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ABSTRACT
The complexity of PhilipWolfe’smethod for theminimumEuclidean-

norm point problem over a convex polytope has remained unknown

since he proposed the method in 1974. The method is important

because it is used as a subroutine for one of the most practical

algorithms for submodular function minimization. We present the

first example that Wolfe’s method takes exponential time. Addition-

ally, we improve previous results to show that linear programming

reduces in strongly-polynomial time to the minimum norm point

problem over a simplex.

CCS CONCEPTS
• Mathematics of computing → Quadratic programming; •
Theory of computation → Linear programming; Quadratic
programming;

KEYWORDS
convex quadratic optimization, Wolfe’s method, linear program-
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1 INTRODUCTION
The fundamental algorithmic problem we consider here is: Given

a convex polytope P ⊂ Rd , to find the point x ∈ P of minimum

Euclidean norm, i.e., the closest point to the origin or what we call

its minimum norm point for short. We assume P is presented as the

convex hull of finitely many points p1, p2, . . . , pn (not necessarily

in convex position). We wish to find

argmin ∥x∥2
subject to x =

∑n
k=1 λkpk ,∑n

k=1 λk = 1, λk ≥ 0, for k = 1, ...,n.
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Finding the minimum norm point in a polytope is a basic auxil-

iary step in several algorithms arising in many areas of optimization

and machine learning; a subroutine for solving the minimum norm

point problem can be used to compute the projection of an arbi-

trary point to a polytope (indeed, argminx∈P ∥x − a∥2 is the same

as a + argminy∈P−a ∥y∥2). The minimum norm problem addition-

ally appears in combinatorial optimization, e.g., for the nearest

point problem for transportation polytopes [Bachem and Korte

1980; Calvillo and Romero 2016] and as a vital subroutine in Bárány

and Onn’s approximation algorithm to solve the colorful linear

programming problem [Bárány and Onn 1997]. One of the most

important reasons to study this problem is because the minimum

norm problem can be used as a subroutine for submodular func-

tion minimization through projection onto the base polytope, as

proposed by Fujishige [Fujishige 1980]. Submodular minimization

is useful in machine learning, where applications such as large

scale learning and vision require efficient and accurate solutions

[Bach et al. 2013; Nagano et al. 2011]. The problem also appears

in optimal loading of recursive neural networks [Chandru et al.

1995]. The Fujishige-Wolfe algorithm is currently considered an

important practical algorithm in applications [Chakrabarty et al.

2014; Fujishige et al. 2006; Fujishige and Isotani 2011]. Furthermore,

Fujishige et al. first observed that linear programs may be solved

by solving the minimum norm point problem [Fujishige et al. 2006],

so this simple geometric problem is also relevant to the theory of

algorithmic complexity of linear optimization.

One may ask about the complexity of other closely related prob-

lems. First, it is worth remembering that Lp norm minimization

over a polyhedron is NP-hard for 0 ≤ p < 1 (see [Ge et al. 2011]

and the references therein), while for p ≥ 1 the convexity of the

norm allows for computation of an ϵ-approximate solution in time

polynomial in log(1/ϵ). When p = 1, 2, the solution to Lp norm

minimization over a polyhedron given by rational data is rational

(see [Schrijver 1998] for details), so this solution may be computed

exactly in polynomial time. Meanwhile, one can prove that the

seemingly similar problem of finding the closest vertex of a convex

polytope given by inequalities is NP-hard. The reduction for hard-

ness is to the directed Hamiltonian path problem: Given a directed

graph G = (V ,A) and two distinct vertices s, t ∈ V , one aims to

decide whetherG contains a directed Hamiltonian path from s to
t . It is well-known there is a polytope represented by inequalities

which has some vertices corresponding to the characteristic vectors

of directed paths joining s to t in G. See e.g., [Fukuda et al. 1997]
for the details, including the explicit inequality description of this

polytope. Finally, by a change of variable yi = 1 − xi , changing
zeros to ones and vice versa, and an appropriate selection of the
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upper bound on the value of xi , the minimum Euclidean norm ver-

tex becomes precisely the “longest path from s to t", solving the

directed Hamiltonian path problem.

