strongly polynomial time for rational input. At the
same time, it follows easily from results in [19, section 1.4]. For example [19, Corol-
lary 1.4.9] establishes that the determinant of a rational matrix can be computed in
strongly polynomial time. The following argument reduces the computation of Gram--
Schmidt orthogonalization to the computation of determinants in a way that proves
our claim: First, if the input sequence of vectors is linearly independent, the follow-
ing formulas give the orthogonalized sequence using determinants (see, for example,
[16, section IX.6]:

uj =
1

Dj - 1
det

\left(       
v\top 
1 v1 v\top 

2 v1 \cdot \cdot \cdot v\top 
j v1

v\top 
1 v2 v\top 

2 v2 \cdot \cdot \cdot v\top 
j v2

...
...

. . .
...

v\top 
1 vj - 1 v\top 

2 vj - 1 \cdot \cdot \cdot v\top 
j vj - 1

v1 v2 \cdot \cdot \cdot vj

\right)       ,
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where D0 = 1 and, for j \geq 1,

Dj = det

\left(       
v\top 
1 v1 v\top 

2 v1 \cdot \cdot \cdot v\top 
j v1

v\top 
1 v2 v\top 

2 v2 \cdot \cdot \cdot v\top 
j v2

...
...

. . .
...

v\top 
1 vj - 1 v\top 

2 vj - 1 \cdot \cdot \cdot v\top 
j vj - 1

v\top 
1 vj v\top 

2 vj \cdot \cdot \cdot v\top 
j vj

\right)       .

In the definition of uj , the determinant should be interpreted as a formal cofactor
expansion along the last row; the last entries of each column are the vectors vi and the
expansion gives the coefficients of these vectors (as subdeterminants) in the definition
of uj . If the input sequence of vectors is linearly dependent, then this can be detected
and handled as the determinants above are computed: Whenever the Gram determi-
nant Dj is zero, the sequence \{ v1, . . . ,vj\} is linearly dependent, the corresponding
orthogonalized vector uj is 0, and vj is skipped in subsequent iterations.

Lemma 2.13. ZVPMD reduces in strongly polynomial time to DVS.

Proof. Given an instance p1,p2, . . . ,pn of ZVPMD, we reduce it to an instance of
DVS as follows: We lift the points to an affinely independent set in higher dimension,
a simplex, by adding small-valued new coordinates. Claim 2.11 allows us to handle
affine independence in matrix form. Let A be the d\times nmatrix having columns (pi)

n
i=1.

Let v1, . . . ,vd be the rows of A. Let v0 \in \BbbR n be the all-ones vector. We want to
add vectors vd+1, . . . ,vd+t, for some t, so that v0, . . . ,vd+t is of rank n. To this end,
we construct an orthogonal basis (but not normalized, to preserve rationality) of the
orthogonal complement of span (v0, . . . ,vd). The basis is obtained by applying the
Gram--Schmidt orthogonalization procedure (that is, without the normalization step)
to the sequence v0, . . . ,vd, e1, . . . , en. It is known that Gram--Schmidt orthogonaliza-
tion can be computed in strongly polynomial time (see the paragraph after the proof
for a discussion). Denote vd+1, . . . ,vd+t the resulting orthogonal basis of the orthogo-
nal complement of span (v0, . . . ,vd). The matrix with rows v0, . . . ,vd,vd+1, . . . ,vd+t

is of rank n and so is the matrix with rows

v0, . . . ,vd, \epsilon vd+1, . . . , \epsilon vd+t

for any \epsilon > 0 (to be fixed later). Therefore, the n columns of this matrix are linearly
independent. Let B be the matrix with rows

v1, . . . ,vd, \epsilon vd+1, . . . , \epsilon vd+t.

Let w1, . . . ,wn be the columns of B. By construction and Claim 2.11 they are affinely
independent. Let S be the convex hull of these (n  - 1)-dimensional rational points.
Polytope S is a simplex. Let Q := conv\{ p1, . . . ,pn\} , and take

\sum 
k \lambda kpk to be the

minimum norm point in Q, and
\sum 

k \lambda kwk the lifted image of this point in S. Then
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d(0, S)2 \leq \| 
\sum 
k

\lambda kwk\| 2 = \| 
\sum 
k

\lambda kpk\| 2 + \epsilon 2
\sum 
k

\lambda k

d+t\sum 
i=d+1

v2ik

= d(0, Q)2 + \epsilon 2
d+t\sum 

i=d+1

\sum 
k

\lambda kv
2
ik

\leq d(0, Q)2 + \epsilon 2
d+t\sum 

i=d+1

\| vi\| 2

\leq d(0, Q)2 + \epsilon 2n

(where we use that \| vi\| \leq 1 for i \geq d + 1, as those vectors are the orthogonalized
vectors corresponding to the canonical vectors and each vector in the output of Gram--
Schmidt orthogonalization cannot be longer than the corresponding vector in the
input).

The reduction proceeds as follows: Let T be the maximum of the absolute values of
all numerators and denominators of entries in (pi)

n
i=1. Note that T can be computed in

strongly polynomial time: take the integers in the input representing the numerators
and denominators, compute their absolute values, and then take the maximum. From
Claim 2.12, we have d(0, Q)2 \geq 1

d(dT )2d
if 0 /\in Q. Compute rational \epsilon > 0 so that

\epsilon 2n < 1
d(dT )2d

. For example, let \epsilon := 1
nd(dT )d

. The reduction queries d(0, S)2 for S

constructed as above and given by the choice of \epsilon we just made. It then outputs
YES if d(0, S)2 < 1

d(dT )2d
and NO otherwise. Note that d(0, Q)2 \leq d(0, S)2 since if\sum 

k \lambda kwk \in S is the point achieving \| 
\sum 

k \lambda kwk\| 2 = d(0, S)2, then by construction of
wk we have d(0, Q)2 \leq \| 

\sum 
k \lambda kpk\| 2 \leq \| 

\sum 
k \lambda kwk\| 2 = d(0, S)2.

3. Conclusions and open questions. We have seen that Wolfe's method using
a natural point insertion rule exhibits exponential behavior. We have also shown that
the minimum norm point problem for simplices is intimately related to the complexity
of linear programming. Our work raises several very natural questions:

\bullet Are there exponential examples for other insertion rules for Wolfe's method?
Also, at the moment, the ordering of the points starts with the closest point
to the origin, but one could also consider a randomized initial rule or a ran-
domized insertion rule.

\bullet For applications in submodular function minimization, the polytopes one con-
siders are base polytopes and our exponential example is not of this kind.
Could there be hope that for base polytopes Wolfe's method performs bet-
ter?

\bullet It would be interesting to understand the average performance of Wolfe's
method. How does it behave for random data? Further randomized analysis
of this method would include the smoothed analysis of Wolfe's method or at
least the behavior for data following a prescribed distribution.

\bullet We have seen that it is already quite interesting to study the minimum norm
point problem for simplices, when we discussed the connection with linear
programming. Is there a family of simplices where Wolfe's method takes
exponential time?

\bullet Can Wolfe's method be extended to other convex Lp norms for p \geq 1? Can
we identify the types of objective functions for which computing the affine
minimizer is easy?
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