Since the Euclidean norm is a convex quadratic form, the mini-

mum norm point problem is a special case of convex quadratic opti-

mization problem. Indeed, it is well-known that a convex quadratic

programming problem can be approximately solved in polynomial

time; that is, some point y within distance ε of the desired mini-

mizing point x may be found in polynomial time with respect to

log
1

ε . This can be done either through several iterative (convergent)

algorithms, such as the Ellipsoid method [Kozlov et al. 1980] and

interior-point method techniques [Boyd and Vandenberghe 2004].

Each of these are methods whose complexity depends upon the

desired accuracy. However, an approximate numerical solution is

inconvenient when the application requires more information, e.g.,

if we require to know the face that contains the minimum norm

point. Numeric methods that converge to a solution and require

further rounding are not as convenient for this need.

In this paper, we focus on combinatorial algorithms that rely on

the structure of the polytope. There are several reasons to study

the complexity of combinatorial algorithms for the minimum norm

problem. On the one hand, the minimum norm problem can in-

deed be solved in strongly-polynomial time for some polytopes;

most notably in network-flow and transportation polytopes (see

[Bachem and Korte 1980; Calvillo and Romero 2016; Végh 2016], and

references therein, for details). On the other hand, while linear pro-

gramming reduces to the minimum norm problem, it is unknown

whether linear programming can be solved in strongly-polynomial

time [Smale 2000], thus the complexity of the minimum norm point

problem could also impact the algorithmic efficiency of linear pro-

gramming and optimization in general. For all these reasons it is

natural to ask whether a strongly-polynomial time algorithm exists

for the minimum norm problem for general polytopes.

Our contributions:
• In 1974, Philip Wolfe proposed a combinatorial method that

can solve the minimum-norm point problem exactly [Wolfe

1974, 1976]. Since then, the complexity of Wolfe’s method

was not understood. In Section 1 we present our main con-

tribution and give the first example that Wolfe’s method

has exponential behavior. This is akin to the well-known

Klee-Minty examples showing exponential behavior for the

simplex method [Klee and Minty 1972].

• As we mentioned earlier, an enticing reason to explore the

complexity of the minimum norm problem is its intimate

link to the complexity of linear programming. It is known

that linear programming can be polynomially reduced to

the minimum norm point problem [Fujishige et al. 2006]. In

Section 2, we strengthen earlier results showing that linear

optimization is strongly-polynomial time reducible to the

minimum norm point problem on a simplex.

Proofs omitted from this extended abstract can be found in the

full version [De Loera et al. 2017].

2 WOLFE’S METHOD EXHIBITS
EXPONENTIAL BEHAVIOR

For convenience of the reader and to set up notation we start with

a brief description of Wolfe’s method; however, for efficiency of

presentation, we refer the reader to [Schrijver 1998] for relevant

definitions and preliminary results in convex analysis. We will then

describe our exponential example in detail, proving the exponential

behavior of Wolfe’s method. First, we review two important defini-

tions. Given a set of points S ⊆ Rd , we have two minimum-norm

points to consider. One is the affine minimizer which is the point of

minimum norm in the affine hull of S , argminx∈aff(S ) ∥x∥2. The sec-
ond is the convex minimizer which is the point of minimum norm

in the convex hull of S , argminx∈conv(S ) ∥x∥2. Note that solving for
the convex minimizer of a set of points is exactly the problem we

are solving, while solving for the affine minimizer of a set of points

is easily computable by solving a system of linear equations and

thus may be computed in strongly-polynomial time; see [Schrijver

1998, Section 3.3] and references therein.

2.1 A Brief Review of Wolfe’s Combinatorial
Method

Wolfe’s combinatorial method solves the minimum norm point

problem over a polytope, P = conv(p1, p2, ..., pn ) ⊂ Rd , and was

introduced by P. Wolfe in [Wolfe 1976]. The method iteratively

solves the minimum norm point problem over a sequence of subsets

of no more than d + 1 affinely independent points from p1, ..., pn
and it checks to see if the solution to the subproblem is a solution

to the problem over P using the following lemma due to Wolfe. We

call this Wolfe’s criterion.

Lemma 2.1 (Wolfe’s criterion [Wolfe 1976]). Let P ⊂ Rd be
the convex hull of finitely many points, P := conv(p1, ..., pn ), then
x ∈ P is the minimum norm point in P if and only if xT pj ≥ ∥x∥2

2

for all j ∈ [n].

Note that this tells us that if there exists a point pj so that

xTpj < ∥x ∥2
2
(i.e., the hyperplane {y : xT y = ∥x∥2

2
} does not

weakly separate P from 0), then x is not the minimum norm point

in P . We say that pj violates Wolfe’s criterion and using this point

should decrease the norm of theminimum norm point of the current

subproblem.

It should be observed that just as Wolfe’s criterion is a rule to

decide optimality over conv(P), one has a very similar rule for

deciding optimality over the affine hull, aff(P).

Lemma 2.2 (Wolfe’s criterion for the affine hull). Let P =
{p1, p2, ..., pn } ⊆ Rd be a non-empty finite set of points. Then x ∈

aff P is the minimum norm point in aff P iff for all pi ∈ P we have
pTi x = ∥x∥2

2
.

We say a set of affinely independent points S is a corral if the
affine minimizer of S lies in the relative interior of conv S . Requiring
the affine minimizer to lie in the relative interior of the convex hull
ensures that corrals are of minimal size and without points unneces-

sary for expressing the affine minimizer as a convex combination of

the corral. Note that singletons are always corrals. Carathéodory’s

theorem implies that the minimum norm point of P will lie in the

convex hull of some corral of points among p1, ..., pn . The goal of

546



The Minimum Euclidean-Norm Point in a Convex Polytope STOC’18, June 25–29, 2018, Los Angeles, CA, USA

p1

p2

p3

x

p5

p4

P

0

{y : xT y = ∥x∥2}

Figure 1: A visualization of Wolfe’s criterion. Note that {y :

xT y = ∥x∥2} weakly separates P from 0, so x is the minimum
norm point in P .

Wolfe’s method is to search for a corral containing the (unique)

minimizing point.

The pseudo-code in Method 1 below presents the iterations of

Wolfe’s method. It is worth noticing that some steps of the method

can be implemented in more than one way and Wolfe proved that

all of them lead to a correct, terminating algorithm (for example,

the choice of the initial point in line 2). We therefore use the word

method to encompass all these variations and we discuss specific

choices when they are relevant to our analysis of the method.

Method 1 Wolfe’s Method [Wolfe 1976]

1: procedure Wolfe(p1, p2, ..., pn )
2: Initialize x = pi for some i ∈ [n], initial corral

C = {pi }, I = {i}, λ = ei , α = 0.
3: while x , 0 and there exists pj with xT pj < ∥x∥2

2
do

4: Add pj to the potential corral: C = C ∪ {pj },
I = I ∪ {j}.

5: Find the affine minimizer of C ,
y = argminy∈aff(C) ∥y∥2, and the affine

coefficients, α .
6: while y is not a strict convex combination of

points in C; αi ≤ 0 for some i ∈ I do
7: Find z, closest point to y on [x, y] ∩ conv(C);

z = θy + (1 − θ )x, θ = mini ∈I :αi ≤0
λi

λi−αi
.

8: Select pi ∈ {pj ∈ C : θα j + (1 − θ )λj = 0}.

9: Remove this point from C; C = C − {pi },
I = I − {i}, αi = 0, λi = 0.

10: Update x = z and the convex coefficients, λ, of
x for C; solve x =

∑
pi ∈C λipi for λ.

11: Find the affine minimizer of C ,
y = argminy∈aff(C) ∥y∥2 and the affine

coefficients, α .
12: end while
13: Update x = y and λ = α .
14: end while
15: Return x.
16: end procedure

The subset of points being considered as the potential corral is
maintained in the set C . Iterations of the outer-loop, where points
are added to C , are called major cycles and iterations of the inner-

loop, where points are removed fromC , are calledminor cycles. The
potential corral,C , is named so because at the beginning of a major

cycle it is guaranteed to be a corral, while within the minor cycles

it may or may not be a corral. Intuitively, a major cycle of Wolfe’s

method inserts an improving point which violates Wolfe’s criterion

(pj so that xT pj < ∥x∥2
2
) into C , then the minor cycles remove

points untilC is a corral, and this process is repeated until no points

are improving and C is guaranteed to be a corral containing the

minimizer. It can be shown that this method terminates because the

norm of the convex minimizer of the corrals visited monotonically

decreases and thus, no corral is visited twice [Wolfe 1976].

Within the method, there are two moments at which one may

choose which points to add to the potential corral. Observe that

at line 2 of the pseudocode, one may choose which initial point

to add to the potential corral. In this paper we will only consider

one initial rule, which is to initialize with the point of minimum

norm. Observe that at line 4 of the pseudocode, there are several

potential choices of which point to add to the potential corral. Two

important examples of insertion rules are, first, the minnorm rule
which dictates that one chooses, out of the improving points for the

potential corral, to add the point pj of minimum norm. Second, the

linopt rule dictates that one chooses, out of the improving points for

the potential corral, to add the point pj minimizing xT pj . Notice
that insertion rules are to Wolfe’s method what pivot rules are to
the Simplex Method (see [Terlaky and Zhang 1993] for a summary).

As with pivot rules, there are advantages and disadvantages of

insertion rules. For example, the minnorm rule has the advantage

that its implementation only requires an initial ordering of the

points, then in each iteration it need only to search for an improv-

ing point in order of increasing norm and to add the first found.

However, the linopt insertion rule has the advantage that, if the

polytope is given in H-representation (intersection of halfspaces)

rather than V-representation (convex hull of points), one may still

perform Wolfe’s method by using linear programming to find pj
minimizing xT pj over the polytope. In other words, Wolfe’s method

does not need to have the list of vertices explicitly given, but suffices

to have a linear programming oracle that provides the new vertex

to be inserted. This feature of Wolfe’s method means that each

iteration can be implemented efficiently even for certain polyhedra

having too many vertices and facets: specifically, over zonotopes

(presented as a Minkowski sum of segments) [Fujishige et al. 2006]

and over the base polyhedron of a submodular function [Fujishige

1980].

Wolfe’s method with the linopt insertion rule (otherwise called

the Lawson-Hanson algorithm for non-negative least squares [Law-

son and Hanson 1995, Section 23.3]) is similar to other active-set

methods in convex optimization. In particular, von Neumann’s algo-

rithm for determining whether the origin lies in a convex polytope

[Dantzig 1992], Gilbert’s procedure for computing the minimum of

a quadratic form on a convex set [Gilbert 1966], and the Frank-Wolfe

method for convex optimization [Frank and Wolfe 1956] make use

of the same active-set selection criterion, the linopt insertion rule.

Several of these methods and their variants have been shown to
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Figure 2: The simplex P = conv{p1, p2, p3, p4} ⊂ R3 where
p1 = (0.8, 0.9, 0), p2 = (1.5,−0.5, 0), p3 = (−1,−1, 2) and p4 =
(−4, 1.5, 2).

have sublinear or linear convergence (with appropriate assump-

tions on the location of the minimizer); see e.g., [Lacoste-Julien

and Jaggi 2013, 2015; Peña et al. 2016]. In [Lacoste-Julien and Jaggi

2015], the authors additionally studied Wolfe’s method with the

linopt insertion rule, showing that the method converges linearly

with a rate O(e−ρt ) where ρ is an eccentricity parameter of the

polytope. This improved upon prior results by [Chakrabarty et al.

2014], which had provided a sublinear (O(1/t)) rate. Note, however,
that the parameter ρ defined in [Lacoste-Julien and Jaggi 2015]

may be exponentially small in the encoding length of the problem,

so both results give a pseudo-polynomial time bound for Wolfe’s

method with the linopt insertion rule.

We present examples that show that the optimal choice of in-

sertion rule depends on the input data. First, we present a simple

example where the minnorm rule outperforms the linopt rule. That

is, the minnorm insertion rule is not in obvious disadvantage to

the linopt rule. This is in contrast to the family of examples we

present in Section 2.2 where the minnorm rule takes exponential

time, while we expect the linopt rule to take polynomial time.

Consider the simplex P shown in Figure 2 (we present the co-

ordinates of vertices in the figure’s caption). We list the steps of

Wolfe’s method on P for the minnorm and linopt insertion rules

in Tables 1 and 2 and demonstrate a single step from each set of

iterations in Figure 3. Each row lists major cycle and minor cycle

iteration number, the vertices in the potential corral, and the value

of x and y at the end of the iteration (before x = y for major cycles).

Note that the vertex p4 is added to the potential corral twice with

the linopt insertion rule, as evidenced in Table 2.

Currently, there are examples of exponential behavior for the

simplex method for all known deterministic pivot rules. It is our aim

to provide the same for insertion rules on Wolfe’s method. In the

next subsection we will present the first exponential time example

using the minnorm insertion rule.

Table 1: iterations forminnorm insertion rule on simplex P .
Cycle i, j denotes the ith major cycle and the jth minor cycle
within.

Cycle C x y

0,0 {p1 } p1

1,0 {p1, p2 } p1 (1, 0.5, 0)

2,0 {p1, p2, p3 } (1, 0.5, 0) (0.398, 0.199, 0.547)

3,0 {p1, p2, p3, p4 } (0.398, 0.199, 0.547) (0, 0, 0)

3,1 {p1, p2, p4 } (0.288, 0.144, 0.396) (0.198, 0.099, 0.446)

Table 2: iterations for linopt insertion rule on simplex P . Cy-
cle i, j denotes the ith major cycle and the jth minor cycel
within.

Cycle C x y

0,0 {p1 } p1

1,0 {p1, p4 } p1 (0.222, 0.972, 0.241)

2,0 {p1, p4, p3 } (0.222, 0.972, 0.241) (0.285, 0.342, 0.581)

2,1 {p1, p3 } (0.286, 0.355, 0.574) (0.277, 0.348, 0.581)

3,0 {p1, p3, p2 } (0.277, 0.348, 0.581) (0.398, 0.199, 0.547)

4,0 {p1, p2, p3, p4 } (0.398, 0.199, 0.547) (0, 0, 0)

4,1 {p1, p2, p4 } (0.288, 0.144, 0.396) (0.198, 0.099, 0.446)

2.2 An Exponential Lower Bound for Wolfe’s
Method

To understand our hard instance, it is helpful to consider first a

simple instance that shows an inefficiency of Wolfe’s method. The

example is a set of points where a point leaves and reenters the

current corral: 4 points in R3, (1, 0, 0), (1/2, 1/4, 1), (1/2, 1/4,−1),
(−2, 1/4, 0). If one labels the points 1, 2, 3, 4, the sequence of corrals

with the minnorm rule is 1, 12, 23, 234, 14, where point 1 enters,

leaves and reenters (For succintness, sets of points like {a,b, c} may

be denoted abc .). The idea now is to recursively replace point 1 (that

reenters) in this construction by a recursively constructed set of

points whose corrals are then considered twice by Wolfe’s method.

To simplify the proof, our construction uses a variation of this

set of 4 points with an additional point and modified coordinates.

This modified construction is depicted in Figure 4, where point 1

corresponds to a set of points P(d − 2), points 2,3 correspond to

points pd , qd and point 4 corresponds to points rd , sd .
The high-level idea of our exponential lower bound example is

the following. We will inductively define a sequence of instances of

increasing dimension of the minimum norm point problem. Given

an instance in dimension d − 2, we will add a few dimensions and

points so that, when given toWolfe’s method, the number of corrals

of the new augmented instance in dimension d has about twice the

number of corrals of the input instance in dimension d − 2. More

precisely, our augmentation procedure takes an instance P(d − 2) in
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Figure 3: Top: Major cycle 1, minor cycle 0 for the linopt
rule on P illustrates the end of a major cycle; the affine min-
imizer y1 ∈ relint(conv{C}) = relint(conv{p1, p4}). Bottom:
Major cycle 2, minor cycle 0 for the linopt rule on P illus-
trates the beginning of a minor cycle; the affine minimizer
y2 < relint(conv{C}) = relint(conv{p1, p4, p3}) and the vertex p4
will be removed in the next minor cycle.

Rd−2, adds two new coordinates and adds four points, pd , qd , rd , sd ,
to get an instance P(d) in Rd .

Points pd , qd are defined so that the method on instance P(d)
goes first through every corral given by the points in the prior

configuration P(d −2) and then goes to corral pdqd . To achieve this
under the minimum norm rule, the four new points have greater

norm than any point in P(d − 2) and they are in the geometric

configuration sketched in Figure 4.

At this time, no point in P(d − 2) is in the current corral and so,

if a point in P(d − 2) is part of the optimal corral, it will have to

reenter, which is expensive. Points rd , sd are defined so that rd sd
is a corral after pdqd , but now every point in P(d − 2) is improving

according to Wolfe’s criterion and may enter again. Specifically,

every corral in P(d − 2), with rd sd appended, is visited again.

Before we start describing the exponential example in detail,

we wish to review preliminary lemmas of independent interest

which will be used in the arguments. The first lemma demonstrates

that orthogonality between finite point sets allows us to easily

describe the affine minimizer of their union. Figure 5 shows two

such situations, one in which the affine hull of the union of the

point sets span all of R3 and one in which it does not.

Figure 4: Top: In this view of P(d), the point labeled P(d − 2)

represents all points from P(d − 2) embedded into Rd . The
axis labeled Rd−2 represents the (d − 2)-dimensional sub-
space, span (P(d − 2)) projected into span

(
o∗d−2

)
. Bottom: A

two-dimensional view of P(d) projected along the xd coor-
dinate axis.

Lemma 2.3. Let A ⊆ Rd be a proper linear subspace. Let P ⊆ A
be a non-empty finite set. Let Q ⊆ A⊥ be another non-empty finite
set. Let x be the minimum norm point in aff P . Let y be the minimum
norm point in affQ . Let z be the minimum norm point in aff(P ∪Q).
We have:

(1) z is the minimum norm point in [x, y] and therefore, if x , 0

or y , 0, then z = λx + (1 − λ)y with λ =
∥y∥2

2

∥x∥2
2
+∥y∥2

2

.

(2) If x , 0 and y , 0, then z is a strict convex combination of x
and y.

(3) If x , 0, y , 0 and P and Q are corrals, then P ∪Q is also a
corral.

The following lemma shows conditions under which, if we have

a corral and a new point that only has components along the mini-

mum norm point of the corral and along new coordinates, then the

corral with the new point added is also a corral. Moreover, the new

minimum norm point is a convex combination of the old minimum

norm point and the added point. Figure 6 gives an example of such

a situation in R3. Denote by span (M) the linear span of the setM .
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Figure 5: Examples of Lemma 2.3. Top: the affine hull of P∪Q
is not full dimensional, and thus the affineminimizer lies at
z along the line segment connecting x = p and y. Bottom: the
convex hull of P ∪Q is full-dimensional and thus the affine
hull of P ∪Q includes O which is the affine minimizer.

Lemma 2.4. Let P ⊆ Rd be a finite set of points that is a corral. Let x
be the minimum norm point in aff P . Let q ∈ span

(
x, span (P)⊥

)
, and

Figure 6: An example of Lemma 2.4 inwhich point q satisfies
all assumptions and P ∪ {q} is a corral. The hyperplanes are
labeled with their defining properties and demonstrate that
qT x < min{∥x∥2, ∥q∥2}. The minimizer of P ∪ {q} lies at the
intersection of the blue, vertical axis and conv(P ∪ {q}).

assume qT x < min

{
∥q∥2

2
, ∥x∥2

2

}
. Then P ∪ {q} is a corral. Moreover,

the minimum norm point y in conv(P ∪ {q}) is a (strict) convex
combination of q and the minimum norm point of P : y = λx+(1−λ)q
with λ = qT (q − x)/∥q − x∥2

2
.

Our last lemma shows that if we have points in two orthogonal

subspaces, A and A⊥
, then adding a point from A⊥

to a set from A
does not cause any points from A that previously did not violate

Wolfe’s criterion (for the affine minimizer) to violate it. Figure 7

demonstrates this situation.

Lemma 2.5. For a point z define Hz = {w ∈ Rn : wT z < ∥z∥2
2
}.

Suppose that we have an instance of the minimum norm point problem
in Rd as follows: Some points, P , live in a proper linear subspace A
and some, Q , in A⊥. Let x be the minimum norm point in aff P and y
be the minimum norm point in aff(P ∪Q). Then Hy ∩A = Hx ∩A.

We will now describe our example in detail. The simplest ver-

sion of our construction uses square roots and real numbers. We

present instead a version with a few additional tweaks so that it

only involves rational numbers.

Let P(1) = {1} ⊆ Q. For odd d > 1, let P(d) be a list of points in

Qd defined inductively as follows: Let o∗d denote theminimumnorm

point in conv P(d). LetMd := maxp∈P (d ) ∥p∥1, which is a rational

upper bound to the maximum 2-norm among the points in P(d).
(For a first reading one can letMd be the maximum 2-norm among

points in P(d), which leads to an essentially equivalent instance

except that it is not rational.) Similarly, let md = ∥o∗d ∥∞, which

is a rational lower bound to the minimum norm among points in

conv P(d). (Again, for a first reading one can definemd = ∥o∗d ∥2
which leads to an essentially equivalent instance, except that it is

not rational.)
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Figure 7: An example of Lemma 2.5 in which adding points
Q from A⊥ to points P from A create a new affine minimizer,
z, but the points satisfyingWolfe’s criterion inA remain the
same. Note that both hyperplanes intersect at the affinemin-
imizer of P , so the halfspace intersections with A are the
same.

We finally present the example. If we identify P(d) with a matrix

where the points are rows, then the points in P(d) are given by the

following block matrix:

P(d) =

©­­­­­«
P(d − 2) 0 0

1

2
o∗d−2

md−2
4

Md−2
1

2
o∗d−2

md−2
4

−(Md−2 + 1)

0
md−2
4

Md−2 + 2

0
md−2
4

−(Md−2 + 3).

ª®®®®®¬
.

The last four rows of the matrix P(d) are the points pd , qd , rd , sd
of the configuration. For a picture of the case of P(3) see Figure 8.
We also present the sets C , and points x and y defined throughout

the iterations of Wolfe’s method with the minnorm insertion rule

on P(3) in Table 3. For comparison only, we include the same for

the iterations of Wolfe’s method with the linopt insertion rule on

P(3) in Table 4.

Remark: First note that strictly speaking P(d − 2) ⊂ Qd−2, and

that we are defining an embedding of it into Qd , for which we

have to use a recursive process. To avoid unnecessary notation,

we will abuse the notation. The point vd−2 denotes both a point

of P(d − 2) and of the subsequent P(d), i.e., vd−2 = (v, 0, 0) will be
the identical copy of vd−2 within P(d), but we add two extra zero

coordinates. Depending on the context vd−2 will be understood

Figure 8: Top: Three-dimensional view of P(3). Bottom: A
two-dimensional view of P(3) projected along the x3 coordi-
nate axis.

as both a (d − 2)-dimensional vector or as a d-dimensional vector

(e.g., when doing dot products). The points of P(d − 2) become a

subset of the point configuration P(d) by padding extra zeros. See

Figures 4 and 9 which illustrate this embedding and address our

visualizations of these sets in three dimensions.

Theorem 2.6. Consider the execution of Wolfe’s method with the
minnorm point rule on input P(d)whered = 2k−1. Then the sequence
of corrals has length 5 · 2k−1 − 4.

The inductive proof of this result relies upon the three lemmas

stated above. Each of these are applied in various steps that char-

acterize the sequence of corrals visited for P(d) in terms of the

sequence of corrals visited for P(d − 2). Moreover, this character-

ization shows that the length of the sequence of corrals at least

doubles in length for each step from P(d − 2) to P(d).
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Table 3: iterations forminnorm insertion rule on P(3). Cycle
i, j denotes the ithmajor cycle and the jthminor cyclewithin.
The point (1, 0, 0) is denoted o∗.

Cycle C x y

0, 0 {o∗ } o∗

1, 0 {o∗, p3 } o∗ (0.810, 0.095, 0.381)

2, 0 {o∗, p3, q3 } (0.810, 0.095, 0.381) (0.2, 0.4, 0)

2, 1 {p3, q3 } (0.5, 0.25, 0.1875) (0.5, 0.25, 0)

3, 0 {p3, q3, r3 } (0.5, 0.25, 0) (0, 0.25, 0)

3, 1 {q3, r3 } (0.3, 0.25, 0) (0.297, 0.25, 0.0297)

4, 0 {q3, r3, s3 } (0.297, 0.25, 0.0297) (0, 0.25, 0)

4, 1 {r3, s3 } (0, 0.25, 0) (0, 0.25, 0)

5, 0 {r3, s3, o∗ } (0, 0.25, 0) (0.059, 0.235, 0)

Table 4: iterations for linopt insertion rule on P(3). Cycle i, j
denotes the ith major cycle and the jth minor cycle within.
The point (1, 0, 0) is denoted o∗.

Cycle C x y

0, 0 {o∗ } o∗

1, 0 {o∗, r3 } o∗ (0.901, 0.025, 0.298)

2, 0 {o∗, r3, s3 } (0.901, 0.025, 0.298) (0.059, 0.235, 0)

Figure 9: As described in Figure 4, the axis labeled Rd−2 rep-
resents the (d − 2)-dimensional subspace span (P(d − 2)) pro-
jected onto the one dimensional subspace span

(
o∗d−2

)
. Here

we illustrate that the projection of the set P(d − 2) forms a
‘cloud’ of points and the convex hull of this projection has
many fewer faces than the unprojected convex hull. For sim-
plicity, we will visualize P(d − 2) and subsets of P(d − 2) as a
single point in span

(
o∗d−2

)
as in Figure 4.

3 LINEAR OPTIMIZATION REDUCES TO
MINIMUM-NORM PROBLEMS ON
SIMPLICES

We reduce linear programming to the minimum norm point prob-

lem over a simplex via a series of strongly polynomial time reduc-

tions. The algorithmic problems we consider are defined below.

Definition 3.1. Consider the following computational problems:

• LP:Given a rational matrixA, a rational column vector b, and
a rational row vector cT , output rational x ∈ argmax{cT x :

Ax ≤ b} if max{cT x : Ax ≤ b} is finite, otherwise out-

put INFEASIBLE if {x : Ax ≤ b} is empty and else output

INFINITE.

• DVS: Given n ≤ d + 1 affinely independent rational points

p1, p2, ..., pn ∈ Rd defining (n − 1)-dimensional simplex

P = conv{p1, p2, ..., pn }, output d(0, P)2.

The main result in this section reduces linear programming

to finding the minimum norm point in a (vertex-representation)

simplex.

Theorem 3.2. LP reduces to DVS in strongly-polynomial time.

This result is proved via a series of strongly-polynomial reduc-

tions which may be found in the full version [De Loera et al. 2017].

The first reductions, which reduce LP to the problem of deciding if

the origin lies in a polytope given in vertex-represention (which

we call ZVPMD), are classically known, although we do not believe

they have all been written elsewhere. The last reduction, which

reduces ZVPMD to DVS, is novel and relies upon a careful appli-

cation of Gram-Schmidt orthogonalization to construct a lift of

the polytope to a simplex in higher dimension. We comment that

the application of Gram-Schmidt without normalization causes the

bit-size of the numbers involved in the problem to grow, but only

polynomially, thus preserving the strong-polynomiality of the re-

duction; see [Grötschel et al. 1988, Section 1.4], [Schrijver 1998,

Section 3.3].

4 CONCLUSIONS AND OPEN QUESTIONS
We have seen that Wolfe’s method using a natural point insertion

rule exhibits exponential behavior. We have also shown that the

minimum norm point problem for simplices is intimately related

to the complexity of linear programming. Our work raises several

very natural questions:

• Are there exponential examples for other insertion rules

for Wolfe’s method? Also, at the moment, the ordering of

the points starts with the closest point to the origin, but one

could also consider a randomized initial rule or a randomized

insertion rule.

• For applications in submodular function minimization, the

polytopes one considers are base polytopes and our expo-

nential example is not of this kind. Could there be hope that

for base polytopes Wolfe’s method performs better?

• It would be interesting to understand the average perfor-

mance of Wolfe’s method. How does it behave for random

data? Further randomized analysis of this method would

include the smoothed analysis of Wolfe’s method or at least

the behavior for data following a prescribed distribution.
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• We have seen that it is already quite interesting to study

the minimum norm point problem for simplices, when we

discussed the connection with linear programming. Is there a

family of simplices where Wolfe’s method takes exponential

time?

• Can Wolfe’s method be extended to other convex Lp norms

for p ≥ 1? Can we identify the types of objective functions

for which computing the affine minimizer is easy?
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